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Abstract Variational data assimilation methods are designed to estimate
an unknown initial condition of a model using observations. To do so, one
needs to compare model outputs and observations. This is generally per-
formed using Euclidean distances. This paper investigates another distance
choice: the Wasserstein distance, stemming from optimal transport theory.
We develop a variational data assimilation method using this distance and
it shows successful results on preliminary experiments. Optimal-transport-
based optimization seems to be promising to preserve the geometrical prop-
erties of the estimated initial condition.

1 Introduction
Understanding and forecasting the evolution of a given system is a crucial
topic in an ever increasing number of application domains. To achieve that
goal, one can rely on multiple sources of information, namely observations of
the system, numerical model describing its behaviour, as well as additional
a priori knowledge such as statistical information or previous forecasts. To
combine these heterogeneous sources of observation it is common practice to
use so-called data assimilation methods (e.g., see reference books [LLD06,
LSZ15]). They aim at finding either the initial/boundary conditions or some
parameters of a numerical model. They are extensively used in numerical
weather forecasting for instance (e.g., see reviews in the books [PX09, PX13]).

The estimation of the different elements to be sought (the control vec-
tor) is performed in data assimilation through the comparison between the

1



observations and their model counterparts. The control vector should be ad-
justed such that its model outputs would fit the observations, while taking
into account that these observations are unperfect and corrupted by noise
and errors.

Data assimilation methods are divided into three disctinct classes. First,
there is statistical filtering based on Kalman filters. Then, the variational
data assimilation methods based on the optimal control theory. More recently
an hybrid of both approaches have been developed [HS00, Bue05, BS14].
In this paper we focus on the variational data assimilation. It consists in
minimizing a cost function written as the distance between the observations
and their model counterparts. A Tikhonov regularization is also added and
so the distance between the control vector and a background state carying
the a priori information is added in the cost function.

Thus the cost function contains the misfit between the data (a priori and
observations) and their control and model counterparts. Minimizing the cost
function aims to reach a compromise in which these errors are smallest as
possible. The errors can be decomposed into amplitude and position errors.
Position errors mean that the structural elements are present in the data, but
misplaced. Some methods have been proposed in order to deal with position
errors [HG96, REM07]. These involve a preprocessing step which consists
in displacing the different data so they fit better with each other. Then the
data assimilation is performed accounting for those displaced data.

A distance has to be chosen in order to compare the different data and
measure the misfits. Usually, an Euclidean distance is used, often weighted to
take into account the statistical errors. But Euclidean distances have trouble
capturing position errors. This is illustrated in Fig. 1. The second density
can be seen as the first one with position error. The middle point between the
two densities in the sense of the L2 distance (that is, the mean) has not the
desired shape nor the desired localization. We investigate in this article the
idea of using instead a distance stemming from the optimal transport theory,
the Wasserstein distance, which can take into account position errors. In Fig.
1 we show that the mean with respect to the Wasserstein distance is what we
want it to be: same shape, same amplitude, located in-between. It conserves
the shape of the data. This is what we want to achieve when dealing with
position errors.

The optimal transport theory has been founded by Monge in 1781 [Mon81].
He searched for the optimal way of displacing sand piles onto holes of the
same volume, minimizing the total cost of displacement. This can be seen
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Figure 1: Wasserstein (W2) and Euclidean (L2) means of two densities ρ0

and ρ1.

as a transportation problem between two probability densities. A modern
presentation can be found in [Vil03] and will be quickly recalled in Section
2.2.

Optimal transport has a wide spectrum of applications, from pure math-
ematical analysis to applied economics, from functional inequalities [CENV04]
to the semi-geostrophic equations [CG01], through astrophysics [BFH+03],
medicine [RZK+15], crowd motion [MRCS10] or urban planning [BS05].
From optimal transport theory several distances can be derived, the most
widely known being the Wasserstein distance (denotedW2) which is sensitive
to misplaced features, and is the primary focus of this paper. This distance
is also widely used in computer vision, for example in classification of im-
ages [RTG98, RTG00], interpolation [BVDPPH11], or movie reconstruction
[DD10].

