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Abstract In the usual non-local variational mod-
els, such as the non-local total variations (NLTV),
the image is regularized by minimizing an energy
term that penalizes gray-levels discrepancy between
some specified pairs of pixels, a weight value is
computed between these two pixels to penalize their
dissimilarity. In this paper, we impose some reg-
ularity to those weight values. More precisely, we
minimize a function involving a regularization term,
analogous to an H1 term, on weights. Doing so,
the finite differences defining the image regularity
depend on their environment. When the weights
are difficult to define, they can be restored by the
proposed stable regularization scheme.

We provide all the details necessary for the im-
plementation of a PALM algorithm with proved
convergence. We illustrate the ability of the model
to restore relevant unknown edges from the neigh-
boring edges on an image inpainting problem. We
also argue on inpainting, zooming and denoising
problems that the model better recovers thin struc-
tures.
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1 Introduction

1.1 The Image Restoration Problem

Given an image domain P (P can be a sub-domain
of R2), we consider a degraded image I as a map-
ping P → R. We assume that I is obtained from a
perfect unknown image u by

I = Hu+ b, (1)

where H is a known linear operator and b is an
error term. In the typical situations we have in
mind, P is a lattice of pixels and b is an iid noise
with standard deviation σ > 0.

The purpose of the restoration model studied in
this paper is to retrieve an image close to u, using
only I and H. For instance, in image inpainting,
the operator H maps any image u onto an image
Hu satisfying

(Hu)p =

{
0 , if p ∈ P ′,
up , otherwise, (2)

where P ′ is the domain to inpaint.
For deblurring, the operator H is typically the

convolution operator. For the purpose of image
zooming the operator H is the composition of a
convolution and a subsampling operator (the lat-
ter can also be written under the form (2)) and so
on and so forth. Note that, to simplify notations,



we use the same domain P for the perfect image
u and the measure I. This need not be the case in
general.

Finally, for simplicity, we assume that P is pe-
riodic, so that for any (p, q) ∈ P2 the sum p+ q is
defined in such a manner that p+ q ∈ P. We also
assume that P is such that p + P = P, whatever
p ∈ P.

1.2 Review of Image Restoration Models

Total variation (TV) has drawn much attention
since Rudin, Osher and Fatemi (ROF) proposed
their celebrated model [39] for denoising (i.e. H =

Id). The variational formulation can be written as

argmin
u∈Ω

|∇u|+ λ‖u− I‖2, (3)

whereΩ is either RP (in the discrete setting) or the
space of the functions of bounded variation. When
used as a regularization term, the total variation
|∇u| has the advantage to preserve sharp edges
and the drawbacks to create homogeneous regions
(staircasing) and to over-smooth the textured re-
gions. This is due to the fact that textures are
treated as singularities by the TV term which only
sees local information [25]. This regularization has
later been used to solve many linear inverse prob-
lems such as inpainting [5, 41].

In another direction, generalizing the Yaroslavsky
neighborhood filter [47], the non-local means (NLM)
of Buades, Coll and Morel [8] takes the following
form (we write it in the continuous domain):

NLMI(p) =
1

C(p)

∫
B
vI(p, p

′)I(p′)dp′, (4)

where B is a search window, the weights are pro-
vided by

vI(p, p
′) = exp

(
−D(p, p′)

h2

)
, (5)

where, for a patch B̂ (usually a square centered
around the origin),

D(p, p′) =

∫
B̂
Ga(q) |I(p+ q)− I(p′ + q)|2 dq (6)

and the normalizing factor

C(p) =

∫
B
vI(p, p

′)dp′. (7)

The Gaussian kernel Ga with standard deviation
a ponderates pixels in the ’patch’ area and h is
a filtering parameter. Usually in NLM model, the

patch is nothing but a square region which is smaller
than the search window B. The idea behind NLM
is to restore the pixel in the contaminated image
I by a weighted average of the nearby similar (in
the patch sense) pixels. The patch is used to judge
the resemblance between two pixels p and p′, in
(6), D(p, p′) is evaluated based on the difference of
the square neighborhoods (patches) I(p + q) and
I(p′ + q) centered at p and p′, not the intensity
difference between the pixels p and p′ themselves.
Another key point is that the pixels p′ used in the
average do not have to be close to p, which explains
the name ’non-local’.

The idea to use patch was initially known for
its ability to do ’texture synthesis’ [30, 44], it was
later applied to image denoising and inpainting [1].
Patch is widely used in image processing models.
For example, Pizarro, et al. [38] used a linear com-
bination of a similarity term and a smoothness
term, both of them are defined non-locally in a
patch manner to propagate nonlocal information.
NL-Bayes [28, 29] bridges between the Bayesian
methods and BM3D. It improves the denoising re-
sult, when applied to color images and, for gray
level images, yields to results comparable to state-
of-the-art methods, such as BM3D.

From a weighted graph point of view, Kher-
admand and Milanfar [27] proposed an adaptive
Laplacian filter using patch, which is mainly for
deblurring, and under special circumstances, their
method can apply to denoising and sharpening
problems. Notice that a similar idea, coming with a
precise statistical analysis, has been proposed un-
der the name "Discrete Universal Denoiser" [46].

Considering a thin structure (typically a smooth
curve) in a uniform background, we see in the for-
mula that the weights vI does not differentiate well
the pixels in the thin structure from pixel in the
background. The thin structure indeed lives in a
domain whose measure is small (at the limit, the
measure of the domain is 0). It provides a negligible
contribution to D(p, p′). As a consequence, NLM
tends to underestimate the weights of the pixels in
the thin structure and, as a consequence, it tends
to erase the thin structure. This is especially true
for large patch size and may lead to a substan-
tial underestimation of the similarity between two
pixels in the thin structure [18].

Moreover, exemplar-based approaches [30, 44]
also use patches to produce striking inpainting re-
sults. These algorithms have been later interpreted
using a probabilistic point of view. In particular,
Levina and Bickel [30] provided a theoretical back-
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ground to explain their ability to synthesize tex-
ture. Aujol, Ladjal and Masnou [4] expressed the
exemplar-based methods in a non-local variational
framework and studied their ability to retrieve ge-
ometric features. However, it is difficult to adapt
NLM and other patch based approaches for diffi-
cult image restoration tasks involving highly struc-
tured noise or (even worse) when the operator H
is not invertible and makes the recovery of similar
pixels difficult.

Inspired by the advantages of NLM, Gilboa and
Osher [23, 24] introduced a non-local variational
model to better recover textures. In [24], they con-
sidered the non-local total variation (NLTV) model
defined (in the continuous domain) by

JNLTV (u) + λ‖u− I‖2, (8)

where the NLTV term JNLTV (u) is defined by∫
P

√∫
B
(u(p)− u(p+ q))

2
v(p, q)dqdp. (9)

In [24], in practical applications, they calculated
the weights v according to patch distance and only
used the 10 most similar pixels in (the discretized)
B. They also mentioned binary weights. They adapted
the celebrated Chambolle’s projection algorithm
[10] to optimize a discretization of the NLTVmodel.
A more general model, involving p-Laplace opera-
tor on graphs, have been proposed in [19]. It also
makes connections between the variational approaches
and other non-local approaches.

Considering applications such as compressive
sensing, when the low sampling rate may lead to
a bad initial guess of the weight function, some
authors [37, 48] suggested to update the weights
during the iterations to improve them. For exam-
ple, Zhang, et al. [48] employed patches and up-
dated the weights by recomputing the initial step
(5) with the current estimate of the clean image.
A similar update is used in [1,37]. To trade off be-
tween the accuracy and computational costs, the
authors only reevaluate the weights every few steps
[48] and in practical implementation, they only use
the first few largest weights in a local search win-
dow and set the rest of them to zero. Of course,
because of these last ’tricks’, the algorithms may
fail to find the optimal solution of the variational
model which is not fully satisfactory. They however
provide interesting restoration results.

