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In the usual non-local variational models, such as the non-local total variations (NLTV), the image is regularized by minimizing an energy term that penalizes gray-levels discrepancy between some specified pairs of pixels, a weight value is computed between these two pixels to penalize their dissimilarity. In this paper, we impose some regularity to those weight values. More precisely, we minimize a function involving a regularization term, analogous to an H 1 term, on weights. Doing so, the finite differences defining the image regularity depend on their environment. When the weights are difficult to define, they can be restored by the proposed stable regularization scheme.

We provide all the details necessary for the implementation of a PALM algorithm with proved convergence. We illustrate the ability of the model to restore relevant unknown edges from the neighboring edges on an image inpainting problem. We also argue on inpainting, zooming and denoising problems that the model better recovers thin structures.

1 Introduction

The Image Restoration Problem

Given an image domain P (P can be a sub-domain of R 2 ), we consider a degraded image I as a mapping P → R. We assume that I is obtained from a perfect unknown image u by

I = Hu + b, (1) 
where H is a known linear operator and b is an error term. In the typical situations we have in mind, P is a lattice of pixels and b is an iid noise with standard deviation σ > 0.

The purpose of the restoration model studied in this paper is to retrieve an image close to u, using only I and H. For instance, in image inpainting, the operator H maps any image u onto an image Hu satisfying (Hu) p = 0 , if p ∈ P , u p , otherwise,

where P is the domain to inpaint. For deblurring, the operator H is typically the convolution operator. For the purpose of image zooming the operator H is the composition of a convolution and a subsampling operator (the latter can also be written under the form (2)) and so on and so forth. Note that, to simplify notations, we use the same domain P for the perfect image u and the measure I. This need not be the case in general.

Finally, for simplicity, we assume that P is periodic, so that for any (p, q) ∈ P 2 the sum p + q is defined in such a manner that p + q ∈ P. We also assume that P is such that p + P = P, whatever p ∈ P.

Review of Image Restoration Models

Total variation (TV) has drawn much attention since Rudin, Osher and Fatemi (ROF) proposed their celebrated model [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] for denoising (i.e. H = Id). The variational formulation can be written as

argmin u∈Ω |∇u| + λ u -I 2 , ( 3 
)
where Ω is either R P (in the discrete setting) or the space of the functions of bounded variation. When used as a regularization term, the total variation |∇u| has the advantage to preserve sharp edges and the drawbacks to create homogeneous regions (staircasing) and to over-smooth the textured regions. This is due to the fact that textures are treated as singularities by the TV term which only sees local information [START_REF] Jung | Nonlocal variational image deblurring models in the presence of gaussian or impulse noise[END_REF]. This regularization has later been used to solve many linear inverse problems such as inpainting [START_REF] Ballester | Filling-in by joint interpolation of vector fields and gray levels[END_REF][START_REF] Shen | Mathematical models for local nontexture inpaintings[END_REF].

In another direction, generalizing the Yaroslavsky neighborhood filter [START_REF] Yaroslavsky | Digital picture processing: An introduction[END_REF], the non-local means (NLM) of Buades, Coll and Morel [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF] takes the following form (we write it in the continuous domain):

N LM I (p) = 1 C(p) B v I (p, p )I(p )dp , (4) 
where B is a search window, the weights are provided by

v I (p, p ) = exp - D(p, p ) h 2 , (5) 
where, for a patch B (usually a square centered around the origin), D(p, p ) = B G a (q) |I(p + q) -I(p + q)| 2 dq [START_REF] Bauschke | Fixed-point algorithms for inverse problems in science and engineering[END_REF] and the normalizing factor

C(p) = B v I (p, p )dp . (7) 
The Gaussian kernel G a with standard deviation a ponderates pixels in the 'patch' area and h is a filtering parameter. Usually in NLM model, the patch is nothing but a square region which is smaller than the search window B. The idea behind NLM is to restore the pixel in the contaminated image I by a weighted average of the nearby similar (in the patch sense) pixels. The patch is used to judge the resemblance between two pixels p and p , in [START_REF] Bauschke | Fixed-point algorithms for inverse problems in science and engineering[END_REF], D(p, p ) is evaluated based on the difference of the square neighborhoods (patches) I(p + q) and I(p + q) centered at p and p , not the intensity difference between the pixels p and p themselves.

Another key point is that the pixels p used in the average do not have to be close to p, which explains the name 'non-local'.

The idea to use patch was initially known for its ability to do 'texture synthesis' [START_REF] Levina | Texture synthesis and nonparametric resampling of random fields[END_REF][START_REF] Wei | Fast texture synthesis using tree-structured vector quantization[END_REF], it was later applied to image denoising and inpainting [START_REF] Arias | A variational framework for non-local image inpainting[END_REF]. Patch is widely used in image processing models. For example, Pizarro, et al. [START_REF] Pizarro | Generalised nonlocal image smoothing[END_REF] used a linear combination of a similarity term and a smoothness term, both of them are defined non-locally in a patch manner to propagate nonlocal information. NL-Bayes [START_REF] Lebrun | Implementation of the "Non-Local Bayes" (NL-Bayes) image denoising algorithm[END_REF][START_REF] Lebrun | A nonlocal Bayesian image denoising algorithm[END_REF] bridges between the Bayesian methods and BM3D. It improves the denoising result, when applied to color images and, for gray level images, yields to results comparable to stateof-the-art methods, such as BM3D.

From a weighted graph point of view, Kheradmand and Milanfar [START_REF] Kheradmand | A general framework for regularized, similarity-based image restoration[END_REF] proposed an adaptive Laplacian filter using patch, which is mainly for deblurring, and under special circumstances, their method can apply to denoising and sharpening problems. Notice that a similar idea, coming with a precise statistical analysis, has been proposed under the name "Discrete Universal Denoiser" [START_REF] Weissman | Universal discrete denoising: Known channel[END_REF]. Considering a thin structure (typically a smooth curve) in a uniform background, we see in the formula that the weights v I does not differentiate well the pixels in the thin structure from pixel in the background. The thin structure indeed lives in a domain whose measure is small (at the limit, the measure of the domain is 0). It provides a negligible contribution to D(p, p ). As a consequence, NLM tends to underestimate the weights of the pixels in the thin structure and, as a consequence, it tends to erase the thin structure. This is especially true for large patch size and may lead to a substantial underestimation of the similarity between two pixels in the thin structure [START_REF] Duval | On the parameter choice for the non-local means[END_REF]. Moreover, exemplar-based approaches [START_REF] Levina | Texture synthesis and nonparametric resampling of random fields[END_REF][START_REF] Wei | Fast texture synthesis using tree-structured vector quantization[END_REF] also use patches to produce striking inpainting results. These algorithms have been later interpreted using a probabilistic point of view. In particular, Levina and Bickel [START_REF] Levina | Texture synthesis and nonparametric resampling of random fields[END_REF] provided a theoretical back-ground to explain their ability to synthesize texture. Aujol, Ladjal and Masnou [START_REF] Aujol | Exemplar-based inpainting from a variational point of view[END_REF] expressed the exemplar-based methods in a non-local variational framework and studied their ability to retrieve geometric features. However, it is difficult to adapt NLM and other patch based approaches for difficult image restoration tasks involving highly structured noise or (even worse) when the operator H is not invertible and makes the recovery of similar pixels difficult.