3



The goal of the paper is to perform variational data assimilation with a
cost function written with the Wasserstein distance. It may be extended to
other type of data assimilation methods but it largely exceeds the scope of
this paper.

The present paper is organized as follows: first, in Section 2, variational
data assimilation as well as Wasserstein distance are defined. The related cost
function is formulated and its minimization described in Section 3. Finally,
in Section 4 numerical illustrations are presented, some difficulties related to
the use of optimal transport will be pointed out and solutions proposed.

2 Materials and Methodology
The section deals with the presentation of variational data assimilation ma-
terials on the one hand, and optimal transport and Wasserstein distance
materials on the other hand. Section 3 will combine both worlds and will
constitute the core of our original production.

2.1 Variational data assimilation

Let us assume that a system state is described by a variable x. We are also
given observations yobs of the system, which might be indirect, uncomplete
and approximate. The state and the observations are linked by an operator
G mapping the system state x to the observation space, so that the mathem-
atical nature of G(x) and yobs are the same. Data assimilation aims to find
a good estimate of x using the observations yobs and the knowledge of the
operator G. Variational data assimilation methods do so by finding the min-
imizer x of the misfit function J (the cost function) between the observations
yobs and their computed counterparts G(x),

J (x) = dR(G(x),yobs)2

with dR some distance to be precised. Generally, this problem is ill-posed.
For the minimizer of J to be unique, a background term is added and acts like
a Tikhonov regularization. This background term is generally expressed as
the distance with a background term xb which contains a priori informations.
The actual cost function then writes

J (x) = dR(G(x),yobs)2 + dB(x,xb)2, (2.1)
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with dB another distance to be specified. The control of x is done by the
minimization of J . Such minimization is generally carried out numerically
using gradient descent methods. Paragraph 3.3 will give more details about
the minimization process.

The distances to the observations dR and to the background term dB have
to be chosen in this formulation. Usually, Euclidean distances (L2 distances,
potentially weighted) are chosen, giving the following Euclidean cost function

J (x) = ‖G(x)− yobs‖2
2 + ‖x− xb‖2

2, (2.2)

with ‖ · ‖2 the L2 norm defined by

‖x‖2
2 :=

∫
|x(x)|2 dx. (2.3)

The Wasserstein distance W2 in place of dR and dB in equation (2.1) is
another choice and will be investigated in the following. Such a cost function
will be presented in Section 3. The Wasserstein distance is presented and
defined in the following subsection.

2.2 Optimal transport and Wasserstein distance

The essentials of optimal transport theory and Wasserstein distance required
for data assimilation are presented.

We define, in this order, the space of probability densities where the
Wasserstein distance is defined, then the Wasserstein distance and finally
the Wasserstein scalar product, a key ingredient for variational assimilation.

2.2.1 Probability densities

We consider the case where the observations can be represented as densities.
A density is a non-negative function of space. For example, a grey-scaled
image is a density, it can be seen as a function of space to [0, 1] where 0
encodes black and 1 encodes white.

Definition 2.1. Let Ω be a closed, convex, bounded set of Rd and let define
the set of probability densities P(Ω) be the set of non-negative functions of
total mass 1:

P(Ω) :=

{
ρ ≥ 0:

∫
Ω

ρ(x) dx = 1

}
. (2.4)
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2.2.2 Wasserstein distance

The optimal transport problem is to compute among all the transportations
between two probability densities, the one minimizing the kinetic energy. A
transportation between two probability densities ρ0 and ρ1 is given by a time
path ρ(t, x) such that ρ(t = 0) = ρ0 and ρ(t = 1) = ρ1, and a velocity field
v(t, x) such that the continuity equation holds,

∂ρ

∂t
+ div(ρv) = 0. (2.5)

Such a path ρ(t) can be seen as interpolating ρ0 and ρ1. For ρ(t) to stay in
P(Ω), the velocity field v(t, x) has to be tangent to the domain boundary,
meaning that ρ(t, x)v(t, x) ·~n(x) = 0 for almost all (t, x) ∈ [0, 1]× ∂Ω. With
this condition, the support of ρ(t) remains in Ω.

