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Abstract. Ideally, semi-distributed hydrologic models should provide better streamflow simulations than

lumped models, along with spatially-relevant water resources management solutions. However, the spatial dis-

tribution of model parameters raises issues related to the calibration strategy and to the identifiability of the

parameters. To analyse these issues, we propose to base the evaluation of a semi-distributed model not only on

its performance at streamflow gauging stations, but also on the spatial and temporal pattern of the optimised

value of its parameters. We implemented calibration over 21 rolling periods and 64 catchments, and we analysed

how well each parameter is identified in time and space. Performance and parameter identifiability are analysed

comparatively to the calibration of the lumped version of the same model. We show that the semi-distributed

model faces more difficulties to identify stable optimal parameter sets. The main difficulty lies in the identifica-

tion of the parameters responsible for the closure of the water balance (i.e. for the particular model investigated,

the intercatchment groundwater flow parameter).

1 Introduction

1.1 What hydrological good sense suggests

Developing modelling tools that help to understand the spa-

tial distribution of water resources is a key issue for bet-

ter management. The dynamics of streamflow depends on

(i) the spatial variability of precipitation (which, a priori,

should be better handled by a semi-distributed hydrological

model), (ii) the heterogeneity of catchment behavior (which

can be dealt explicitly with by spatially-variable model pa-

rameters), and, increasingly, (iii) localized human regula-

tions (for instance, water reservoirs). Since calibration is gen-

erally based on discharge measurements at the outlet of the

catchment only, and gauging stations are not available every-

where, semi-distributed hydrological models are often diffi-

cult to parameterize. As argued by Pokhrel and Gupta (2011),

difficulties are due to the smoothing effect of catchments and

to the dispersive effect of flow routing combined with numer-

ical issues and measurement uncertainty. The authors state

that the impact of spatial variability could become “virtually

non-detectable by conventional performance measures by the

time the water reaches the catchment outlet”.

This raises the need to better understand how well param-

eters are identified in a semi-distributed model compared to

a lumped model. The variability of catchment model param-

eters calibrated over different periods (“time variability”) is

one way of approaching this question. Indeed, as reminded

by Merz et al. (2011), parameters of a rainfall–runoff model

are supposed to represent stable catchment conditions, while

the time-varying conditions are supposed to be triggered by

the time-series of meteorological inputs. Thus, optimised pa-

rameter values should not be overly sensitive to changes of

climatic conditions, and one would expect a semi-distributed

model to be more stable than a lumped one (because the pa-

rameters of the lumped model would have to account implic-

itly for changing spatial precipitation patterns).

1.2 What the literature says

However, literature provides many examples showing that

this assumption is hardly satisfied. Merz et al. (2011) raise

two main difficulties. First, problems in model structure and
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data measurements tend to be compensated by calibration.

For instance, Wagener et al. (2003) identify inconsistencies

in the structure of a rainfall–runoff model by highlighting in-

stabilities of the optimal values of the parameters between

periods with and without rainfall events. In contrast, Juston

et al. (2009) found that data subset of their input data (from

daily to quaterly sampling intervals) can provide very simi-

lar constraints on model calibration and parameter identifica-

tion.

Secondly, conditions of the catchment itself may change

over time, which consequently, and understandably, shifts

optimal model parameters, and justifies rigourous evalua-

tions of the model robustness (Thirel et al., 2015). For in-

stance, changes of land use might directly impact optimal

parameter sets (Andréassian et al., 2003; Brown et al., 2005;

Verstegen et al., 2016). Trends on parameters can also be re-

lated to changes in climatic conditions (Merz et al., 2006;

Merz and Blöschl, 2009). On a study based on 273 Austrian

catchments, Merz et al. (2011) attribute a doubling of the pa-

rameter that controls runoff generation in their model to be

related to hydrological changes (such as higher evapotran-

spiration and drier catchment conditions) rather than calibra-

tion artifacts. For about one third of 17 African catchments,

Niel et al. (2003) find their model parameters to be unstable,

but they did not identify any climate-related reason. Wilby

(2005) analyses this question in the context of climate change

impact assessment for the River Thames. The author finds

model parameters to be highly sensitive to training periods,

and recommends the quantitification of those large uncer-

tainties due to parameter instability, identifiability and non-

uniqueness. Similarly, Brigode et al. (2013) found that the

uncertainty due to the climate characteristics of the calibra-

tion period is larger than the uncertainty in the estimation of

parameters that is often quantified on the basis of Bayesian

inference. They attribute this finding to a lack of robustness

of the model and recommend more efforts to be put into this

aspect.