Inspired by the advantages of NLM, Gilboa and Osher [START_REF] Gilboa | Nonlocal linear image regularization and supervised segmentation[END_REF][START_REF] Gilboa | Nonlocal operators with applications to image processing[END_REF] introduced a non-local variational model to better recover textures. In [START_REF] Gilboa | Nonlocal operators with applications to image processing[END_REF], they considered the non-local total variation (NLTV) model defined (in the continuous domain) by

J N LT V (u) + λ u -I 2 , ( 8 
)
where the NLTV term J N LT V (u) is defined by

P B (u(p) -u(p + q)) 2 v(p, q)dqdp. (9) 
In [START_REF] Gilboa | Nonlocal operators with applications to image processing[END_REF], in practical applications, they calculated the weights v according to patch distance and only used the 10 most similar pixels in (the discretized) B. They also mentioned binary weights. They adapted the celebrated Chambolle's projection algorithm [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] to optimize a discretization of the NLTV model. A more general model, involving p-Laplace operator on graphs, have been proposed in [START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing[END_REF]. It also makes connections between the variational approaches and other non-local approaches.

Considering applications such as compressive sensing, when the low sampling rate may lead to a bad initial guess of the weight function, some authors [START_REF] Peyré | Non-local regularization of inverse problems[END_REF][START_REF] Zhang | Bregmanized nonlocal regularization for deconvolution and sparse reconstruction[END_REF] suggested to update the weights during the iterations to improve them. For example, Zhang, et al. [START_REF] Zhang | Bregmanized nonlocal regularization for deconvolution and sparse reconstruction[END_REF] employed patches and updated the weights by recomputing the initial step [START_REF] Ballester | Filling-in by joint interpolation of vector fields and gray levels[END_REF] with the current estimate of the clean image. A similar update is used in [START_REF] Arias | A variational framework for non-local image inpainting[END_REF][START_REF] Peyré | Non-local regularization of inverse problems[END_REF]. To trade off between the accuracy and computational costs, the authors only reevaluate the weights every few steps [START_REF] Zhang | Bregmanized nonlocal regularization for deconvolution and sparse reconstruction[END_REF] and in practical implementation, they only use the first few largest weights in a local search window and set the rest of them to zero. Of course, because of these last 'tricks', the algorithms may fail to find the optimal solution of the variational model which is not fully satisfactory. They however provide interesting restoration results.

The model studied in this paper is inspired by the earlier work of Peyre, et al. [START_REF] Peyré | Non-local regularization of inverse problems[END_REF][START_REF] Peyré | Non-local regularization of inverse problems[END_REF]. In [START_REF] Peyré | Non-local regularization of inverse problems[END_REF], they considered the weights v defined in the NLM and updated v using [START_REF] Ballester | Filling-in by joint interpolation of vector fields and gray levels[END_REF] with the current estimate of the image. The authors mentioned the difficulty for setting the filtering parameter h [START_REF] Peyré | Non-local regularization of inverse problems[END_REF] since noise level evolves along the iterative process. In [START_REF] Peyré | Non-local regularization of inverse problems[END_REF], the authors extended [START_REF] Peyré | Non-local regularization of inverse problems[END_REF] and [START_REF] Zhang | Bregmanized nonlocal regularization for deconvolution and sparse reconstruction[END_REF] by regularizing the graph v. The resulting model has two regularization terms, the first term J v (u) regularizes the image, while the second term E(v) is the entropy of function v defining the underlying graph. Also, to better recover the textures of the images, the non-local regularization term was chosen to be the patch variation of J N LT V (u) in [START_REF] Burger | Cahn-hilliard inpainting and a generalization for grayvalue images[END_REF]. In this variation, the difference of intensities u(p) -u(p + q), in [START_REF] Burger | Cahn-hilliard inpainting and a generalization for grayvalue images[END_REF], is replaced by a patch distance. It has also been adopted in [START_REF] Arias | A variational framework for non-local image inpainting[END_REF][START_REF] Facciolo | Exemplar-based interpolation of sparsely sampled images[END_REF][START_REF] Peyré | Sparse modeling of textures[END_REF].

To conclude, non-local variational models [17, [START_REF] Gilboa | Nonlocal operators with applications to image processing[END_REF][START_REF] Lou | Image recovery via nonlocal operators[END_REF][START_REF] Peyré | Non-local regularization of inverse problems[END_REF] have been widely used to restore images, because of their capability to utilize the information from many pixels having a similar neighborhood. However, when treated by these models, thin structures can be overlooked and are sometimes undetectable in a patch of the damaged image. These methods might therefore erase these thin structures.

Also, the construction of the weights between the pixels is usually done according to some pixel similarity criterion in the degraded images I. When some weights are unknown (for instance when inpainting a missing domain or zooming an image), they are updated during the iterative process, according to an ad-hoc procedure [START_REF] Peyré | Non-local regularization of inverse problems[END_REF]. More generally, these methods are difficult to apply and lack precise modeling when the output of the degradation operator H does not look like an image (think about the restoration an image from random measurements or Computerized Tomography.)

When compared to these methods, the model studied in this paper is a regularized non-local total variation (RNLTV) model. It shows the advantages to both: -better restore thin structures;allow the construction of non-local models for difficult inverse problems.

The Studied Model

Framework and Model Description

From now on, we discretize the problem and consider a lattice P. We consider a set B ⊂ P. In the typical situation we have in mind, B is a square centered at the origin with radius1 r. Throughout the paper, we call patch or window a set p + B for some p ∈ P.