The Wasserstein distance W2 is hence the minimum in terms of kinetic
energy among all the transportations between ρ0 and ρ1,

W2
2 (ρ0, ρ1) = min

(ρ,v)∈C(ρ0,ρ1)

∫∫
[0,1]×Ω

ρ(t, x)|v(t, x)|2 dtdx (2.6)

with C(ρ0, ρ1) representing the set of continuous transportations between ρ0

and ρ1 described by a velocity field v tangent to the boundary of the domain,

C(ρ0, ρ1) :=

(ρ,v) s.t.
∂tρ+ div(ρv) = 0,
ρ(t = 0) = ρ0, ρ(t = 1) = ρ1,
ρv · ~n = 0 on ∂Ω

 . (2.7)

This definition of the Wasserstein distance is the Benamou-Brenier formu-
lation [BB00]. There exist other definitions, based on the transport map or
the transference plans, but slightly out of the scope of this article. See the
introduction of [Vil03] for more details.

Remark 2.2 (Minimizer and Kantorovich potential). A remarkable point is
that the optimal velocity field v is of the form

v(t, x) = ∇Φ(t, x)

with Φ following the Hamilton-Jacobi equation [AGS08]

∂tΦ +
|∇Φ|2

2
= 0. (2.8)
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The equation of the optimal ρ is the continuity equation using this velocity
field. Moreover, the function Ψ(x) := −Φ(t = 0, x) is said to be the Kan-
torovich potential of the transport between ρ0 and ρ1. It is a useful feature
in the derivation of the Wasserstein cost function presented in Section 3.

Finally, a few words should be said about the numerical computation
of the Wasserstein distance. In one dimension, it is easy to compute as it
has an exact solution: the Kantorovich potential Ψ of the transport between
ρ0 and ρ1 solves F1(x − ∇Ψ(x)) = F0(x) for all x, with Fi the cumulative
distribution function of ρi. For problems in more dimensions, there exists
no general formula and more complex algorithms have to be used, like the
primal-dual [PPO14] or the semi-discrete [Mér11].

2.2.3 Wasserstein inner product

The scalar product between two functions is required for data assimilation
and optimization. This paper will consider the classical L2 scalar product
as well as the one associated to the Wasserstein distance. A scalar product
defines the angle and norm of vectors tangent to P(Ω) at a point ρ0. First, a
tangent vector in ρ0 is the derivative of a curve ρ(t) passing through ρ0. As
a curve ρ(t) can be described by a continuity equation, the space of tangent
vectors, the tangent space, shall formally be defined by (cf. [Ott01]),

TρP =

{
−div(ρ∇Φ) ∈ L2(Ω), ρ

∂Φ

∂~n
= 0 on ∂Ω

}
. (2.9)

Let us first recall that the Euclidean, or L2, scalar product 〈·, ·〉2 is defined
on TρP by

∀η, η′ ∈ TρP(Ω), 〈η, η′〉2 :=

∫
Ω

η(x)η′(x) dx. (2.10)

While theWasserstein inner product 〈·, ·〉W is defined for η = −div(ρ∇Φ), η′ =
−div(ρ∇Φ′) ∈ TρP by

〈η, η′〉W :=

∫
Ω

ρ∇Φ · ∇Φ′ dx. (2.11)

One has to note that the inner product is dependent on ρ ∈ P(Ω). Finally,
the norm associated to a tangent vector η = −div(ρ∇Φ) ∈ TρP is

‖η‖2
W =

∫
Ω

ρ|∇Φ|2 (2.12)

7



hence the kinetic energy of the small displacement η. This point makes the
link between this inner product and the Wasserstein distance.

3 Optimal transport-based data assimilation

3.1 Wasserstein cost function

In the framework of Section 2.2 we will define the data assimilation cost
function using the Wasserstein distance. For this cost function to be well
defined we assume that the control variables belong to P(Ω) and that the
observation variables belong to another space P(Ωo) with Ωo a closed, convex,
bounded set of Rd′ . Let us recall that this means that they are all non-
negative densities of integral equal to 1. Having elements of integral 1 (or
constant integral) may seem restrictive. Removing it is yet possible by using
a modified version of the Wasserstein distance, presented for example in
[CSPV15]. For simplicity we do not consider here this possible generalization
and all data have the same integral. The cost function (2.1) is rewritten using
the Wasserstein distance defined in Section 2.2,