The model studied in this paper is inspired by
the earlier work of Peyre, et al. [36, 37]. In [36],
they considered the weights v defined in the NLM
and updated v using (5) with the current estimate

of the image. The authors mentioned the difficulty
for setting the filtering parameter h [36] since noise
level evolves along the iterative process. In [37],
the authors extended [36] and [48] by regularizing
the graph v. The resulting model has two regular-
ization terms, the first term Jv(u) regularizes the
image, while the second term E(v) is the entropy
of function v defining the underlying graph. Also,
to better recover the textures of the images, the
non-local regularization term was chosen to be the
patch variation of JNLTV (u) in (9). In this varia-
tion, the difference of intensities u(p) − u(p + q),
in (9), is replaced by a patch distance. It has also
been adopted in [1, 20,35].

To conclude, non-local variational models [17,
24,31,37] have been widely used to restore images,
because of their capability to utilize the informa-
tion from many pixels having a similar neighbor-
hood. However, when treated by these models, thin
structures can be overlooked and are sometimes
undetectable in a patch of the damaged image.
These methods might therefore erase these thin
structures.

Also, the construction of the weights between
the pixels is usually done according to some pixel
similarity criterion in the degraded images I. When
some weights are unknown (for instance when in-
painting a missing domain or zooming an image),
they are updated during the iterative process, ac-
cording to an ad-hoc procedure [37]. More gener-
ally, these methods are difficult to apply and lack
precise modeling when the output of the degrada-
tion operator H does not look like an image (think
about the restoration an image from random mea-
surements or Computerized Tomography.)

When compared to these methods, the model
studied in this paper is a regularized non-local to-
tal variation (RNLTV) model. It shows the advan-
tages to both: - better restore thin structures; -
allow the construction of non-local models for dif-
ficult inverse problems.

1.3 The Studied Model

1.3.1 Framework and Model Description

From now on, we discretize the problem and con-
sider a lattice P. We consider a set B ⊂ P. In the
typical situation we have in mind, B is a square
centered at the origin with radius1 r. Throughout
the paper, we call patch or window a set p+B for
some p ∈ P.

1 We use r = 5 in the experiments.
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We also denote the cardinality of any finite set
C by |C|. Moreover, for any finite dimensional vec-
tor space V (in practice we have either V = RP ,
V = RP×B or V = RB) and any positive definite
operator L mapping V into itself, we consider the
weighted norm [15]

‖x‖L = 〈x, Lx〉
1
2 , ∀x ∈ V, (10)

where 〈., .〉 denotes the usual scalar product in V .
When L is an identity matrix (L = Id), we simply
denote ‖x‖ instead of ‖x‖Id.

Given these notations, we define, for any p ∈ P,
weights vp = (vpq )q∈B ∈ RB, where each weight vpq
is the cost for the dissimilarity |up − up+q|. Said
differently, vp ∈ RB can be seen as the parameters
of a finite difference operator defined at the pixel
p. In practice we will force these weights vp ∈ RB
to belong to the set

U =

v ∈ RB+,
∑
q∈B

vq = 1

 , (11)

where R+ are the non-negative reals. This con-
straint guarantees that every pixel of the image
contributes similarly to the overall cost. We de-
note the collection of all the weights in the image
by v = (vp)p∈P ∈ UP .

Given v, we define the non-local total variation
of u ∈ RP by

TV (v, u)

=
∑
p∈P

Ψµ

√∑
q∈B

vpq (up − up+q)2

 ,
(12)

where µ > 0 and Ψµ is the Moreau envelope of the
absolute value function, also called Huber function
[6, page 368]:

ψµ(t) =

{
|t| − µ

2 , if |t| ≥ µ,
t2

2µ , otherwise.
(13)

Note that (9) is a continuous analogue of (12) with-
out the Huber function Ψµ. The first motivation for
using the Huber function is that, once the weights
are properly estimated, we expect vpq to be small
when (up−up+q)2 is large. As a consequence, we do
not expect edges to be oversmoothed and blurred.
As a consequence, the benefit of the `1 term used
to define the total variation might be questioned
and it is interesting to use a function Ψµ, involving
a parameter µ, that permit Ψµ to behave quadrat-
ically or linearly. The second motivation for using
the Huber function is that it is differentiable. This

is required by the PALM algorithm. Moreover, we
consider, for any v ∈ UP , the regularity criterion
R defined by

R(v) = γ
∑
p∈P

∑
p′∈N

‖vp − vp+p
′
‖2, (14)

where γ is a non-negative parameter and N is a
small neighborhood2 of 0. When minimized, the
term R(v) favors the situation when vp is similar
to vp+p

′
. If we isolate vpq in TV (v, u) + R(v), we

observe that vpq should minimize

Ψµ

√∑
q′∈B

vpq′(up − up+q′)2

+γ
∑
p′∈N

(vpq−vp+p
′

q )2.

As a consequence, vpq must be small when (up −
up+q)

2 is large and must be similar to the weights
at its neighbor vp+p

′

q . Also, since v ∈ UP , the
TV (., u) term forces vpq to be large for p and q such
that (up−up+q)2 is small. For instance, when p and
p+q are on the same side of an edge or in the same
thin structure; we know that (up−up+q)2 is small;
it does not cost much to have vpq large (i.e. close to
1). Although it depends on the local structure in
the image, we also often have (up+p′ − up+p′+q)2
small and therefore vp+p

′

q large. Altogether, we ex-
pect v to end up aligned with such edges and thin
structures. This looks like a desirable behavior.

Finally, we consider a data fidelity term D.
This term either takes the form

D(u) = λ‖Hu− I‖2, (15)

for some parameter λ ≥ 0, or, for a parameter
τ ≥ 0,

D(u) = χ|‖Hu−I‖2≤τ (u), (16)

where the indicator function χ|C is 0 if the con-
dition C is satisfied and infinity otherwise. The
advantage of the latter formulation is that τ can
be deduced from the noise standard deviation σ

(A standard choice is indeed τ = |P|σ2).
The restored image we are interested in is the

argument u of a minimizer of

argmin
u∈RP ,v∈UP

R(v) + TV (v, u) +D(u). (17)

Although the parameters are not presented explic-
itly in (17), the model depends on the parameters
µ, γ and either λ or τ .

2 In the experiments, we consider 4-connectivity: N =
{(1, 0), (0, 1)}.
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Notice that, the model does not make use of
the patch distance. It can therefore be categorized
as a purely non-local method.

In the problem (17), the constraint on v is com-
pact and, unless in very particular counter-example,
we expect the objective function to be coercive in
u. The objective function being also lower semi-
continuous, the problem (17) has a solution. We
will see moreover that TV and R are differentiable
and have Lipschitz gradient (see Proposition 1, 2
and 3). The main difficulty concerning the numer-
ical resolution of (17) is that, because of the term
TV (u, v), the objective function is not convex.

1.3.2 Insight on the Model

The connectivity principle [26, 32] states that hu-
man prefers to see that disjoint edges are con-
nected through the missing domains. It is well-
known that the classic inpainting models including
TV models [5,41], have difficulty in connecting the
thin objects [11,12] (see Figure 1, ’TV’ inpainting).
Thus inpainting methods involving higher order
information [11, 40], such as curvature, were pro-
posed to improve the results. However, if the size
of the unknown regions separating thin objects are
too large, then even the fourth-order PDE-based
model [40] will leave the thin structures broken
(see Figure 1, ’TV-H−1’ inpainting).