1.3 Scope of the paper

This paper investigates the procedure of parameter identifia-

bility in a semi-distributed model by comparing model cali-

bration schemes and results with a lumped model on which it

is based. From this comparison, we address two main ques-

tions: (1) Does spatial distribution of parameters interfere

with parameters identifiability? Indeed, one could hope that

applying parameters to a more geographically-limited area

tends to facilitate their identification. (2) What are the pa-

rameters that are the most variable in the lumped and in the

semi-distributed models? In this way, we aim to diagnose

which components of the model are the least robust, in the

sense that their parameterisation is difficult to transpose in

time and space.

2 Material and methods

2.1 Study area and hydro-meteorological data

The model is implemented in Eastern France, close to the

border with Germany, over 64 sub-catchments of French trib-

utaries of the River Rhine (Fig. 1), namely the rivers Moselle,

Sarre and the smaller tributaries of the Rhine located in the

Vosges massif. Catchments size vary from 27 to 770 km2 and

this represents a total area of about 4340 km2. Climate is pre-

dominantly oceanic with continental influence. Annual pre-

cipitation (P ) varies from about 700 mm in the lowland to

about 1600 mm in the Vosges massif. Average daily temper-

ature (T ) and potential evapotranspiration (PE) in the catch-

ment vary from 7 to 10 ◦C and 540 to 690 mm, respectively.

The two hydrological models implemented (lumped and

semi-distributed) require daily time series of P and PE as

input data. We used climate data from the SAFRAN mete-

orological reanalysis of Météo-France (Vidal et al., 2010),

which is provided on a square grid of 8km×8km. Discharge

data were extracted from the French Hydro database (Leleu

et al., 2014) at the daily time step. They were used to per-

form the calibration and the evaluation of the models. The

study period is 1971–2000.

2.2 The GR5J lumped and GRSD semi-distributed

rainfall–runoff models

The GRSD semi-distributed rainfall–runoff model was de-

veloped by Lerat (2009) and Lobligeois (2014). It is based

on the GR5J lumped model (Fig. 2) proposed by Le Moine

(2008), which has five free parameters to calibrate (Table 1).

The main components of the model are two stores: a pro-

duction store (with maximum capacity X1) and a routing

store (capacity X3), which is filled by the output of a unit

hydrograph (of time base X4). Two other parameters, X2

and X5, are used to quantify the intercatchment groundwater

flows (IGF). In order to account for snow accumulation and

melt, the model is combined with a degree-day snow module

(Valéry et al., 2014), which contains two additional parame-

ters (CTG and Kf). However, in our study, these parameters

were not calibrated and fixed at their default values, respec-

tively set at 0.2 and 4.5 mm ◦C−1, as proposed by previous

studies in France (Valéry et al., 2014).

The semi-distributed model is applied on sub-catchments.

The delineation of sub-catchments is performed only at gaug-

ing stations, which means that discharge measurements are

available for every hydrological units of the model. The

lumped GR5J model is applied on hydrological units com-

posed of upstream catchments (headwater catchments) or

intermediate sub-catchments (drained area between down-

stream and upstream stations). In that way, each hydrological

unit receives its own meteorological inputs (P and PE) and

uses a distinct parameter set (see Sect. 2.3.2).

Proc. IAHS, 373, 87–94, 2016 proc-iahs.net/373/87/2016/
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Figure 1. Location of the study area (left), and average annual precipitation (centre) and annual potential evapotranspiration (right) for each

sub-catchment (climate data are estimated from the 1971–2000 SAFRAN database).