JW(x0) =
1

2

Nobs∑
i=1

W2
2 (Gi(x0),yobs

i ) +
ωb
2
W2

2 (x0,x
b
0), (3.1)

with Gi : P(Ω) → P(Ωo) the observation operator computing the yobs
i coun-

terpart from x0.
The variables x0 and yobsi may be vectors whose components are functions

belonging repectively to P(Ω) and P(Ωo). The Wasserstein distance between
two such vectors is the sum of the distances between their components. The
remainder of the article is easily adaptable to this case, but for simplicity we
set x0 = ρ0 ∈ P(Ω) and yobsi = ρobs

i ∈ P(Ω). The Wasserstein cost function
(3.1) then becomes

JW(ρ0) =
1

2

Nobs∑
i=1

W2
2 (Gi(ρ0), ρobs

i ) +
ωb
2
W2

2 (ρ0, ρ
b
0). (3.2)

To find the minimum of JW , a gradient descent method is applied. It is
presented in Section 3.3. As this type of algorithms requires the gradient of
the cost function, the computation of the gradient of JW is the focus of the
next Section.
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3.2 Gradient of JW
If JW is differentiable, its gradient is not unique but depends on the choice
of a scalar product 〈·, ·〉. Indeed, a gradient g of JW is such that

∀η ∈ Tρ0P , lim
ε→0

JW(ρ0 + εη)− JW(ρ0)

ε
= 〈η, g〉 (3.3)

Chosing another scalar product will give another gradient. The choice of
the scalar product / gradient is important as it can affect significantly the
behavior of gradient descent algorithms, as will be illustrated in the numer-
ical results in Section 4. The classical L2 inner product will be used, as well
as the W2 one. The latter appears naturally as we deal with the Wasser-
stein distance (see definition in Section 2.2.3). The associated gradients are
respectively denoted grad2JW(ρ0) and gradWJW(ρ0) and are the only ele-
ments of the tangent space Tρ0P of ρ0 ∈ P(Ω) such that

∀η ∈ Tρ0P , lim
ε→0

JW(ρ0 + εη)− JW(ρ0)

ε
= 〈grad2JW(ρ0), η〉2

= 〈gradWJW(ρ0), η〉W .
(3.4)

Here in the notations, the word "grad" is used for the gradient of a function
while the spatial gradient is denoted by the nabla sign ∇. The gradients of
JW are elements of Tρ0P and hence functions of space.

The following theorem allows to compute both gradients of JW :

Theorem 3.1. For i ∈ {1, . . . , N obs}, let Ψi be the Kantorovich potential
(see Remark 2.2) of the transport between Gi(ρ0) and ρobs

i . Let Ψb be the
Kantorovich potential of the transport map between ρ0 and ρb0. Then,

grad2JW(ρ0) = ωbΨ
b +

Nobs∑
i=1

G∗i (ρ0).Ψi + c (3.5)

with c such that the integral of grad2JW(ρ0) is zero, and G∗i the adjoint of
Gi w.r.t. the L2 inner product (see definition reminder below). Assuming
that grad2JW(ρ0) has the no-flux boundary condition (see comment about
this assumption below)

ρ0
∂grad2JW(ρ0)

∂~n
= 0 on ∂Ω
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then the gradient w.r.t. the Wasserstein inner product is

gradWJW(ρ0) = −div
(
ρ0∇[grad2JW(ρ0)]

)
. (3.6)

A proof of this Theorem can be found in Appendix A.

Remark 3.2 (Adjoint reminder). The adjoint G∗i (ρ0) is defined by the clas-
sical equality

∀η, µ ∈ Tρ0P , 〈G∗i (ρ0).µ, η〉2 = 〈µ,Gi(ρ0).η〉2 (3.7)

where Gi[ρ0] is the tangent model, defined by

∀η ∈ Tρ0P ,Gi(ρ0).η := lim
ε→0

Gi(ρ0 + εη)− Gi(ρ0)

ε
. (3.8)

Remark 3.3 (Assumption of no-flux boundary condition). The condition of
no-flux at the boundary for grad2JW(ρ0), that is

ρ0
∂grad2JW(ρ0)

∂~n
on ∂Ω

is not necessarily satisfied. The Kantorovich potentials respect this condi-
tion. Indeed, their spatial gradients are velocities thus thus tangent to the
boundary, see the end of Section 2.2. But it may not be conserved through
the mapping with the adjoint model, G∗i (ρ0). In the case where G∗i (ρ0)
does not preserve this condition, the Wasserstein gradient is not of integral
zero. A possible workaround is to use a product coming from the unbalanced
Wasserstein distance of [CSPV15].