Moreover, we see on Figure 1, ’NLinpaint’ im-
age, that even non-local methods that do not con-
struct v with enough care [21] have difficulty con-
necting lines, when there are many large missing
areas. One motivation for considering RNLTV is
that, because it smoothly inpaints v in the missing
regions and since large weights values are concen-
trated and aligned along the direction of the thin
structures, RNLTV has the ability to connect the
broken lines.

1.4 Overview of the Paper

In Section 1.3, we present the RNLTV model. Sec-
tion 2 details the proximal alternating linearized
minimization (PALM) algorithm [7] minimizing the
proposed model. We also provide in this section the
gradient of the different terms, show that the gra-
dients are Lipschitz continuous and provide their
Lipschitz constants. The numerical experiments in
Section 3 demonstrate the efficiency of the pro-
posed method on inpainting, zooming and denois-
ing experiments.

clean polluted

TV TV-H−1

NLinpaint RNLTV

Fig. 1 A synthetic image with thin lines contaminated
by 11 × 11 missing squares. All methods fail to follow the
Connectivity Principle properly, but RNLTV can connect
the broken thin lines.

2 Implementing the PALM Algorithm

In the last couple of years, alternating minimiza-
tion algorithms [3, 7, 13, 14, 15, 34] were developed
to solve optimization problems over multiple vari-
ables. A proof of convergence in the non-convex
setting for an alternating variant of the forward-
backward algorithm, tagged PALM, has been pro-
posed in [7]. It is perfectly adapted to the structure
of (17). A preconditioned version has also been
studied in [15].

Below, we provide the details for implementing
the PALM algorithm generating a sequence that
converges to a stationary point of (17). First, we
give a few notations and describe the algorithm in
Section 2.1. Next, we derive the components of the
algorithm. Section 2.2, 2.3 and 2.4 are devoted to
the calculation of the gradients of the regulariza-
tion terms in (17) and their Lipschitz constants.
Then we discuss the proximal operator proxDL (u′)

in Section 2.5 in detail.

2.1 Notations and Overview of the Algorithm

We denote ∇uTV (v, u) and ∇vTV (v, u) as the
partial gradient of TV (., .) with regards to the
variable u and v respectively. The PALM algo-
rithm adapted to (17) is described in Algorithm 4.
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In summary, the Algorithm 4 alternates forward-
backward iterations for each one of the two block
of variables: u and v.

For any v ∈ UP and any u ∈ RP , we assume
that we know a linear operator L and constants l
and l′ (for the detailed calculations of these quan-
tities see Section 2.2, 2.3 and 2.4) satisfying the
majorization conditions [15] described below:

– For any v ∈ UP , L is such that there exists
m > 0 satisfying

‖u‖L ≥ m‖u‖, ∀u ∈ RP , (18)

and for any u and u′ ∈ RP

TV (v, u′) ≤ TV (v, u)

+ 〈∇uTV (v, u) , u′ − u〉

+
1

2
〈u′ − u, L(u′ − u)〉 .

(19)

– For any u ∈ RP , l ≥ 0 and l′ ≥ 0 are such that
l + l′ > 0 and for any v and v′ ∈ UP

TV (v′, u) ≤ TV (v, u)

+ 〈∇vTV (v, u) , v′ − v〉

+
l

2
‖v′ − v‖2,

(20)

and

R(v′) ≤ R(v) + 〈∇R(v), v′ − v〉

+
l′

2
‖v′ − v‖2.

(21)

Moreover, the proximal operators used in Al-
gorithm 4 are defined, for any u′ ∈ RP , by

proxDL (u′) = argmin
u∈RP

D(u) +
1

2
‖u− u′‖2L, (22)

and for any v′ ∈ UP ,

proxχ|UP (v′) = argmin
v∈UP

‖v − v′‖2, (23)

simply is the orthogonal projection onto UP .
Given the above quantities l, l′ and L, the Al-

gorithm 4 has many advantages and is perfectly
adapted to the structure of our problem. The lat-
ter indeed satisfies the following properties:

1. The objective function is analytical and satis-
fies the KL property.

2. R(v), TV (v, u) andD(u) are proper, non-negative
and lower semi-continuous.

3. The partial gradients∇uTV (v, u) and∇vTV (v, u)

are Lipschitz continuous with bounded moduli.

Algorithm 1: Overview of the algorithm
Input:
I: Degraded image
H: Linear operator to invert
B: Support of the weights
N : Support for the finite differences defining R
γ, µ, λ/τ : parameters
Output:
u: Restored image
v: Weights

begin
Initialize the image u and v;
while not converged do

step 1: Update u:

u = proxDL
(
u− L−1∇uTV (v, u)

)
(24)

step 2: Update v:
v = prox

χ|UP
(
v − ∇vTV (v,u)+∇R(v)

l+l′

)

4. The sequence generated from Algorithm is bounded
since both u and v are belong to compact sets.

It is shown in [7, 15] that the sequence gener-
ated by (even an inexact version of) Algorithm 4
has good convergence properties:

– The objective function decays along the itera-
tive process.

– The iterates converge to a stationary point of
our problem.

– The sum over the iterative process of the dis-
tance between two successive iterates is finite.

Of course, calculating the Kurdyka-Lojasiewicz
characterization of our objective function would
provide a better understanding of the convergence
quality but it is not the purpose of the paper.

Finally, in order to implement the algorithm,
we need to

– compute ∇uTV (v, u) and construct the oper-
ator L satisfying (19) (see Section 2.2);

– compute ∇vTV (v, u) and the constant l satis-
fying (20) (see Section 2.3);

– compute ∇R(v) and the constant l′ satisfying
(21) (see Section 2.4);

– compute the proximal operator (22) (see Sec-
tion 2.5);

– compute the proximal operator (23): Notice that
this reduces to multiple projections onto a sim-
plex. The latter projection is a well studied
problem for which fast algorithms exists [16].
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2.2 Calculation of ∇uTV (v, u) and L

For any v ∈ UP , we consider the following non-
local analogue of the finite difference operator:

Dv : RP −→ RP×B

u = (up)p∈P 7−→
(√

vpq (up − up+q)
)
(p,q)∈P×B

(25)

We also denote, for p ∈ P,

(Dvu)p = ((Dvu)p,q)q∈B ∈ RB

and ‖(Dvu)p‖ =
√∑

q∈B(Dvu)2p,q.
We obtain after some simple calculations that

its adjoint is given, for any w = (wp,q)(p,q)∈P×B, it
is easy to see that

(D∗vw)p =
∑
q∈B

(√
vpq wp,q −

√
vp−qq wp−q,q

)
,

(26)

for all p ∈ P.
Moreover, if we consider, for w ∈ RP×B, the

norm

‖w‖∞,2 = max
p∈P
‖wp‖, where wp = (wp,q)q∈B ∈ RB.

(27)

We can prove (see appendix 5.1) that for any u ∈
RP and any (fixed) v ∈ UP

TV (v, u) = max
‖w‖∞,2≤1

〈Dvu,w〉 −
µ

2
‖w‖2. (28)

From this expression and using the Theorem 1

in [33] (reminded in Appendix 5.2), we can deduce
the following proposition whose proof is detailed in
Appendix 5.2. Notice that a similar statement and
construction is given for the usual total variation
in [45].

Proposition 1 For any u ∈ RP , we have

∇uTV (v, u) = D∗vw
∗(u), (29)

where w∗(u) ∈ RP×B is the maximizer of (28) and
is provided in closed form by:

w∗(u)p,q =

{
(Dvu)p,q

µ , if ‖(Dvu)p‖ ≤ µ,
(Dvu)p,q
‖(Dvu)p‖ , otherwise.