We also denote the cardinality of any finite set C by |C|. Moreover, for any finite dimensional vector space V (in practice we have either V = R P , V = R P×B or V = R B ) and any positive definite operator L mapping V into itself, we consider the weighted norm [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF] x L = x, Lx

1 2 , ∀x ∈ V, (10) 
where ., . denotes the usual scalar product in V . When L is an identity matrix (L = Id), we simply denote x instead of x Id . Given these notations, we define, for any p ∈ P, weights v p = (v p q ) q∈B ∈ R B , where each weight v p q is the cost for the dissimilarity |u p -u p+q |. Said differently, v p ∈ R B can be seen as the parameters of a finite difference operator defined at the pixel p. In practice we will force these weights v p ∈ R B to belong to the set

U =    v ∈ R B + , q∈B v q = 1    , (11) 
where R + are the non-negative reals. This constraint guarantees that every pixel of the image contributes similarly to the overall cost. We denote the collection of all the weights in the image by v = (v p ) p∈P ∈ U P . Given v, we define the non-local total variation of u ∈ R P by

T V (v, u) = p∈P Ψ µ   q∈B v p q (u p -u p+q ) 2   , (12) 
where µ > 0 and Ψ µ is the Moreau envelope of the absolute value function, also called Huber function [6, page 368]:

ψ µ (t) = |t| -µ 2 , if |t| ≥ µ, t 2 2µ
, otherwise.

Note that ( 9) is a continuous analogue of [START_REF] Chen | Enhancement and recovery in atomic force microscopy images[END_REF] without the Huber function Ψ µ . The first motivation for using the Huber function is that, once the weights are properly estimated, we expect v p q to be small when (u p -u p+q )2 is large. As a consequence, we do not expect edges to be oversmoothed and blurred. As a consequence, the benefit of the 1 term used to define the total variation might be questioned and it is interesting to use a function Ψ µ , involving a parameter µ, that permit Ψ µ to behave quadratically or linearly. The second motivation for using the Huber function is that it is differentiable. This is required by the PALM algorithm. Moreover, we consider, for any v ∈ U P , the regularity criterion R defined by

R(v) = γ p∈P p ∈N v p -v p+p 2 , ( 14 
)
where γ is a non-negative parameter and N is a small neighborhood 2 of 0. When minimized, the term R(v) favors the situation when v p is similar to v p+p . If we isolate v p q in T V (v, u) + R(v), we observe that v p q should minimize

Ψ µ   q ∈B v p q (u p -u p+q ) 2   +γ p ∈N (v p q -v p+p q ) 2 .
As a consequence, v p q must be small when (u pu p+q ) 2 is large and must be similar to the weights at its neighbor v p+p q . Also, since v ∈ U P , the T V (., u) term forces v p q to be large for p and q such that (u p -u p+q ) 2 is small. For instance, when p and p+q are on the same side of an edge or in the same thin structure; we know that (u p -u p+q ) 2 is small; it does not cost much to have v p q large (i.e. close to 1). Although it depends on the local structure in the image, we also often have (u p+p -u p+p +q ) 2 small and therefore v p+p q large. Altogether, we expect v to end up aligned with such edges and thin structures. This looks like a desirable behavior.

Finally, we consider a data fidelity term D. This term either takes the form

D(u) = λ Hu -I 2 , (15) 
for some parameter λ ≥ 0, or, for a parameter τ ≥ 0,

D(u) = χ | Hu-I 2 ≤τ (u), (16) 
where the indicator function χ |C is 0 if the condition C is satisfied and infinity otherwise. The advantage of the latter formulation is that τ can be deduced from the noise standard deviation σ

(A standard choice is indeed τ = |P|σ 2 ).
The restored image we are interested in is the argument u of a minimizer of

argmin u∈R P ,v∈U P R(v) + T V (v, u) + D(u). ( 17 
)
Although the parameters are not presented explicitly in (17), the model depends on the parameters µ, γ and either λ or τ .

Notice that, the model does not make use of the patch distance. It can therefore be categorized as a purely non-local method.

In the problem (17), the constraint on v is compact and, unless in very particular counter-example, we expect the objective function to be coercive in u. The objective function being also lower semicontinuous, the problem (17) has a solution. We will see moreover that T V and R are differentiable and have Lipschitz gradient (see Proposition 1, 2 and 3). The main difficulty concerning the numerical resolution of ( 17) is that, because of the term T V (u, v), the objective function is not convex.

Insight on the Model

The connectivity principle [START_REF] Kanizsa | Organization in vision: Essays on Gestalt perception[END_REF][START_REF] Mumford | Filtering, segmentation and depth[END_REF] states that human prefers to see that disjoint edges are connected through the missing domains. It is wellknown that the classic inpainting models including TV models [START_REF] Ballester | Filling-in by joint interpolation of vector fields and gray levels[END_REF][START_REF] Shen | Mathematical models for local nontexture inpaintings[END_REF], have difficulty in connecting the thin objects [START_REF] Chan | Nontexture inpainting by curvature-driven diffusions[END_REF][START_REF] Chen | Enhancement and recovery in atomic force microscopy images[END_REF] (see Figure 1, 'TV' inpainting). Thus inpainting methods involving higher order information [START_REF] Chan | Nontexture inpainting by curvature-driven diffusions[END_REF][START_REF] Schönlieb | Unconditionally stable schemes for higher order inpainting[END_REF], such as curvature, were proposed to improve the results. However, if the size of the unknown regions separating thin objects are too large, then even the fourth-order PDE-based model [START_REF] Schönlieb | Unconditionally stable schemes for higher order inpainting[END_REF] will leave the thin structures broken (see Figure 1, 'TV-H -1 ' inpainting).

Moreover, we see on Figure 1, 'NLinpaint' image, that even non-local methods that do not construct v with enough care [START_REF] Fedorov | Variational framework for non-local inpainting[END_REF] have difficulty connecting lines, when there are many large missing areas. One motivation for considering RNLTV is that, because it smoothly inpaints v in the missing regions and since large weights values are concentrated and aligned along the direction of the thin structures, RNLTV has the ability to connect the broken lines.

Overview of the Paper

In Section 1.3, we present the RNLTV model. Section 2 details the proximal alternating linearized minimization (PALM) algorithm [START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF] minimizing the proposed model. We also provide in this section the gradient of the different terms, show that the gradients are Lipschitz continuous and provide their Lipschitz constants. The numerical experiments in Section 3 demonstrate the efficiency of the proposed method on inpainting, zooming and denoising experiments. 2 Implementing the PALM Algorithm

In the last couple of years, alternating minimization algorithms [START_REF] Aujol | Stability of over-relaxations for the Forward-Backward algorithm, application to FISTA[END_REF][START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF][START_REF] Chen | Inertial proximal admm for linearly constrained separable convex optimization[END_REF][START_REF] Cho | Block iterative reweighted algorithms for super-resolution of spectrally sparse signals[END_REF][START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF][START_REF] Ouyang | An accelerated linearized alternating direction method of multipliers[END_REF] were developed to solve optimization problems over multiple variables. A proof of convergence in the non-convex setting for an alternating variant of the forwardbackward algorithm, tagged PALM, has been proposed in [START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF]. It is perfectly adapted to the structure of (17). A preconditioned version has also been studied in [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF]. Below, we provide the details for implementing the PALM algorithm generating a sequence that converges to a stationary point of (17). First, we give a few notations and describe the algorithm in Section 2.1. Next, we derive the components of the algorithm. Section 2.2, 2.3 and 2.4 are devoted to the calculation of the gradients of the regularization terms in (17) and their Lipschitz constants. Then we discuss the proximal operator prox D L (u ) in Section 2.5 in detail.