(a) GR5J (b) GRSD

Figure 2. Schematic representation of the GR5J and GRSD semi-distributed model (from Lobligeois et al., 2014).

Table 1. List of the parameters for the semi-distributed conceptual

rainfall–runoff model GRSD.

Model GR5J GRSD Description

parameter

X1 Free Free Production store

capacity [mm]

X2 Free Free Groundwater exchange

coefficient [mmd−1]

X3 Free Free Routing store capacity [mm]

X4 Free Free Time base of the unit hydrograph [d]

X5 Free Free Threshold for groundwater

exchange [–]

C – Free Average streamflow velocity [ms−1]

CTG Fixed Fixed Ponderation coefficient of the snow

thermic state [–]

Kf Fixed Fixed Degree-day factor [mm◦C−1]

The outflow of each GR5J model is finally routed to its

downstream catchment using a linear lag propagation model

(Bentura and Michel, 1997). Previous studies have shown

that this propagation model gives a satisfactory level of ef-

ficiency compared to more sophisticated channel routing

methods (Lobligeois et al., 2014). This routing functional-

ity implies an additional free parameter (compared to the

lumped model GR5J) that needs to be calibrated on each hy-

drological unit: the average flow velocity C.

2.3 Methodology

2.3.1 Goodness of fit criteria

In order to quantify the agreement between simulations (S)

and observations (O), we used the Kling–Gupta Efficiency

(KGE) (Gupta et al., 2009), which is based on a decompo-

sition of the Nash–Sutcliffe efficiency (Nash and Sutcliffe,

1970). Moreover, in order to evaluate performances on high

and low flows, we used an objective function KGEm com-

posed of two criteria (Eq. 1): a KGE applied on discharge

values to emphasize high flows and a KGE applied on in-

verse discharge values to emphasize low flows. Both criteria

proc-iahs.net/373/87/2016/ Proc. IAHS, 373, 87–94, 2016
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are applied on the selected discharge time series. Similarly to

the KGE criteria, KGEm varies between−∞ and 1, which is

its optimal value.

KGEm (S,O)= 0.5 ·

(
KGE(S,O)+KGE

(
1

S+ ε
,

1

O + ε

))
, (1)

where O and S are the observed and simulated discharges.

In order to face numerical problems in case of zero discharge

when using the inverse transformation, an ε constant is used

and set to 1 % of the mean value of O (Pushpalatha et al.,

2012).

2.3.2 Calibration strategy of the semi-distributed model

Following Lerat et al. (2012), we performed a multi-site cal-

ibration of the GRSD semi-distributed model. Streamflow

data at interior points are used to calibrate the model at one

outlet. Each intermediate catchment is allowed to have a

different parameter set. This is done sequentially, from up-

stream to downstream points: once the upstream catchment

is calibrated, its parameters remain fixed during the calibra-

tion of the downstream intermediate catchment.

Sequential calibration is a common strategy for semi-

distributed models (see e.g., Andersen et al., 2001; Moussa

et al., 2007). It needs as much calibration runs as there are

interior points. However, it only uses successive single ob-

jective functions, rather than using multi-response objective

function to optimize every interior points simultaneously.

2.3.3 Rolling calibration periods

Similarly to Coron et al. (2012), we calibrated the param-

eters using 10-year long consecutive periods between 1971

and 2000, and used the rest of the time series (20 years) for

validation (Fig. 3). This is equivalent to 21 split-sample tests

(Klemeš, 1986) performed every year.

Following the work of Merz and Blöschl (2009) and Merz

et al. (2011), this enables to provide 21 parameter sets for

each of the 64 catchments in order to analyse the temporal

and spatial changes of the calibrated parameters. This testing

strategy is applied to both models, the lumped model and

the semi-distributed model. Parameter variability can thus be

compared between the two modelling strategies.