(30)

Moreover, u → ∇uTV (v, u) is Lipschitz continu-
ous with Lipschitz constant

l” =

√
2
√
|B|+ 1

µ
. (31)

As a consequence, we have for any u and u′ ∈ RP

TV (v, u′) ≤ TV (v, u)

+ 〈∇uTV (v, u) , u′ − u〉

+
l”

2
‖u′ − u‖2.

(32)

A straightforward consequence of (32) is that
for any diagonalizable linear operatorG whose eigen-
values are all larger than 1 (and in particular for
G = Id), the property (19) holds for L = l”G.

2.3 Calculation of ∇vTV (v, u) and l

Let us first define, for any fixed u ∈ RP , the linear
operator Au :

RP×B −→ RP ,
(vp,q)(p,q)∈P×B 7−→

(∑
q∈B vp,q(up − up+q)2

)
p∈P

.

(33)

The interest for this operator comes from the
fact that for any v ∈ UP

TV (v, u) =
∑
p∈P

Ψµ

(√
(Auv)p

)
. (34)

Notice that, when v ∈ UP , we have for any p ∈ P

(Auv)p ≥ 0. (35)

We easily obtain that the adjointA∗u ofAu is given
for any w ∈ RP by

(A∗uw)p,q = wp(up − up+q)2, ∀(p, q) ∈ P × B.
(36)

Using these notations, we can prove (see Ap-
pendix 5.3) the following proposition.

Proposition 2 For any fixed u ∈ RP , we have for
any v ∈ UP

∇vTV (v, u) = A∗uu
∗(v), (37)

where for all p ∈ P

(u∗(v))p =

{
1

2
√

(Auv)p
, if

√
(Auv)p ≥ µ,

1
2µ , if µ >

√
(Auv)p ≥ 0.

(38)

Moreover, the function v 7−→ TV (v, u) is concave
over RP×B+ and (20) holds for l = 0.
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2.4 Calculation of ∇R(v) and l′

Let us first define the linear operator B:

RP×B −→ RP×B×N ,
(vp,q)(p,q)∈P×B 7−→ (vp,q − vp+p′,q)(p,q,p′)∈P×B×N .

(39)

We immediately deduce from (14) that for any
v ∈ RP×B

R(v) = γ ‖Bv‖2. (40)

We also easily obtain that the adjoint B∗ of B is
provided for any w ∈ RP×B×N by

(B∗w)p,q =
∑
p′∈N

wp,q,p′−wp−p′,q,p′ ,∀(p, q) ∈ P × B.

(41)

We can now state the following proposition whose
proof is provided in Appendix 5.4.

Proposition 3 For any v ∈ UP , we have

∇R(v) = 2γB∗Bv. (42)

Moreover, v → ∇R(v) is Lipschitz continuous with
Lipschitz constant 6

√
2γ|N |. As a consequence, (21)

holds for l′ = 6
√
2γ|N |.

2.5 Calculation of proxDL (u′)

Below, we provide closed form expressions that
permit to compute proxDL (u′) for the two data fi-
delity terms considered in this paper. In the de-
noising case, H is a identity; for the purpose of
image inpainting, H multiply every entry of the
image by either 1 or 0 (see (2)).

– When D(u) = λ‖u− I‖2 and L = l”Id.
In this case, we want to compute

prox
λ‖u−I‖2
L (u′)

= argmin
u∈RP

λ‖u− I‖2 + l”

2
‖u− u′‖2,

=
2λ

2λ+ l”
I +

l”

2λ+ l”
u′.

– When D(u) = χ|‖u−I‖2≤τ (u) and L = l”Id.
In that setting, we have

prox
χ|‖u−I‖2≤τ
L (u′)

= argmin
u:‖u−I‖2≤τ

‖u− u′‖2L

=

{
u′ , if ‖u′ − I‖2 ≤ τ,
I +

√
τ

‖u′−I‖ (u
′ − I) , otherwise.

– When D(u) = λ‖Hu− I‖2
In this case,

prox
λ‖H.−I‖2
L (u′)

= argmin
u∈RP

λ‖Hu− I‖2 + l”

2
‖u− u′‖2,

= u∗,

where for all p ∈ P
• if H is defined by (2) for some fixed subset
of pixels P ′ ⊂ P

u∗p =

{
u′p , if p ∈ P ′,
2λIp+l”u

′
p

2λ+l” , otherwise.
(43)

• if H is a general linear operator (e.g. the
subsampling operator used for zooming) then
the solution u∗ of

2λHT (Hu− I) + l” (u− u′) = 0, (44)

can be computeded by the conjugate gradi-
ent (CG) method for a sparse linear equa-
tion of the form

Au = b, (45)

whereA =
(
2λHTH + l”Id

)
and b = 2λHT I+

l”u′. Note that, although we use CG (call
Matlab function pcg(A,b)) to solve this sub-
problem, the elementwised max norm of the
residual max |Au∗ − b| is around 10−13.

3 Numerical experiments

In order to illustrate the behavior of the model,
we consider in this section three applications: im-
age inpainting, zooming and denoising. We evalu-
ate the ability of the method to restore both syn-
thetic and natural images with a particular em-
phasis on the restoration of thin structures. We
compare the performance of the proposed RNLTV
model with the performance of state of the art
methods. We also illustrate how the weights v are
adjusted once the convergence has been reached
using the Isotropy Map described in Section 3.1
and 3.2. Finally, Section 3.3 is devoted to the in-
painting experiments, Section 3.4 presents zoom-
ing results and Section 3.5 contains the experi-
ments on the denoising problem.

Notice that we have used the different data-
fidelity terms mentioned in Section 1.3.1. They all
show similar computational cost and convergence
properties. For completeness, we summarize the
data fidelity term chosen for each experiments in
Table 1.
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Table 1 The different data-fidelity terms used in the ex-
periments.

D(u)
inpainting and zooming λ‖Hu− I‖2
denoising (synthetic image) χ|‖u−I‖2≤τ (u)

denoising (natural image) λ‖u− I‖2

(−5,5) (−4,5)
...

(4,5) (5,5)

(−5,4) (−4,4)
...

(4,4) (5,4)

...
...

...
...

(−5,−4) (−4,−4)
...

(4,−4) (5,−4)

(−5,−5) (−4,−5)
...

(4,−5) (5,−5)

Fig. 2 The window B of size 11× 11. Every q ∈ B has a
coordinate.

3.1 The Isotropy Map

To represent the distribution of the weights v, we
introduce the isotropy map M(v) ∈ RP . At ev-
ery pixel p ∈ P, the feature M(v)p represents
whether the weights in vp are distributed isotrop-
ically or not. Intuitively, the distribution is not
isotropic when the significant weights are concen-
trated along a thin region of the window p + B.
The feature therefore needs to reflect the discrep-
ancy between the projections of vp onto two axes
one of which is aligned with the orientation of vp,
the other being orthogonal. Notice that the dis-
crepancy is maximal when the coordinate system
is aligned with the orientation of vp.

3.1.1 Implementation Details

More precisely, given an angular precision param-
eter K ∈ N 3 we define the small angle θ = π

2K

as shown in Figure 3. Then we consider all the co-
ordinate (x, y) clock-wise rotated by an angle mθ,
for m ∈ M, withM = {0, 1, 2, . . . ,K − 1}. Doing
so, we get several orthonormal bases denoted by

im = (sin(mθ), cos(mθ)),

jm = (cos(mθ),− sin(mθ)).

3 In the experiments, we use K = 90.

Fig. 3 Coordinate change and projection of the weights
on the new coordinate system.