Notations and Overview of the Algorithm

We denote ∇ u T V (v, u) and ∇ v T V (v, u) as the partial gradient of T V (., .) with regards to the variable u and v respectively. The PALM algorithm adapted to (17) is described in Algorithm 4.

In summary, the Algorithm 4 alternates forwardbackward iterations for each one of the two block of variables: u and v.

For any v ∈ U P and any u ∈ R P , we assume that we know a linear operator L and constants l and l (for the detailed calculations of these quantities see Section 2.2, 2.3 and 2.4) satisfying the majorization conditions [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF] described below:

-For any v ∈ U P , L is such that there exists m > 0 satisfying

u L ≥ m u , ∀u ∈ R P , (18) 
and for any u and

u ∈ R P T V (v, u ) ≤ T V (v, u) + ∇ u T V (v, u) , u -u + 1 2 u -u, L(u -u) . (19) 
-For any u ∈ R P , l ≥ 0 and l ≥ 0 are such that l + l > 0 and for any v and v

∈ U P T V (v , u) ≤ T V (v, u) + ∇ v T V (v, u) , v -v + l 2 v -v 2 , (20) 
and

R(v ) ≤ R(v) + ∇R(v), v -v + l 2 v -v 2 . (21) 
Moreover, the proximal operators used in Algorithm 4 are defined, for any u ∈ R P , by

prox D L (u ) = argmin u∈R P D(u) + 1 2 u -u 2 L , (22) 
and for any v ∈ U P ,

prox χ |U P (v ) = argmin v∈U P v -v 2 , (23) 
simply is the orthogonal projection onto U P . Given the above quantities l, l and L, the Algorithm 4 has many advantages and is perfectly adapted to the structure of our problem. The latter indeed satisfies the following properties:

1. The objective function is analytical and satisfies the KL property. 2. R(v), T V (v, u) and D(u) are proper, non-negative and lower semi-continuous.

The partial gradients

∇ u T V (v, u) and ∇ v T V (v, u)
are Lipschitz continuous with bounded moduli. 

u = prox D L u -L -1 ∇uT V (v, u) (24) 
step 2: Update v: v = prox

χ |U P v - ∇v T V (v,u)+∇R(v) l+l
4. The sequence generated from Algorithm is bounded since both u and v are belong to compact sets.

It is shown in [START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF][START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF] that the sequence generated by (even an inexact version of) Algorithm 4 has good convergence properties:

-The objective function decays along the iterative process. -The iterates converge to a stationary point of our problem. -The sum over the iterative process of the distance between two successive iterates is finite.

Of course, calculating the Kurdyka-Lojasiewicz characterization of our objective function would provide a better understanding of the convergence quality but it is not the purpose of the paper.

Finally, in order to implement the algorithm, we need to

-compute ∇ u T V (v, u) and construct the oper- ator L satisfying (19) (see Section 2.2); -compute ∇ v T V (v, u)
and the constant l satisfying [START_REF] Facciolo | Exemplar-based interpolation of sparsely sampled images[END_REF] (see Section 2.3); compute ∇R(v) and the constant l satisfying (21) (see Section 2.4); compute the proximal operator [START_REF] Garcia | Robust smoothing of gridded data in one and higher dimensions with missing values[END_REF] (see Section 2.5); compute the proximal operator [START_REF] Gilboa | Nonlocal linear image regularization and supervised segmentation[END_REF]: Notice that this reduces to multiple projections onto a simplex. The latter projection is a well studied problem for which fast algorithms exists [START_REF] Condat | Non-local methods with shape-adaptive patches (NLM-SAP)[END_REF].

2.2 Calculation of ∇ u T V (v, u) and L For any v ∈ U P , we consider the following nonlocal analogue of the finite difference operator:

D v : R P -→ R P×B u = (u p ) p∈P -→ v p q (u p -u p+q ) (p,q)∈P×B (25) 
We also denote, for p ∈ P,

(D v u) p = ((D v u) p,q ) q∈B ∈ R B and (D v u) p = q∈B (D v u) 2 p,q
. We obtain after some simple calculations that its adjoint is given, for any w = (w p,q ) (p,q)∈P×B , it is easy to see that

(D * v w) p = q∈B v p q w p,q -v p-q q w p-q,q , (26) 
for all p ∈ P.

Moreover, if we consider, for w ∈ R P×B , the norm

w ∞,2 = max p∈P w p , where w p = (w p,q ) q∈B ∈ R B . (27) 
We can prove (see appendix 5.1) that for any u ∈ R P and any (fixed

) v ∈ U P T V (v, u) = max w ∞,2 ≤1 D v u, w - µ 2 w 2 . ( 28 
)
From this expression and using the Theorem 1 in [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF] (reminded in Appendix 5.2), we can deduce the following proposition whose proof is detailed in Appendix 5.2. Notice that a similar statement and construction is given for the usual total variation in [START_REF] Weiss | Efficient schemes for total variation minimization under constraints in image processing[END_REF].

Proposition 1 For any u ∈ R P , we have

∇ u T V (v, u) = D * v w * (u), (29) 
where w * (u) ∈ R P×B is the maximizer of (28) and is provided in closed form by:

w * (u) p,q = (Dvu)p,q µ , if (D v u) p ≤ µ, (Dvu)p,q (Dvu)p , otherwise. (30) 
Moreover, u → ∇ u T V (v, u) is Lipschitz continu- ous with Lipschitz constant l" = √ 2 |B| + 1 µ . ( 31 
)
As a consequence, we have for any u and u ∈ R

P T V (v, u ) ≤ T V (v, u) + ∇ u T V (v, u) , u -u + l" 2 u -u 2 . (32) 
A straightforward consequence of ( 32) is that for any diagonalizable linear operator G whose eigenvalues are all larger than 1 (and in particular for G = Id), the property [START_REF] Elmoataz | Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing[END_REF] holds for L = l"G.

Calculation of ∇ v T V (v, u) and l

Let us first define, for any fixed u ∈ R P , the linear operator A u :

R P×B -→ R P , (v p,q ) (p,q)∈P×B -→ q∈B v p,q (u p -u p+q ) 2 p∈P . (33) 
The interest for this operator comes from the fact that for any v

∈ U P T V (v, u) = p∈P Ψ µ (A u v) p . (34) 
Notice that, when v ∈ U P , we have for any p ∈ P

(A u v) p ≥ 0. (35) 
We easily obtain that the adjoint A * u of A u is given for any w ∈ R P by

(A * u w) p,q = w p (u p -u p+q ) 2 , ∀(p, q) ∈ P × B. (36) 
Using these notations, we can prove (see Appendix 5.3) the following proposition.