3 Results and discussion

3.1 Performance of the streamflow simulations

The comparison of the goodness-of-fit between the lumped

GR5J model and the semi-distributed GRSD model shows

slightly better results of the lumped model during calibration

and identical results during validation (Fig. 4). One would

expect higher performances of the semi-distributed model

because it accounts for spatial heterogeneities and nonlin-

earities that can influence the response of the system. How-

Figure 3. Illustration of the rolling calibration period methodology:

21 parameter sets θ can be identified for each catchment.

ever, literature provides numerous examples of similar re-

sults (e.g., Reed et al., 2004), where lumped models per-

form better. To explain such behaviour, calibration strategies,

which are not as well defined for semi-distributed models as

for lumped models, are often pointed out (Pokhrel and Gupta,

2011).

As expected, performance on upstream catchments are

similar between the lumped and the semi-distributed catch-

ments. Indeed, for those catchments, models are strictly iden-

tical (Sect. 2.2). Minor differences can be explained by cali-

bration artifacts and by the fact that both models are imple-

mented in two different modelling environments.

We did not detect any significant performance trends in

time. Calibration performances are rather stable, whereas

validation performances are subject to more fluctuations.

These are similar between the lumped and the semi-

distributed models. Results illustrate that both models are po-

tentially able to produce stable efficiency (KGEm) all along

1971–2000 period, but each calibration period does not pro-

vide the same robustness (as observed by validation).

3.2 Temporal trends and variability of parameters

Here, we compare the temporal trends and the variability of

parameters, and differences between the two models. The

distribution of parameter values according to the 21 calibra-

tion periods is given in Fig. 5.

As expected from the structure of the models (Sect. 2.2),

upstream catchments have similar parameter sets for both

models, whereas different optimum parameter values are

obtained for downstream catchments. The main differences

concern the parameter X1 (capacity of production store),

which is higher for the lumped model than for the semi-

Proc. IAHS, 373, 87–94, 2016 proc-iahs.net/373/87/2016/
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Figure 6. Variability of parameters values among calibration periods within one catchment (64 catchments summarized by boxplots, a) and

variability of parameters values among catchments within one calibration period (21 calibration periods summarized by boxplots, b). Boxplot

limits describe the 10th, 25th, 50th, 75th and 90th quantiles.

distributed model. This means a more dynamic response of

the downstream hydrological units of the GRSD model and

lower evapotranspiration losses. The smoothing of the hy-

drographs may, in fact, be achieved by the succession of

responses of the sub-catchments, from upstream to down-

stream.

The smaller production store in GRSD appears to be com-

pensated by X2 and X5. Indeed, those parameters aim to

quantify intercatchment groundwater flows (IGF), which is

the amount of water that daily gets out/in of the catchment

to fill/empty the routing store and the direct flow compo-

nent. The X2 parameter quantifies IGF according to a lin-

ear relation with the routing store rate (
Srout(t)

X3
), whereas X5

allows changing the sign of IGF during the year (Eq. 2). In

GRSD, where we observe greater negative values of X2 and

smaller values of X5 (Fig. 5), IGF may be higher to compen-

sate lower evapotranspiration losses in the production store.

IGF(t)= X2 ·

(
Srout(t)

X3
−X5

)
(2)

By looking at parameter values according to the calibra-

tion periods, a relative stability of the median value appears

among catchments. Only the parameters X2 and X5 in GRSD

tend to slowly decrease. These trends are not observed in

the lumped model, whose parameters appear more stable for

downstream catchments.

From the relative stability in Fig. 5, one could conclude

about overall relative robustness of the calibration. However,

this does not evaluate parameter stability for each catchment.

Therefore, for each hydrological unit of both models, we cal-

culated the coefficient of variation of the parameter values

using the 21 parameter sets (Fig. 6).

First, results clearly show a higher temporal variability of

the parameters of the semi-distributed model, comparatively

to the variability observed with the lumped model (Fig. 6).

It appears that limiting the geographical extent of the area

on which the parameter set is applied does not facilitate its

identification. One reason for this can come from the calibra-

tion strategy, in which one sub-catchment receives simulated

outflows from upstream catchments. This upstream volume

of water can already represent most of the observed down-

stream hydrograph. Therefore, parameters applied just on a

downstream intermediate sub-catchment might have a minor

impact, with problems of sensitivity. Thus calibration may

converge to more unstable values, which brings only small

improvements to downstream simulations.