We remind that any pixel q ∈ B is represented
in the basis (im, jm) by the coordinates

(〈q, im〉, 〈q, jm〉). (46)

Therefore, the average distance to the origin of the
projections of vp onto the axes im and jm are de-
fined by

P xm =
∑
q∈B

∣∣vpq 〈q, im〉∣∣ , (47)

P ym =
∑
q∈B

∣∣vpq 〈q, jm〉∣∣ . (48)

The isotropy map is then defined by

M(v)p = log

(
max

({
P xm
P ym

,
P ym
P xm

}
m∈M

))
. (49)

Clearly, M(v)p is non-negative. Also, it is easy to
check that the only way to get smallM(v)p is that
P xm ∼ P ym for all m ∈ M. This implies that vp is
somewhat isotropic. On the contrary, if M(v)p is
large, then there exists m ∈ M such that P xm and
P ym are dissimilar. From this condition, we con-
clude that vp distributes anisotropically. In sum-
mary, M(v) can be taken as an indication of the
degree of isotropy of vp, for every pixel p ∈ P.

3.2 Compare RNLTV with NLTVG

In this section, we compare the proposed RNLTV
with NLTVG [37], we use the abbreviation NLTVG,
since the authors present this model using a graph
defined by v. In the NLTVG, the authors update
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the weights v during iterations in order to mini-
mize an entropy term. This is the model most sim-
ilar to RNLTV. However, NLTVG also uses patch
distance. For the considered problems, the best re-
sults for NLTVG are obtained for patches of mod-
erate size (the radius of patch equals to 2). Indeed,
as already mentionned, patch distance overlooks
thin structures when patches are large4. To get a
fair comparison, we use the same window size for
NLTVG and RNLTV, the radius r = 5. Also we
use the same initial weights for both methods when
dealing with the same problem.

To illustrate the difference with the updated
weights, we plot the isotropy maps of weights in
Figure 5 and 7, and the restored images are shown
in Figure 4 and 6 respectively, also the PSNR val-
ues are listed below each figure. NLTVG blurs the
image and the isotropy maps also show that the
weights computed from NLTVG are not as good
as the ones got from RNLTV.

In Figure 5, we plot the isotropy map M(v) ∈
RP for the initial and final weights v in RNLTV.
This illustrates that RNLTV has the ability to
fill in the missing regions with reasonable weights
v. As can be seen in the first column of Figure
5, the initial weights are distributed isotropically
both in the regions to be inpainted and the homo-
geneous regions. However, the regularization term
R(v) permits to interpolate ’coherent weights’ in
the missing areas. For example, due to the influ-
ence of their neighbors, the inpainted weights lo-
cated on the lost thin curves are anisotropic and
align with their neighbors.

In the denoising cases, we can see that from the
second column of Figure 7, the weights value re-
stored by NLTVG is more isotropic than RNLTV
results in the last column, thus NLTVG does not
regularize image value u well, some thin lines are
still vague in Figure 6. In RNLTV model, we can
correct the weights iteratively (see the third col-
umn in Figure 7). This limits the influence of noise,
thus the majority of noise got removed at conver-
gence.

3.3 Inpainting

In this section, we use two masks presented in Fig-
ure 8, where the black pixels indicate the region
to be inpainted. We set values of parameters in
RNLTV as follow: λ = 5000 and µ = 0.8 where

4 Notice that similar properties have been observed in
[18] for the Non-Local Mean: small details such as thin lines
can fade away when using large patches.

3.38 22.38 26.78

degraded image 7.43 NLTVG 24.75 RNLTV 28.97

Fig. 4 Results of different methods when restoring the
degraded synthetic image with the checkerboard and word
masks. (PSNR values are also listed below)

initial v NLTVG RNLTV

Fig. 5 Plots of the isotropy map M(v) ∈ RP calcu-
lated from weights v in RNLTV. The corresponding re-
stored images u are in Figure 10. Top: for the checkerboard
mask; Bottom: for the word mask. Left: initial guesses of
the weights computed from the damaged image; Middle:
weights v after convergence of NLTVG; Right: weights v
after convergence of RNLTV.

noisy image 14.04 NLTVG 27.01 RNLTV 29.65

Fig. 6 Denoising results for an additive white Gaussian
noise with standard deviation σ = 0.16. (PSNR values are
also listed below)

we remind that the image graylevels range in [0, 1].
The number of iterations5 is 3000, the radius r = 5

5 We are aware of the fact that designing a good stop-
ping criterion would permit to save time. However, since
the paper presents a new model, we preferred to loose com-
putational time in order to obtain results that truly reflect
the behavior of this model.
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initial v NLTVG RNLTV

Fig. 7 The isotropy map M(v) ∈ RP calculated from
weights v. The corresponding denoised images u are in Fig-
ure 14. Left: initial guesses of the weights computed from
the noisy image; Middle: weights v after convergence of
NLTVG; Right: weights v after convergence of RNLTV.

and the γ values are in Table 2. For most pixel
pairs, the initial weight values (before projection)
are computed using

vpq = exp

(
− (Ip − Ip+q)2

h2

)
, (50)

where I is the polluted image and for some param-
eter h > 0. If one of the two pixels is in the miss-
ing domain, then we set the weight value between
them to 0. Then, we project6 the weights onto the
set defined by (11). We compare the result of the
model with some related methods:

– inpaintn: the fully automated MATLAB func-
tion inpaintn [22,43] minimizes an energy func-
tional involving a regularization by a squared
finite difference and is solved with a Discrete
Cosine Transform;

– TV inpainting;
– TV-H−1 inpainting [9, 40];
– NLTVG [37];
– NLinpaint [2,21]: NLinpaint implemented three
exemplar-based inpainting schemes, namely patch
NL-means, patch NL-medians and patch NL-
Poisson, under the variational framework sug-
gested by [2]. We provide, in the following ex-
periments, the best result of the three methods
for patch sizes between 5 and 15, using the de-
fault parameter of the ’Image Processing On
Line’ [2].

3.3.1 Synthetic Image

In Figure 10, RNLTV outperforms the other meth-
ods. There are two strong strokes in the synthetic
image: the arc in the character in the top left cor-
ner, and the cross in the middle of the character in
the bottom left corner. From the first row of Fig-
ure 10, we observe that only RNLTV can connect

6 Note that, if all the are in the missing domain, then the
algorithm assigns weights uniformally equal to 1/|B|.

Fig. 8 Inpainting masks with missing data marked in
black. Left: checkerboard mask; Right: word mask

Table 2 Values of the parameters γ of RNLTV for the
restoration of the images in Figure 9, when corrupted by
the checkerboard or word mask (see Figure 8). The other
parameters are µ = 0.8, λ = 5000. The restoration results
are presented in Figure 10 and 11.

checkerboard mask word mask
γ γ

Synthetic 3 2
Boat 3 3
Barbara 4 3
Fingerprint 3 3

Synthetic image Boat

Barbara Fingerprint

Fig. 9 Test images.

all the thin edges correctly. The TV regularization
propagates the background color into the missing
domains (see the 3 curved lines on the right). The
method inpaintn and TV-H−1 cannot clearly in-
paint the missing edges in the missing squares on
the thin edges. For example, in the middle parts
of the 3 curved lines. The method inpaintn creates
nonexisting white spots, and blurs the rest of the
3 curved lines. The TV-H−1 model connects the
thin edge with a wrong shape and a wrong inten-
sity. Taking the character on the bottom left corner
for example, we can see that TV-H−1 fills larger in-
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tensity values into some missing squares located on
the top horizontal line, which yields lighter color
than it is supposed to be, while puts smaller in-
tensity values into some missing squares located on
the bottom horizontal line. The NLTVG and NLin-
paint also get blurry results. The RNLTV model
connects all the edges correctly except at the end
points, see the ends of the 3 curved lines.