Proposition 2 For any fixed u ∈ R P , we have for

any v ∈ U P ∇ v T V (v, u) = A * u u * (v), (37) 
where for all p ∈ P

(u * (v)) p = 1 2 √ (Auv)p , if (A u v) p ≥ µ, 1 2µ , if µ > (A u v) p ≥ 0. (38)
Moreover, the function v -→ T V (v, u) is concave over R P×B + and (20) holds for l = 0.

Calculation of ∇R(v) and l

Let us first define the linear operator B: R P×B -→ R P×B×N , (v p,q ) (p,q)∈P×B -→ (v p,q -v p+p ,q ) (p,q,p )∈P×B×N . [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] We immediately deduce from ( 14) that for any

v ∈ R P×B R(v) = γ Bv 2 . ( 40 
)
We also easily obtain that the adjoint B * of B is provided for any w ∈ R P×B×N by

(B * w) p,q = p ∈N
w p,q,p -w p-p ,q,p , ∀(p, q) ∈ P × B.

(

) 41 
We can now state the following proposition whose proof is provided in Appendix 5.4.

Proposition 3 For any v ∈ U P , we have

∇R(v) = 2γB * Bv. (42) 
Moreover, v → ∇R(v) is Lipschitz continuous with Lipschitz constant 6 √ 2γ|N |. As a consequence, (21) 
holds for l = 6 √ 2γ|N |.

Calculation of prox D L (u )

Below, we provide closed form expressions that permit to compute prox D L (u ) for the two data fidelity terms considered in this paper. In the denoising case, H is a identity; for the purpose of image inpainting, H multiply every entry of the image by either 1 or 0 (see [START_REF] Arias | A variational framework for exemplar-based image inpainting[END_REF]).

-When D(u) = λ u -I 2 and L = l"Id.

In this case, we want to compute

prox λ u-I 2 L (u ) = argmin u∈R P λ u -I 2 + l" 2 u -u 2 , = 2λ 2λ + l" I + l" 2λ + l" u .
-When D(u) = χ | u-I 2 ≤τ (u) and L = l"Id.

In that setting, we have

prox χ | u-I 2 ≤τ L (u ) = argmin u: u-I 2 ≤τ u -u 2 L = u , if u -I 2 ≤ τ, I + √ τ u -I (u -I) , otherwise.
-When D(u) = λ Hu -I 2 In this case,

prox λ H.-I 2 L (u ) = argmin u∈R P λ Hu -I 2 + l" 2 u -u 2 , = u * ,
where for all p ∈ P • if H is defined by (2) for some fixed subset of pixels P ⊂ P

u * p = u p , if p ∈ P , 2λIp+l"u p 2λ+l"
, otherwise.

• if H is a general linear operator (e.g. the subsampling operator used for zooming) then the solution u * of

2λH T (Hu -I) + l" (u -u ) = 0, (44) 
can be computeded by the conjugate gradient (CG) method for a sparse linear equation of the form

Au = b, (45) 
where A = 2λH T H + l"Id and b = 2λH T I+ l"u . Note that, although we use CG (call Matlab function pcg(A,b)) to solve this subproblem, the elementwised max norm of the residual max |Au * -b| is around 10 -13 .

Numerical experiments

In order to illustrate the behavior of the model, we consider in this section three applications: image inpainting, zooming and denoising. We evaluate the ability of the method to restore both synthetic and natural images with a particular emphasis on the restoration of thin structures. We compare the performance of the proposed RNLTV model with the performance of state of the art methods. We also illustrate how the weights v are adjusted once the convergence has been reached using the Isotropy Map described in Section 3.1 and 3.2. Finally, Section 3.3 is devoted to the inpainting experiments, Section 3.4 presents zooming results and Section 3.5 contains the experiments on the denoising problem.

Notice that we have used the different datafidelity terms mentioned in Section 1.3.1. They all show similar computational cost and convergence properties. For completeness, we summarize the data fidelity term chosen for each experiments in Table 1.

Table 1 The different data-fidelity terms used in the experiments. Fig. 2 The window B of size 11 × 11. Every q ∈ B has a coordinate.

D(u)

The Isotropy Map

To represent the distribution of the weights v, we introduce the isotropy map M (v) ∈ R P . At every pixel p ∈ P, the feature M (v) p represents whether the weights in v p are distributed isotropically or not. Intuitively, the distribution is not isotropic when the significant weights are concentrated along a thin region of the window p + B.

The feature therefore needs to reflect the discrepancy between the projections of v p onto two axes one of which is aligned with the orientation of v p , the other being orthogonal. Notice that the discrepancy is maximal when the coordinate system is aligned with the orientation of v p .

Implementation Details

More precisely, given an angular precision parameter K ∈ N 3 we define the small angle θ = π 2K as shown in Figure 3. Then we consider all the coordinate (x, y) clock-wise rotated by an angle mθ, for m ∈ M, with M = {0, 1, 2, . . . , K -1}. Doing so, we get several orthonormal bases denoted by i m = (sin(mθ), cos(mθ)), j m = (cos(mθ), -sin(mθ)). 3 In the experiments, we use K = 90. We remind that any pixel q ∈ B is represented in the basis (i m , j m ) by the coordinates ( q, i m , q, j m ).

(
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Therefore, the average distance to the origin of the projections of v p onto the axes i m and j m are defined by

P x m = q∈B v p q q, i m , (47) 
P y m = q∈B v p q q, j m . ( 48 
)
The isotropy map is then defined by

M (v) p = log max P x m P y m , P y m P x m m∈M . (49) 
Clearly, M (v) p is non-negative. Also, it is easy to check that the only way to get small M (v) p is that P x m ∼ P y m for all m ∈ M. This implies that v p is somewhat isotropic. On the contrary, if M (v) p is large, then there exists m ∈ M such that P x m and P y m are dissimilar. From this condition, we conclude that v p distributes anisotropically. In summary, M (v) can be taken as an indication of the degree of isotropy of v p , for every pixel p ∈ P.

Compare RNLTV with NLTVG

In this section, we compare the proposed RNLTV with NLTVG [START_REF] Peyré | Non-local regularization of inverse problems[END_REF], we use the abbreviation NLTVG, since the authors present this model using a graph defined by v. In the NLTVG, the authors update the weights v during iterations in order to minimize an entropy term. This is the model most similar to RNLTV. However, NLTVG also uses patch distance. For the considered problems, the best results for NLTVG are obtained for patches of moderate size (the radius of patch equals to 2). Indeed, as already mentionned, patch distance overlooks thin structures when patches are large 4 . To get a fair comparison, we use the same window size for NLTVG and RNLTV, the radius r = 5. Also we use the same initial weights for both methods when dealing with the same problem.