3.3 Minimization of JW
The minimizer of JW defined in (3.2) is expected to be a good trade-off
between both the observations and the background with respect to theWasser-
stein distance and to have good properties, as shown in Fig. 1. It can be
computed through an iterative gradient-based descent method. Such meth-
ods start from a control state ρ0

0 and step-by-step update it using an iteration
of the form

ρn+1
0 = ρn0 − αndn (3.9)

where αn is a real number (the step) and dn is a function (the descent dir-
ection), chosen such that JW(ρn+1

0 ) < JW(ρn0 ). In gradient-based descent
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methods, dn can be equal to the gradient of JW (steepest descent method),
or to a function of the gradient and dn−1 (conjugate gradient, quasi-Newton
methods, ...). Under sufficient conditions on (αn), the sequence (ρn0 ) con-
verges to a local minimizer. See [NW06] for more details.

Remark 3.4 (Note on descent with the Wasserstein gradient). With the
Wasserstein gradient (3.6), the descent of JW follows an iteration scheme of
the form

ρn+1
0 = ρn0 + αn div(ρn0∇Φn). (3.10)

A more transport-like iteration could be used instead,

ρn+1
0 = (I − αn∇Φn)#ρn0 (3.11)

with # the notation of the push-forward by a transport map: if T : Ω → Ω
is a diffeomorphism, ρ1 := T#ρ0 is defined as

ρ1(T ) |det(∇T )| = ρ0.

Iteration (3.11) is much more interesting as Fig. 2 shows, first because ρn+1
0

stays non-negative whatever αn, then because it allows the supports of ρn0
and ρn+1

0 to be different. It is the one we will use after.
Iteration (3.11) is equivalent to (3.10) when αn tends to 0. Indeed, it can

be shown that ρ(t) := (I − t∇Φ0)#ρ0 is the equation of a geodesic and is
solution of the system of equations∂tρ+ div(ρ∇Φ) = 0

∂tΦ +
|∇Φ|2

2
= 0.

(3.12)

with initial conditions ρ(0, x) = ρ0(x) and Φ(0, x) = Φ0(x), see [Vil03, (5.61)].
Therefore, (3.10) is just an explicit time-discretization of (3.12) and is equi-
valent to (3.11) for αn tending to 0.

4 Numerical illustrations
Let us recall that in the data assimilation vocabulary, the word “analysis”
refers to the minimizer of the cost function at the end of the data assimilation
process.
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Figure 2: Comparison of iterations (3.10) and (3.11) with ρ0 of limited sup-
port and Φ such that ∇Φ is constant on the support of ρ0.
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In this section are presented the analyses resulting from the minimization
of the Wasserstein cost function defined previously in (DG2), in particular
when position errors occur. Results are compared with the results given by
the L2 cost function defined in (2.2).

The experiments are all one-dimensional and Ω = [0, 1]. A first, simple
experiment uses a linear observation operator G. In a second experiment,
the observation operator is non-linear, but results are still satisfactory.

Only a single variable is controlled. This variable ρ0 represents the initial
condition of an evolution problem. It is an element of P(Ω), and observations
are also elements of P(Ω).

In this paper we chose to work in the twin experiments framework. In
this context the true state, denoted ρt0, is known and used to generate the
observations: ρobs

i = Gi(ρt0) at various times (ti)i=1..Nobs . The obervations
are perfect, that is noise-free and available everywhere in space. The back-
ground term is considered to have position errors only, and no amplitude
error. Then, the data assimilation process aims to recover a good estimation
of the true state, using the cost function involving the simulated observations
and the background term. The analysis obtained after convergence can then
be compared to the true state and effectiveness diagnostics can be made.