3.3.2 Natural Image

In this section, we inpaint natural images in the
regions described by the two masks in Figure 8.
The test images are Boat, Barbara and Finger-
print (see Figure 9). They contain isolated thin
structures or textures where thin structures are
grouped. From the PSNR value listed in Table 3
and Figure 11, it is obvious that RNLTV can out-
perform the other methods in restoring images cor-
rupted by the checkerboard mask, but the PSNR
data also indicate that NLinpaint and the pro-
posed RNLTV went into a tie when restoring im-
age corrupted by the word mask, so we zoom-in
those restoration results of NLinpaint and RNLTV
where thin structure presents, to show that RNLTV
can better recover thin structures in Figure 12.

In the first three rows of Figure 11, TV, in-
paintn, TV-H−1, NLinpaint can not handle images
masked by the checkerboard, the continuous pat-
terns such as the ropes in Boat, stripes in Barbara
and friction ridges in Fingerprint can no longer be
found in their restoration results. TV regulariza-
tion takes the color of the background and fills it
into the missing areas, see the restored Boat in
the first row, second column. Even worse, inpaintn
and TV-H−1 return blurry restoration results. The
method inpaintn creates non-existing white spots
around the ropes (the first row, third column). TV-
H−1 draws fake lines crossing the friction ridges
(the third row, fourth column). NLTVG cannot
clearly restore stripes on the scarf in Barbara. How-
ever, the proposed RNLTV can connect the miss-
ing thin curves in those missing squares, see the
stripe pattern on the scarf in Barbara (the sec-
ond row, last column) those well contrasted fric-
tion ridges in Fingerprint (the third row, last col-
umn). Also, in the last three rows of Figure 11,
TV, inpaintn and TV-H−1 can not restore those
word-shape missing areas, for example, the thin
ropes become dashed lines after TV inpainting (the
fourth row, second column).

In Figure 12, we zoom-in the restoration results
for the word mask in the last three rows of Figure
11 mainly to show that, compare to NLinpaint, we

can better detect thin features from RNLTV re-
sults. It is obvious that NLinpaint leaves artifacts
around thin ropes in Boat, see the first row, fifth
column in Figure 12, which may cause distraction.
The well-aligned stripe pattern in the middle is
smoothed out by NLTVG and NLinpaint, see the
second row, fifth and sixth column in Figure 12,
but RNLTV still keeps majority of those stripes
on the scarf (the second row, last column)

Table 3 PSNR values of different methods when inpaint-
ing with the checkerboard and word masks. Sy: Synthetic
image; Bo: Boat; Ba: Barbara; Fi: Fingerprint; cb: the
checkerboard mask; wd: the word mask

mask image polluted TV inpaintn TV-H−1 NLTVG NLinpaint RNLTV

cb
Sy 3.38 18.55 19.61 20.01 22.38 19.45 26.78
Bo 5.41 25.53 26.82 26.88 27.02 26.73 28.60
Ba 5.31 24.94 24.50 24.75 26.14 25.41 28.36
Fi 7.08 16.47 19.60 19.25 19.35 18.11 22.69

wd
Sy 7.43 20.80 21.81 23.64 24.75 25.30 28.97
Bo 9.24 15.38 15.26 30.79 33.13 32.92 33.79
Ba 9.24 29.06 28.38 28.64 29.52 34.96 33.71
Fi 11.04 21.08 10.57 24.36 26.86 28.82 27.73

average 7.27 21.48 20.82 24.79 26.14 26.46 28.83

3.4 Zooming

We compare the zooming results of RNLTV with
the results of three methods: the bicubic interpola-
tion, the TV based restoration and NLTVG. In all
the experiments, the image data Id is computed by
the Matlab function imresize (Id = imresize(u,
0.25)) from an original image u with a subsampling
of a factor 4, as presented in the first column of Fig-
ure 13. The bicubic interpolation is simply imple-
mented by calling the Matlab function imresize
again (imresize(ud, 4, ’bicubic’)). The TV based
zooming is implemented with a penalty term and a
very large parameter λ = 1000 for which the sam-
pling constraint is satisfied. In the RNLTV model,
we set λ = 1000 and µ = 0.6. We initialize v uni-
formly with the value 1/|B|.

Table 4 PSNR values of the different methods for zooming
of images downsampled by a factor of 4.

bicubic TV NLTVG RNLTV
Vessel 34.42 12.69 34.63 35.15
Ship 24.58 22.90 23.92 24.46

The thin blood vessels are clearly zoomed by
RNLTV as presented in the first row, last col-
umn of Figure 13. Furthermore, Figure 13 shows a
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degraded image TV inpaintn TV-H−1 NLTVG NLinpaint RNLTV

Fig. 10 Results of different methods when restoring the degraded synthetic image with the checkerboard and word masks
presented in Figure 8.

degraded image TV inpaintn TV-H−1 NLTVG NLinpaint RNLTV

Fig. 11 Restoration results for different methods when inpainting with the checkerboard (the first,second and third rows)
and word (the fourth, fifth and sixth rows) masks presented in Figure 8.
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clean TV inpaintn TV-H−1 NLTVG NLinpaint RNLTV

Fig. 12 The zoomed regions of results for the word mask in Figure 11. The first column is the zoomed region of the clean
test images; the rest of them are the zoomed region of the restoration results in the fourth, fifth and sixth rows of Figure
11.

Vessel

Ship bicubic interpolation TV NLTVG RNLTV

Fig. 13 Image zooming. First column: downsample the original image by a factor of 4.

shortcoming of the TV based restoration, that is,
it tends to create piecewise constant zones in the
homogenous regions which is the tissue around the
vessels and reduces the contrast of thin structures.
The PSNR values in Table 4 confirm the observa-
tion.

In Table 4, when zooming ’Lacournouaille’, al-
though the PSNR value of the result of bicubic is
slightly higher, from the second row of Figure 13,
one can observe that RNLTV based zooming leads
to a better visual quality whereas the bicubic in-
terpolation and NLTVG get more blurry results,
see the mast pointing to the one o’clock direction
on the right part of Ship.

3.5 Denoising

In this section, we compare the results of RNLTV
with the results of BM3D and two standard regu-
larization methods: the TV denoising (ROF [39])
and the NLTV denoising [24]. For the NLTV, we
simply set the γ to 0 in our RNLTV code. The
NLTV and RNLTV use identical initial weights for
the same problem. The initial weights are obtained
by applying (5) in which the image I is replaced
by the result of the ROF model (i.e. the image pre-
sented in the TV column in the same line as the
two non-local methods in Figure 14 and 15).
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3.5.1 Synthetic Image

We consider additive Gaussian white noise with
standard deviation σ = 0.12, 0.14, 0.16. As men-
tioned in Table 1, we use the data fidelity term
χ|‖u−I‖2≤τ (u). We set γ = 0.3, τ = |P|σ2 and
µ = 0.6 in the RNLTV model. The number of it-
erations7 is 600. The initial guess for u is the de-
graded image. The initial weight values are com-
puted using (50).

In Figure 14, we observe that RNLTV pro-
duces sharp edges for all shapes. The contrast is
reduced differently in different parts of the thin
structures in the ROF results. The black region
sometimes ’leak’ in the background creating some
kind of ’blur-like’ artifact. NLTVG and BM3D re-
move all the noise but at the same time, NLTVG
blurs thin curves and BM3D creates artifacts.

3.5.2 Natural Image

We consider additive Gaussian white noise with
standard deviation σ = 0.04, 0.06 and 0.08 (We
add more noise to Fingerprint, because it is more
noise-resistant than the rest of test images). We
lower the noise level because the thin structures in
the natural test images are less contrasted. We use
the results of TV denoising to initialize RNLTV
and we use the data fidelity term λ‖u−I‖2. Again,
the initial weight values are according to (50). The
setting of the parameters in RNLTV and NLTV is
presented in Table 5 and 6 respectively. The num-
ber of iterations8 are both 600. BM3D does not
have any input parameters (except the polluted
image). The parameter of the TV model is tuned
to find the best restoration quality. The results are
in Figure 15 and Table 7. Although BM3D results
tend to have highest PSNR values, but we argue
that RNLTV can better recover thin structures,
see the zoomed image results in Figure 16.