To illustrate the difference with the updated weights, we plot the isotropy maps of weights in Figure 5 and7, and the restored images are shown in Figure 4 and 6 respectively, also the PSNR values are listed below each figure. NLTVG blurs the image and the isotropy maps also show that the weights computed from NLTVG are not as good as the ones got from RNLTV.

In Figure 5, we plot the isotropy map M (v) ∈ R P for the initial and final weights v in RNLTV. This illustrates that RNLTV has the ability to fill in the missing regions with reasonable weights v. As can be seen in the first column of Figure 5, the initial weights are distributed isotropically both in the regions to be inpainted and the homogeneous regions. However, the regularization term R(v) permits to interpolate 'coherent weights' in the missing areas. For example, due to the influence of their neighbors, the inpainted weights located on the lost thin curves are anisotropic and align with their neighbors.

In the denoising cases, we can see that from the second column of Figure 7, the weights value restored by NLTVG is more isotropic than RNLTV results in the last column, thus NLTVG does not regularize image value u well, some thin lines are still vague in Figure 6. In RNLTV model, we can correct the weights iteratively (see the third column in Figure 7). This limits the influence of noise, thus the majority of noise got removed at convergence.

Inpainting

In this section, we use two masks presented in Figure 8, where the black pixels indicate the region to be inpainted. We set values of parameters in RNLTV as follow: λ = 5000 and µ = 0.8 where 4 Notice that similar properties have been observed in [START_REF] Duval | On the parameter choice for the non-local means[END_REF] for the Non-Local Mean: small details such as thin lines can fade away when using large patches. and the γ values are in Table 2. For most pixel pairs, the initial weight values (before projection) are computed using

v p q = exp - (I p -I p+q ) 2 h 2 , ( 50 
)
where I is the polluted image and for some parameter h > 0. If one of the two pixels is in the missing domain, then we set the weight value between them to 0. Then, we project6 the weights onto the set defined by [START_REF] Chan | Nontexture inpainting by curvature-driven diffusions[END_REF]. We compare the result of the model with some related methods:

-inpaintn: the fully automated MATLAB function inpaintn [START_REF] Garcia | Robust smoothing of gridded data in one and higher dimensions with missing values[END_REF][START_REF] Wang | A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations[END_REF] minimizes an energy functional involving a regularization by a squared finite difference and is solved with a Discrete Cosine Transform; -TV inpainting; -TV-H -1 inpainting [START_REF] Burger | Cahn-hilliard inpainting and a generalization for grayvalue images[END_REF][START_REF] Schönlieb | Unconditionally stable schemes for higher order inpainting[END_REF]; -NLTVG [START_REF] Peyré | Non-local regularization of inverse problems[END_REF]; -NLinpaint [START_REF] Arias | A variational framework for exemplar-based image inpainting[END_REF][START_REF] Fedorov | Variational framework for non-local inpainting[END_REF]: NLinpaint implemented three exemplar-based inpainting schemes, namely patch NL-means, patch NL-medians and patch NL-Poisson, under the variational framework suggested by [START_REF] Arias | A variational framework for exemplar-based image inpainting[END_REF]. We provide, in the following experiments, the best result of the three methods for patch sizes between 5 and 15, using the default parameter of the 'Image Processing On Line' [START_REF] Arias | A variational framework for exemplar-based image inpainting[END_REF].

Synthetic Image

In Figure 10, RNLTV outperforms the other methods. There are two strong strokes in the synthetic image: the arc in the character in the top left corner, and the cross in the middle of the character in the bottom left corner. From the first row of Figure 10, we observe that only RNLTV can connect algorithm assigns weights uniformally equal to 1/|B|.

8 Inpainting masks with missing data marked in black. Left: checkerboard mask; Right: word mask Table 2 Values of the parameters γ of RNLTV for the restoration of the images in Figure 9, when corrupted by the checkerboard or word mask (see Figure 8). The other parameters are µ = 0.8, λ = 5000. The restoration results are presented in Figure 10 all the thin edges correctly. The TV regularization propagates the background color into the missing domains (see the 3 curved lines on the right). The method inpaintn and TV-H -1 cannot clearly inpaint the missing edges in the missing squares on the thin edges. For example, in the middle parts of the 3 curved lines. The method inpaintn creates nonexisting white spots, and blurs the rest of the 3 curved lines. The TV-H -1 model connects the thin edge with a wrong shape and a wrong intensity. Taking the character on the bottom left corner for example, we can see that TV-H -1 fills larger in-tensity values into some missing squares located on the top horizontal line, which yields lighter color than it is supposed to be, while puts smaller intensity values into some missing squares located on the bottom horizontal line. The NLTVG and NLinpaint also get blurry results. The RNLTV model connects all the edges correctly except at the end points, see the ends of the 3 curved lines.

Natural Image

In this section, we inpaint natural images in the regions described by the two masks in Figure 8.

The test images are Boat, Barbara and Fingerprint (see Figure 9). They contain isolated thin structures or textures where thin structures are grouped. From the PSNR value listed in Table 3 and Figure 11, it is obvious that RNLTV can outperform the other methods in restoring images corrupted by the checkerboard mask, but the PSNR data also indicate that NLinpaint and the proposed RNLTV went into a tie when restoring image corrupted by the word mask, so we zoom-in those restoration results of NLinpaint and RNLTV where thin structure presents, to show that RNLTV can better recover thin structures in Figure 12.

In the first three rows of Figure 11, TV, inpaintn, TV-H -1 , NLinpaint can not handle images masked by the checkerboard, the continuous patterns such as the ropes in Boat, stripes in Barbara and friction ridges in Fingerprint can no longer be found in their restoration results. TV regularization takes the color of the background and fills it into the missing areas, see the restored Boat in the first row, second column. Even worse, inpaintn and TV-H -1 return blurry restoration results. The method inpaintn creates non-existing white spots around the ropes (the first row, third column). TV-H -1 draws fake lines crossing the friction ridges (the third row, fourth column). NLTVG cannot clearly restore stripes on the scarf in Barbara. However, the proposed RNLTV can connect the missing thin curves in those missing squares, see the stripe pattern on the scarf in Barbara (the second row, last column) those well contrasted friction ridges in Fingerprint (the third row, last column). Also, in the last three rows of Figure 11, TV, inpaintn and TV-H -1 can not restore those word-shape missing areas, for example, the thin ropes become dashed lines after TV inpainting (the fourth row, second column).