Both the Wasserstein and L2 cost functions are minimized through a
steepest gradient method. The L2 gradient is used to minimize the L2 cost
function. Both the L2 and W2 gradients are used for the Wasserstein cost
functions, giving respectively, with Φn := grad2JW(ρn0 ), the iterations

ρn+1
0 = ρn0 − αnΦn (DG2)
ρn+1

0 = (I − αn∇Φn)#ρn0 . (DG#)

The value of αn is chosen as optimal on each iteration and the algorithm
stops when the decrement of J between two iterations is lower than 10−6.

4.1 Linear example

The first example involves a linear, evolution model as observation operators
(Gi)i=1..Nobs . Every single operator Gi maps an initial condition ρ0 to ρ(ti)
according to the following continuity equation

∂tρ+∇ρ = 0. (4.2)

The operator Gi is linear. We control ρ0 only. The true state ρt0 ∈ P(Ω)
is a Gaussian, while the background term is also a Gaussian but located at

13
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Figure 3: Plot (a) shows the twin experiments ingredients: true initial con-
dition ρt0, background term ρb0, and observations at different times. Plot (b)
shows the analyses obtained after each proposed method, compared to ρb0 and
ρt0: ρ

a,2
0 corresponds to J2, ρa,W,20 to (DG2) and ρa,W,#0 to (DG#). In (c) are

shown the outputs of the model, ρt, ρa,2 and ρa,W,#, when taking respectively
ρt0, ρ

a,2
0 and ρa,W,#0 as initial condition.

a different place, as if it had position errors. On Fig. 3a are plotted the
true and background states as well as the observations at various times. The
computed analysis ρa,20 for the L2 cost function is shown on Fig. 3b. This
Figure shows also the analyses ρa,W,20 and ρa,W,#0 corresponding respectively
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to the (DG2) and (DG#) algorithms minimizing the Wasserstein JW cost
function.

The analyses ρa,W,20 and ρa,W,#0 are different even if they arise from the
same cost function JW , which highlights the need for a well-suited scalar-
product.

As expected in the introduction, see e.g. Fig. 1, minimizing J2 leads to
an analysis being the L2-average of the background and true states (hence
two small gaussians), while JW leads to a satisfactorily shaped analysis in-
between the background and true states.

Remark 4.1. The analysis ρa,W,#0 is actually close to the average of ρb0 and
ρt0 in the sense of the Wasserstein distance, that is to say close to the middle
point on the Wasserstein geodesic between ρb0 and ρt0 (see also Figure 1 for a
representation of the exact average).

The issue of amplitude of the analysis of ρa,20 and the issue of position of
ρa,W,#0 are not corrected by the time evolution of the model, as shows Fig.
3c. At the end of the assimilation window, each of both of the analyses still
have discrepancies with the observations.

As a conclusion of this first test case, we managed to write and minimize
a cost function which gives a relevant analysis, contrary to what we obtain
with the classical Euclidean cost function, in case of position errors. We also
noticed that the success of the minimization of JW was clearly dependant on
the scalar product choice.

4.2 Non-linear example

Further results are shown when a non-linear model is used in place of G. The
procedure is the same as the first test case. The non-linear model used is the
Shallow-Water system described by{

∂th+ ∂x(hu) = 0

∂tu+ u∂xu+ g∂xh = 0

subject to initial conditions h(0) = h0 and u(0) = u0, with reflective bound-
ary conditions (u|∂Ω = 0), where the constant g is the gravity acceleration.
The variable h represents the water surface elevation, and u is the current
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Figure 4: On (a) are shown the true and background initial conditions, and
the analyses ha,20 and ha,W0 corresponding respectively to the Wasserstein and
Euclidean cost functions to minimize. The Figure (b) shows the same plots
(except the background one) but at the output of the model.

velocity. If h0 belongs to P(Ω), then the corresponding solution h(t) belongs
to P(Ω).

The true state is (ht0, u
t
0), where ut0 is equal to 0 and ht0 is a given Gaussian.

The initial velocity field is supposed to be known and therefore not included
in the control vector. Only h0 is controlled, using the observations and a
background term hb0, also a localized Gaussian like ht0.