In all the experiments displayed in Figure 15,
we observe a similar phenomenon. The TV regu-
larization contains staircasing effects and reduces
the contrast or erases thin features, see the ropes
in Boat. Some gray stripes on the NLTV denois-
ing result become less notable, see the second row,
fourth column in Figure 16. NLTVG denoising re-
sults have similar problems because of an excessive
blur. BM3D puts distracting artifact around ropes,
see the first row, fifth column in Figure 16, and

7 Again, we just take a very large number of iteration for
which we have convergence.

8 Again, we just take a very large number of iteration for
which we have convergence.

smooths out some of the textures on the scarf, see
the second row, fifth column in Figure 16. RNLTV
recovers the majority of the thin stripes on the
scarf to their original shapes, and obtains slightly
clear friction ridges, see the last column in Figure
16.

Table 5 Values of parameters in RNLTV for restoration
of the natural images corrupted by white Gaussian noise. µ
is fixed to 0.6, σ is the standard deviation of the Gaussian
noise.

σ=0.04 σ=0.06 σ=0.08
γ λ γ λ γ λ

Boat 0.05 0.5 0.1 0.5 0.2 0.5
Barbara 0.05 0.5 0.1 0.5 0.2 0.5

σ=0.1 σ=0.16 σ=0.2
γ λ γ λ γ λ

Fingerprint 0.05 1 0.1 1 0.2 1

Table 6 Values of parameters in NLTV for restoration of
the natural images corrupted by white Gaussian noise. µ
is fixed to 0.6, σ is the standard deviation of the Gaussian
noise.

σ=0.04 σ=0.06 σ=0.08
λ λ λ

Boat 1 0.5 0.5
Barbara 1 0.5 0.2

σ=0.1 σ=0.16 σ=0.2
λ λ λ

Fingerprint 0.2 0.1 0.1

Table 7 PSNR values of different methods for restoration
of images corrupted by white Gaussian noise. σ is the stan-
dard deviation of the Gaussian noise.

σ noisy TV NLTV NLTVG BM3D RNLTV
0.12 16.54 21.76 31.91 32.42 30.58 39.06

Syn 0.14 15.20 21.64 27.20 29.31 29.15 34.04
0.16 14.04 21.49 23.67 27.01 26.23 29.65
0.04 28.02 30.73 31.47 31.59 35.92 32.25

Boat 0.06 24.50 28.73 29.27 29.56 34.07 30.26
0.08 22.00 25.97 27.40 28.17 32.60 28.86
0.04 28.02 29.58 30.64 31.68 34.15 32.09

Barbara 0.06 24.50 26.76 27.68 28.94 32.07 30.26
0.08 22.00 23.98 25.48 27.32 30.65 28.79
0.1 20.06 21.59 21.63 22.84 25.21 24.09

Fingerprint 0.16 15.98 19.42 19.58 20.31 23.22 21.41
0.2 14.04 18.33 18.34 19.28 22.37 19.98

average 20.41 24.17 26.19 27.37 29.69 29.23

4 Conclusion

In this paper, we have studied a RNLTV model
to restore the thin structures through the regular-
ization term on weights v, in a NLTV model. In
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noisy image TV NLTV NLTVG BM3D RNLTV

Fig. 14 Denoising results for an additive white Gaussian noise with standard deviation σ = 0.12 (top row), σ = 0.14
(middle row) and σ = 0.16 (bottom row).

order to implement a PALM solver, we compute
the gradients and the Lipschitz moduli of the gra-
dient mapping. The performance of the proposed
method is demonstrated by numerical experiments
on synthetic images and natural images. In partic-
ular, we see that the regularization of the weights
permit to smooth or interpolate them. This leads
to better restoration results.

In the future, we plan to improve the ability of
the RNLTV model to recover textures, one possi-
ble solution is to use shape-adaptive patches [17].
More precisely, to avoid diminishing thin struc-
tures, we choose the shape of the patch based on
the local geometry, so that the pixels depicting thin
structures in a window will take relatively large
portion of the overall, thus will not be overlooked,
while patches preserve texture areas. In addition,
inspired by the global filtering framework [42], we
can use a non-local term to regularize v. Since the
model is also better suited to solve inverse prob-
lems thus we will extend the model to comput-
erized tomography problems, reconstruction from
random measures, etc.
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5 Appendices

5.1 TV under a max form

We want to prove that for any u ∈ RP and any
(fixed) v ∈ UP

TV (v, u) = max
‖w‖∞,2≤1

〈Dvu,w〉 −
µ

2
‖w‖2, (51)

where we remind that, for w ∈ RP×B, the norm
defining the constraint takes the form

‖w‖∞,2 = max
p∈P
‖wp‖, for wp = (wp,q)q∈B ∈ RB.

(52)

First, notice that if for all p ∈ P we know w∗p ∈
RB such that

w∗p = argmaxw∈RB:‖w‖≤1 〈Dvup, w〉−
µ

2
‖w‖2, (53)

where we denote Dvup = (Dvup,q)q∈B ∈ RB; we
can deduce from the optimality of all its compo-
nents w∗p that w∗ = (w∗p)p∈P ∈ RP×B satisfies

w∗ = argmaxw∈RP×B:‖w‖∞,2≤1 〈Dvu,w〉 −
µ

2
‖w‖2.

(54)

In order to calculate w∗p, for a given p ∈ P, we
first remark that there exists α∗p ≥ 0 such that

w∗p = α∗pDvup. (55)
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noisy image TV NLTV NLTVG BM3D RNLTV

Fig. 15 Denoising results for an additive white Gaussian noise with standard deviation σ = 0.04 (the first and fourth
rows), σ = 0.06 (the second and fifth rows) and σ = 0.08 (the third and sixth rows). More Stronger additive white Gaussian
noise for Fingerprint with standard deviation σ = 0.1 (the seventh row), σ = 0.16 (the eighth row) and σ = 0.2 (the ninth
row).
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clean noisy TV NLTV NLTVG BM3D RNLTV

Fig. 16 The zoomed regions of results in Figure 15. The first row is the zoomed regions in the first row of Figure 15; the
second row is the zoomed regions in the forth row of Figure 15; the last row is the zoomed regions in the seventh row of
Figure 15.

Then, if we use this expression in (53) we have that

α∗p = argmaxα‖Dvup‖≤1 α‖Dvup‖2 −
µ

2
α2‖Dvup‖2,

= argmaxα‖Dvup‖≤1 α(1− µα

2
),

=

{
1

‖Dvup‖ , if 1
µ >

1
‖Dvup‖ ,

1
µ , otherwise.

We finally obtain that

w∗p =

{
Dvup
µ , if ‖(Dvu)p‖ ≤ µ,
Dvup
‖(Dvu)p‖ , otherwise.

(56)

This corresponds to the expression of w∗(u)p in
Proposition 1.

If we now use the expression for w∗p to calculate
the objective function, we find that

max
w∈RB:‖w‖≤1

〈Dvup, w〉 −
µ

2
‖w‖2

=
〈
Dvup, w

∗
p

〉
− µ

2
‖w∗p‖2

=

{
‖Dvup‖2

2µ , if ‖Dvup‖ ≤ µ,
‖Dvup‖ − µ

2 , otherwise.

= Ψµ(‖Dvup‖).