In Figure 12, we zoom-in the restoration results for the word mask in the last three rows of Figure 11 mainly to show that, compare to NLinpaint, we can better detect thin features from RNLTV results. It is obvious that NLinpaint leaves artifacts around thin ropes in Boat, see the first row, fifth column in Figure 12, which may cause distraction. The well-aligned stripe pattern in the middle is smoothed out by NLTVG and NLinpaint, see the second row, fifth and sixth column in Figure 12, but RNLTV still keeps majority of those stripes on the scarf (the second row, last column) The thin blood vessels are clearly zoomed by RNLTV as presented in the first row, last column of Figure 13. Furthermore, Figure 13 shows a shortcoming of the TV based restoration, that is, it tends to create piecewise constant zones in the homogenous regions which is the tissue around the vessels and reduces the contrast of thin structures. The PSNR values in Table 4 confirm the observation.

In Table 4, when zooming 'Lacournouaille', although the PSNR value of the result of bicubic is slightly higher, from the second row of Figure 13, one can observe that RNLTV based zooming leads to a better visual quality whereas the bicubic interpolation and NLTVG get more blurry results, see the mast pointing to the one o'clock direction on the right part of Ship.

Denoising

In this section, we compare the results of RNLTV with the results of BM3D and two standard regularization methods: the TV denoising (ROF [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]) and the NLTV denoising [START_REF] Gilboa | Nonlocal operators with applications to image processing[END_REF]. For the NLTV, we simply set the γ to 0 in our RNLTV code. The NLTV and RNLTV use identical initial weights for the same problem. The initial weights are obtained by applying [START_REF] Ballester | Filling-in by joint interpolation of vector fields and gray levels[END_REF] in which the image I is replaced by the result of the ROF model (i.e. the image presented in the TV column in the same line as the two non-local methods in Figure 14 and15).

Synthetic Image

We consider additive Gaussian white noise with standard deviation σ = 0.12, 0.14, 0.16. As mentioned in Table 1, we use the data fidelity term χ | u-I 2 ≤τ (u). We set γ = 0.3, τ = |P|σ 2 and µ = 0.6 in the RNLTV model. The number of iterations7 is 600. The initial guess for u is the degraded image. The initial weight values are computed using (50).

In Figure 14, we observe that RNLTV produces sharp edges for all shapes. The contrast is reduced differently in different parts of the thin structures in the ROF results. The black region sometimes 'leak' in the background creating some kind of 'blur-like' artifact. NLTVG and BM3D remove all the noise but at the same time, NLTVG blurs thin curves and BM3D creates artifacts.

Natural Image

We consider additive Gaussian white noise with standard deviation σ = 0.04, 0.06 and 0.08 (We add more noise to Fingerprint, because it is more noise-resistant than the rest of test images). We lower the noise level because the thin structures in the natural test images are less contrasted. We use the results of TV denoising to initialize RNLTV and we use the data fidelity term λ u-I 2 . Again, the initial weight values are according to (50). The setting of the parameters in RNLTV and NLTV is presented in Table 5 and 6 respectively. The number of iterations8 are both 600. BM3D does not have any input parameters (except the polluted image). The parameter of the TV model is tuned to find the best restoration quality. The results are in Figure 15 and Table 7. Although BM3D results tend to have highest PSNR values, but we argue that RNLTV can better recover thin structures, see the zoomed image results in Figure 16.

In all the experiments displayed in Figure 15, we observe a similar phenomenon. The TV regularization contains staircasing effects and reduces the contrast or erases thin features, see the ropes in Boat. Some gray stripes on the NLTV denoising result become less notable, see the second row, fourth column in Figure 16. NLTVG denoising results have similar problems because of an excessive blur. BM3D puts distracting artifact around ropes, see the first row, fifth column in Figure 16, and smooths out some of the textures on the scarf, see the second row, fifth column in Figure 16. RNLTV recovers the majority of the thin stripes on the scarf to their original shapes, and obtains slightly clear friction ridges, see the last column in Figure 16. 

Conclusion

In this paper, we have studied a RNLTV model to restore the thin structures through the regularization term on weights v, in a NLTV model. In order to implement a PALM solver, we compute the gradients and the Lipschitz moduli of the gradient mapping. The performance of the proposed method is demonstrated by numerical experiments on synthetic images and natural images. In particular, we see that the regularization of the weights permit to smooth or interpolate them. This leads to better restoration results.

In the future, we plan to improve the ability of the RNLTV model to recover textures, one possible solution is to use shape-adaptive patches [17]. More precisely, to avoid diminishing thin structures, we choose the shape of the patch based on the local geometry, so that the pixels depicting thin structures in a window will take relatively large portion of the overall, thus will not be overlooked, while patches preserve texture areas. In addition, inspired by the global filtering framework [START_REF] Talebi | Global image denoising[END_REF], we can use a non-local term to regularize v. Since the model is also better suited to solve inverse problems thus we will extend the model to computerized tomography problems, reconstruction from random measures, etc.
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Proof of Proposition 3

For any v ∈ U P , given the expression

R(v) = γ Bv 2 (78) 
we immediately have

∇R(v) = 2γB * Bv. (79) 
We only need to calculate the Lipschitz constant l provided in Proposition 3. In order to do so, we consider v and v ∈ U P and denote w = v -v. We have

∇R(v ) -∇R(v) 2 = 4γ 2 B * Bw 2 . ( 80 
)
Moreover, using the formula for B * , we get

B * Bw 2 =
(p,q)∈P×B p ∈N ((Bw) p,q,p -(Bw) p-p ,q,p )

2 .

(81)

The term inside the absolute value can be rewritten, using the definition of B, under the form p ∈N ((Bw) p,q,p -(Bw) p-p ,q,p ) = p ∈N (2w p,q -w p+p ,q -w p-p ,q ), = 2|N |w p,qp ∈N w p+p ,qp ∈N w p-p ,q .

(82) (83)

Finally,

∇R(v ) -∇R(v) 2 ≤ 2 × 6 2 γ 2 |N | 2 v -v 2 . ( 84 
)
We then conclude that v -→ ∇R(v) is Lipschitz with Lipschitz constant 6 √ 2γ|N |. This concludes the proof.
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 1 Fig. 1 A synthetic image with thin lines contaminated by 11 × 11 missing squares. All methods fail to follow the Connectivity Principle properly, but RNLTV can connect the broken thin lines.
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 2 inpainting and zooming λ Hu -I 2 denoising (synthetic image) χ | u-I 2 ≤τ (u) denoising (natural image) λ u -I

Fig. 3

 3 Fig. 3 Coordinate change and projection of the weights on the new coordinate system.
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 4567 Fig. 4 Results of different methods when restoring the degraded synthetic image with the checkerboard and word masks. (PSNR values are also listed below)

Fig. 9

 9 Fig. 9 Test images.

3. 4

 4 ZoomingWe compare the zooming results of RNLTV with the results of three methods: the bicubic interpolation, the TV based restoration and NLTVG. In all the experiments, the image data I d is computed by the Matlab function imresize (I d = imresize(u, 0.25)) from an original image u with a subsampling of a factor 4, as presented in the first column of Figure13. The bicubic interpolation is simply implemented by calling the Matlab function imresize again (imresize(u d , 4, 'bicubic')). The TV based zooming is implemented with a penalty term and a very large parameter λ = 1000 for which the sampling constraint is satisfied. In the RNLTV model, we set λ = 1000 and µ = 0.6. We initialize v uniformly with the value 1/|B|.