Data assimilation is performed by minimizing either the J2 or the JW cost
functions described above. Thanks to the wisdom gained during the first
experiment, the (DG#) algorithm only is used for the minimization of JW .

In Fig. 4a we present ht0, hb0 as well as the analyses corresponding to
J2 and JW : ha,20 and ha,W,#0 . Analysis ha,20 is close to the L2-average of the
true and background states, even at time t > 0, while ha,W,#0 lies close to the
Wasserstein geodesic between the background and true states, and hence has
the same shape as them (see Remark 4.1).

The Fig. 4b shows that at the end of the assimilation window, the water
height ha,W,# = G(ha,W,#0 ) is still more realistic than ha,2 = G(ha,20 ), when
compared to the true state ht = G(ht0).
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The conclusion of this second test case is that even with non-linear mod-
els, our Wasserstein-based algorithm can give interesting results in case of
position errors.

Conclusion
We showed through some examples that, if not taken into account, position
errors can lead to unrealistic initial conditions when using classical vari-
ational data assimilation methods. Indeed, such methods use the Euclidean
distance which can behave badly under position errors. To tackle this issue,
we proposed instead the use of the Wasserstein distance to define the related
cost function. The associated minimization algorithm was discussed and we
showed that using descent iterations following Wasserstein geodesics lead to
more consistent results.

On academic examples the corresponding cost function produces an ana-
lysis lying close to the Wasserstein average between the true and background
states, and therefore has the same shape as them, and is well fit to correct
position errors. This also gives more realistic predictions. This is a prelim-
inary study, some issues have yet to be addressed for realistic applications,
such as relaxing the constant-mass and positivity hypotheses and extending
the problem to 2D applications.
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A Proof of Theorem 3.1
To prove Theorem 3.1, one first needs to differentiate the Wasserstein dis-
tance. The following Lemma from [Vil03, Theorem 8.13 p.264] gives the
gradient of the Wasserstein distance.

Lemma A.1 (Differentiation of the Wasserstein distance). Let ρ0, ρ1 ∈
P(Ω), η ∈ Tρ0P. For small enough ε ∈ R,

1

2
W2

2 (ρ0 + εη, ρ1) =
1

2
W2

2 (ρ0, ρ1) + ε〈η, φ〉2 + o(ε) (A.1)

17



with φ(x) the Kantorovich potential of the transport between ρ0 and ρ1.

Proof of Theorem 3.1. Let ρ0 ∈ P(Ω) and η = −div(ρ0∇Φ) ∈ Tρ0P . From
the definition of JW in (3.1), from the defintion of the tangent model (3.8)
and in application of the Lemma A.1,

lim
ε→0

JW(ρ0 + εη)− JW(ρ0)

ε
=

Nobs∑
i=1

〈Gi[ρ0]η, φi〉2 + ωb〈η, φb〉2

=

〈
η,

Nobs∑
i=1

G∗i [ρ0]φi + ωbφ
b

〉
2

=

〈
η,

Nobs∑
i=1

G∗i [ρ0]φi + ωbφ
b + c

〉
2

(A.2)

with c such that the integral of the right hand side term is zero, so that the
right hand side term belongs to Tρ0P . The L2 gradient of JW is thus

grad2JW(ρ0) =
Nobs∑
i=1

G∗i [ρ0]φi + ωbφ
b + c (A.3)

To get the Wasserstein gradient of JW , the same has to be done with the
Wasserstein product. We let η = −div(ρ∇Φ) and g = grad2JW(ρ0) so that
equations (A.2) and (A.3) give

〈η, g〉2 = 〈−div(ρ0∇Φ), g〉2

= −
∫

Ω

div(ρ0∇Φ)g

=

∫
Ω

ρ0∇Φ∇g.

(A.4)

Last equality comes from Stokes theorem and from the fact that Φ is of
zero normal derivative at the boundary. The last term gives the Wasserstein
gradient because if g is with Neumann boundary conditions, we have∫

Ω

ρ0∇Φ∇g = 〈η,−div(ρ0∇g)〉W , (A.5)

hence

∀η ∈ Tρ0P , lim
ε→0

JW(ρ0 + εη)− JW(ρ0)

ε
= 〈η,−div(ρ0∇g)〉W . (A.6)
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