(57)

As a consequence,

max
‖w‖∞,2≤1

〈Dvu,w〉 −
µ

2
‖w‖2

=
∑
p∈P

〈
Dvup, w

∗
p

〉
− µ

2
‖w∗p‖2

= TV (v, u).

(58)

5.2 Proof of Proposition 1

Let us first remind and adapt to the context of
this paper the theorem 1 stated in [33]. This result
considers finite dimensional real vector spaces V1
and V2, a linear operator A : V1 → V2, a parameter
µ > 0 and a function

fµ(x) = max
u∈Q2

〈Ax, u〉 − µ

2
‖u‖2 ,∀x ∈ V1 (59)

where Q2 ⊂ V2 is a closed convex bounded set.
It is stated and proved in [33] that the function

fµ is continuously differentiable at any x ∈ V1.
Moreover, if we denote uµ(x) the unique solution
of the maximization problem defining fµ, we have:

∇fµ(x) = A∗uµ(x), (60)

where A∗ is the adjoint of A. Moreover, x 7−→
fµ(x) is Lipschitz continuous with constant

‖A‖V1→V2

µ
, (61)

where

‖A‖V1→V2
= max
‖x‖≤1

‖Ax‖. (62)

The Proposition 1 is a straightforward applica-
tion of this statement to the function

TV (v, u) = max
‖w‖∞,2≤1

〈Dvu,w〉 −
µ

2
‖w‖2. (63)

In order to compute the Lipschitz constant, we
need however to find a bound for ‖Dv‖RP→RP×B .
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In order to compute it, we consider u ∈ RP . We
have for any v ∈ UP

‖Dvu‖2 =
∑
p∈P

∑
q∈B

vpq (up − up+q)2

≤ 2
∑
p∈P

∑
q∈B

vpq
(
u2p + u2p+q

)
≤ 2

∑
p∈P

u2p + 2
∑
q∈B

∑
p∈P

u2p+q

≤ 2‖u‖2 + 2|B|‖u‖2,

(64)

where |B| denotes the cardinality of B. We then
deduce9 that for any v ∈ UP

‖Dv‖RP→RP×B ≤
√
2
√
|B|+ 1. (65)

Finally, it is standard that (32) is a consequence of

the fact that l” =
√
2
√
|B|+1

µ is a Lipschitz bound
for u 7−→ ∇uTV (v, u).

5.3 Proof of Proposition 2

Considering v ∈ UP , u ∈ RP and a small variation
h ∈ RP×B, we denote P1 = {p ∈ P|(Auv)p ≥ µ

2 }
and P2 = P \ P1. For h small enough, we have

TV (v + h, u) =
∑
p∈P1

Ψµ

(√
(Auv)p + (Auh)p

)

+
∑
p∈P2

(Auv)p + (Auh)p
2µ

. (66)

Moreover,

∑
p∈P1

Ψµ

(√
(Auv)p + (Auh)p

)

=
∑
p∈P1

Ψµ

(√
(Auv)p +

(Auh)p

2
√
(Auv)p

+ o (|(Auh)p|)

)

=
∑
p∈P1

Ψµ

(√
(Auv)p

)

+ Ψ ′µ

(√
(Auv)p

)
(Auh)p

2
√
(Auv)p

+ o (|(Auh)p|)

(67)

Denoting for all p ∈ P1

(u∗(v))p =
Ψ ′µ

(√
(Auv)p

)
2
√
(Auv)p

(68)

9 Notice that a similar upper bound is provided in [10]
for the usual finite differences.

and for all p ∈ P2

(u∗(v))p =
1

2µ
(69)

and using the simple closed form expression for the
derivative Ψ ′µ, we get for all p ∈ P

(u∗(v))p =

{
1

2
√

(Auv)p
, if
√
(Auv)p ≥ µ,

1
2µ , if µ ≥

√
(Auv)p ≥ 0.

(70)

Using this notation in the previous calculations we
obtain that

TV (v + h, u) = TV (v, u) + 〈u∗(v),Auh〉+ o(‖h‖).
(71)

We finally conclude that

∇vTV (v, u) = A∗uu
∗(v), (72)

This proves the first part of Proposition 2.
Let us now show that v 7−→ TV (v, u) is concave

over RP×B+ . In order to do so, we rewrite the lat-
ter formula under the form (u∗(v))p = ϕ((Auv)p)

where the function ϕ is defined for all t ≥ 0 by

ϕ(t) =

{
1

2
√
t
, if
√
t ≥ µ,

1
2µ , if µ ≥

√
t ≥ 0.

(73)

Notice that the function ϕ is non-increasing and
therefore

(ϕ(t1)− ϕ(t2))(t1 − t2) ≤ 0, ∀(t1, t2) ∈ R2. (74)

We now consider v and v′ ∈ RP×B+ and u ∈ RP .
Using Taylor’s Theorem, we know there exists t ∈
[0, 1] such that v” = tv′ + (1− t)v satisfies

TV (v′, u)− TV (v, u)− 〈∇vTV (v, u), v′ − v〉
= 〈∇vTV (v”, u)−∇vTV (v, u), v′ − v〉
= 〈u∗(v”)− u∗(v),Au(v

′ − v)〉

=
∑
p∈P

(ϕ(Auv”p)− ϕ(Auvp))
(
Auv

′
p −Auvp

)
.

(75)

However, for any p ∈ P,Auv”p−Auvp = t(Auv
′
p−

Auvp) and Auv”p −Auvp and Auv
′
p −Auvp have

the same sign. Using (74), we then get

(ϕ(Auv”p)− ϕ(Auvp))
(
Auv

′
p −Auvp

)
≤ 0 (76)

and finally

TV (v′, u)− TV (v, u)− 〈∇vTV (v, u), v′ − v〉 ≤ 0.

(77)

This concludes the proof.
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5.4 Proof of Proposition 3

For any v ∈ UP , given the expression

R(v) = γ ‖Bv‖2 (78)

we immediately have

∇R(v) = 2γB∗Bv. (79)

We only need to calculate the Lipschitz constant
l′ provided in Proposition 3. In order to do so, we
consider v and v′ ∈ UP and denote w = v′−v. We
have

‖∇R(v′)−∇R(v)‖2 = 4γ2‖B∗Bw‖2. (80)

Moreover, using the formula for B∗, we get

‖B∗Bw‖2 =

∑
(p,q)∈P×B

∣∣∣∣∣∣
∑
p′∈N

((Bw)p,q,p′ − (Bw)p−p′,q,p′)

∣∣∣∣∣∣
2

.

(81)

The term inside the absolute value can be rewrit-
ten, using the definition of B, under the form∑

p′∈N
((Bw)p,q,p′ − (Bw)p−p′,q,p′)

=
∑
p′∈N

(2wp,q − wp+p′,q − wp−p′,q),

= 2|N |wp,q −
∑
p′∈N

wp+p′,q −
∑
p′∈N

wp−p′,q.

(82)

Therefore,

‖B∗Bw‖2

≤
∑

(p,q)∈P×B

3

4|N |2w2
p,q +

∑
p′∈N

wp+p′,q

2

+

∑
p′∈N

wp−p′,q

2


≤ 3

4|N |2‖w‖2 + |N |
∑

(p,q)∈P×B

∑
p′∈N

w2
p+p′,q

+|N |
∑

(p,q)∈P×B

∑
p′∈N

w2
p−p′,q


≤ 3× 6|N |2‖w‖2.

(83)

Finally,

‖∇R(v′)−∇R(v)‖2 ≤ 2×62γ2|N |2‖v′−v‖2. (84)

We then conclude that v 7−→ ∇R(v) is Lips-
chitz with Lipschitz constant 6

√
2γ|N |. This con-

cludes the proof.
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