Fig. 10

 10 Fig. 10 Results of different methods when restoring the degraded synthetic image with the checkerboard and word masks presented in Figure 8.

Fig. 11 Fig. 12 Fig. 13

 111213 Fig. 11 Restoration results for different methods when inpainting with the checkerboard (the first,second and third rows) and word (the fourth, fifth and sixth rows) masks presented in Figure 8.

Fig. 14

 14 Fig.14Denoising results for an additive white Gaussian noise with standard deviation σ = 0.12 (top row), σ = 0.14 (middle row) and σ = 0.16 (bottom row).

w 2 , 2 w 2 ,µ 2 w 2 .Fig. 15

 222215 Fig. 15 Denoising results for an additive white Gaussian noise with standard deviation σ = 0.04 (the first and fourth rows), σ = 0.06 (the second and fifth rows) and σ = 0.08 (the third and sixth rows). More Stronger additive Gaussian noise for Fingerprint with standard deviation σ = 0.1 (the seventh row), σ = 0.16 (the eighth row) and σ = 0.2 (the ninth row).

, B * Bw 2 ≤≤ 3 ×

 23 6|N | 2 w 2 .

Algorithm 1 :

 1 Overview of the algorithm

	Input:
	I: Degraded image
	H: Linear operator to invert
	B: Support of the weights
	N : Support for the finite differences defining R
	γ, µ, λ/τ : parameters
	Output:
	u: Restored image
	v: Weights
	begin
	Initialize the image u and v;
	while not converged do
	step 1: Update u:

Table 3

 3 PSNR values of different methods when inpainting with the checkerboard and word masks.

	Sy: Synthetic

Table 4

 4 PSNR values of the different methods for zooming of images downsampled by a factor of 4.

		bicubic	TV	NLTVG	RNLTV
	Vessel	34.42	12.69	34.63	35.15
	Ship	24.58	22.90	23.92	24.46

Table 5

 5 Values of parameters in RNLTV for restoration of the natural images corrupted by white Gaussian noise. µ is fixed to 0.6, σ is the standard deviation of the Gaussian

	noise.						
		σ=0.04	σ=0.06	σ=0.08
		γ	λ	γ	λ	γ	λ
	Boat	0.05	0.5	0.1	0.5	0.2	0.5
	Barbara	0.05	0.5	0.1	0.5	0.2	0.5
		σ=0.1	σ=0.16	σ=0.2
		γ	λ	γ	λ	γ	λ
	Fingerprint	0.05	1	0.1	1	0.2	1

Table 6

 6 Values of parameters in NLTV for restoration of the natural images corrupted by white Gaussian noise. µ is fixed to 0.6, σ is the standard deviation of the Gaussian

	noise.			
		σ=0.04	σ=0.06	σ=0.08
		λ	λ	λ
	Boat	1	0.5	0.5
	Barbara	1	0.5	0.2
		σ=0.1	σ=0.16	σ=0.2
		λ	λ	λ
	Fingerprint	0.2	0.1	0.1

Table 7

 7 PSNR values of different methods for restoration of images corrupted by white Gaussian noise. σ is the standard deviation of the Gaussian noise.

	σ	noisy	TV	NLTV	NLTVG	BM3D	RNLTV
	0.12						

We use r = 5 in the experiments.

In the experiments, we consider 4-connectivity: N = {(1, 0), (0, 1)}.

We are aware of the fact that designing a good stopping criterion would permit to save time. However, since the paper presents a new model, we preferred to loose computational time in order to obtain results that truly reflect the behavior of this model.

Note that, if all the are in the missing domain, then the

Again, we just take a very large number of iteration for which we have convergence.

Again, we just take a very large number of iteration for which we have convergence.
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Fig. 16 The zoomed regions of results in Figure 15. The first row is the zoomed regions in the first row of Figure 15; the second row is the zoomed regions in the forth row of Figure 15; the last row is the zoomed regions in the seventh row of Figure 15.

Then, if we use this expression in (53) we have that

, otherwise.

We finally obtain that

This corresponds to the expression of w * (u) p in Proposition 1.

If we now use the expression for w * p to calculate the objective function, we find that

(58)

Proof of Proposition 1

Let us first remind and adapt to the context of this paper the theorem 1 stated in [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF]. This result considers finite dimensional real vector spaces V 1 and V 2 , a linear operator

where

It is stated and proved in [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF] that the function

Moreover, if we denote u µ (x) the unique solution of the maximization problem defining f µ , we have:

where

where

Ax .

(62)

The Proposition 1 is a straightforward application of this statement to the function

In order to compute the Lipschitz constant, we need however to find a bound for D v R P →R P×B .

In order to compute it, we consider u ∈ R P . We have for any v ∈ U P

where |B| denotes the cardinality of B. We then deduce 9 that for any v ∈ U P

Finally, it is standard that ( 32) is a consequence of the fact that l"

Proof of Proposition 2

Considering v ∈ U P , u ∈ R P and a small variation h ∈ R P×B , we denote P 1 = {p ∈ P|(A u v) p ≥ µ 2 } and P 2 = P \ P 1 . For h small enough, we have

Denoting for all p ∈ P 1

9 Notice that a similar upper bound is provided in [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] for the usual finite differences. and for all p ∈ P 2

and using the simple closed form expression for the derivative Ψ µ , we get for all p ∈ P

Using this notation in the previous calculations we obtain that

We finally conclude that

This proves the first part of Proposition 2.

Let us now show that v -→ T V (v, u) is concave over R P×B + . In order to do so, we rewrite the latter formula under the form (u * (v)) p = ϕ((A u v) p ) where the function ϕ is defined for all t ≥ 0 by

Notice that the function ϕ is non-increasing and therefore

We now consider v and v ∈ R P×B + and u ∈ R P . Using Taylor's Theorem, we know there exists t ∈

(75) However, for any p ∈ P, A u v" p -A u v p = t(A u v p -A u v p ) and A u v" p -A u v p and A u v p -A u v p have the same sign. Using (74), we then get (ϕ(A u v" p ) -ϕ(A u v p )) A u v p -A u v p ≤ 0 (76) and finally

(77) This concludes the proof.