Second, it is shown that the most important temporal in-

stability of parameter values is related to the parameter X2,

followed by X3 and X5 parameters. All three parameters are

used to quantify IGF (Eq. 2). If parameter X2 is showing

the most important temporal instability for both models, it is

not the case of parameter X5 with the lumped model, where

it appears to be one of the least variable parameter (just af-

ter parameter X4). This result highlights the problems en-

countered in quantifying IGF. It seems to be the least identi-

fiable parameter in the lumped model (with high variability

of parameter X2). The problem of IGF parameter identifia-

bility is even exacerbated with the semi-distributed model.

This might be due to the high inter-dependency of parame-

ters in the formulation of IGF (Eq. 2) in the models. Future

improvements of the GRSD semi-distributed model should

focus on this issue.

The most stable parameter appears to be X4 (time base of

unit hydrograph), which is consistent with previous works

(Lobligeois, 2014), where it has been shown that this param-

eter can easily be related to catchment physical characteris-

tics, such as catchment size.

Proc. IAHS, 373, 87–94, 2016 proc-iahs.net/373/87/2016/
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3.3 Spatial variability of parameters

We also analysed the spatial variability of the parameter val-

ues, considering variability between parameters and between

models. To this end, we estimated the coefficient of variation

of the parameter values among catchments (one performed

by calibration period). The aim is to quantify how much pa-

rameters can be different between catchments.

Similarly to the temporal variability of parameters, spa-

tial variability appears to be higher with the semi-distributed

model than with the lumped model. However, contrary to

the temporal variability, spatial variability is more expected

here, as one of the objectives of a semi-distributed model

is precisely to consider those spatial heterogeneities of the

hydrological response. However, we noticed again that pa-

rameters X1 and X2 are the most variable parameters for

the semi-distributed model. Therefore they appear among the

most variable parameters for both analyses, the time variabil-

ity and the space variability analyses. These two parameters

control water balance. Similarly to the temporal variability,

they are expected to be highly variable in space in order to

get along with sequential observations at each downstream

station during calibration.

Spatial variabilities are not constant over time (as observed

by the boxplot widths on Fig. 6). Particularly, the spatial vari-

ability of parameter X3 (capacity of routing store) is stable

for the lumped model, whereas it appears to be very depen-

dent on the calibration period for the semi-distributed model.

For instance, it has the highest spatial variability during the

“1984–1994” calibration period, and is among the lowest

variability just 3 years after (not shown). Once again, a ro-

bustness problem of GRSD is identified and needs to be ad-

dressed in further investigations.

4 Conclusion

In this paper, we compared the spatio-temporal variability

of the parameters of a semi-distributed model (GRSD) and

a lumped model (GR5J) on which it is based. We applied

a rolling calibration strategy over 21 periods and 64 French

catchments.

A classical evaluation of discharge simulations using

goodness-of-fit criteria was applied to the outputs of both

models. It illustrates a slightly better performance of the

lumped model during calibration, and similar performance of

the models during validation. However, further investigation

on parameter identifiability highlighted much higher tem-

poral variabilities of the semi-distributed model. This study

also showed that it is more difficult to identify catchment’s

specific parameter sets with the semi-distributed model than

with the lumped model.

The methodology applied also enabled to identify the more

unstable parameters. Results showed that the parameters re-

lated to the quantification of intercatchment groundwater

flows (IGF) are the most unstable. We conclude that further

modelling efforts should focus on the model structure in or-

der to better quantify IGF.

This work also emphasizes the fact that the calibration

strategy and the evaluation approach of a semi-distributed

model should not focus only on goodness-of-fit performance,

but also on parameter identifiability, especially if the model

aims to be used to explore future scenarios in a changing

world. Such an approach would also facilitate the application

of the model at ungauged locations, since parameters that de-

pict high variability in time and space might be more difficult

to regionalize.

Data availability

The streamflow data used in this study are freely available

at: http://www.hydro.eaufrance.fr. The climatic data are pro-

duced by Métèo-France. Information can be found at: http:

//publitheque.meteo.fr.
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