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Abstract In the usual non-local variational mod-
els, such as the non-local total variations (NLTV),
the image is regularized by minimizing an energy
term that penalizes gray-levels discrepancy between
some specified pairs of pixels. The pairs of pixels
are interpreted as weighted edges joining nodes in
a graph. The nodes correspond to the pixels of the
image. The weights are ponderations. The graph
structure is usually determined a-priori or, some-
times, is adjusted (most of the time empirically)
during the iterative process.

In this paper, we study the possibility to im-
pose some regularity to the graph. More precisely,
we study a model in which two edges whose start-
ing nodes are near and such that the starting and
ending points form a parallelogram to carry similar
weights. In order to do so, we minimize a function
involving a regularization term, analogous to an
H1 term, on the graph edges. Doing so, the finite
differences defining the image regularity depend on
their environment. They are therefore more stable.
The model is also better suited to solve inverse
problems for which the design of the graph is not
straightforward (one can think of computerized to-
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mography problems, reconstruction from random
measures, inpainting...)

We provide all the details necessary for the im-
plementation of a PALM algorithm with proved
convergence. We illustrate the ability of the model
to restore relevant unknown edges from the neigh-
boring edges on an image inpainting problem. We
also argue on inpainting and denoising problems
that the model better recovers thin structures.
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1 Introduction

1.1 The Image Restoration Problem

Given an image domain P (P can be a sub-domain
of R2 or a lattice of pixels), we consider a degraded
image I ∈ RP . We assume that I is obtained from
a perfect unknown image u ∈ RP by

I = Hu+ b,

where H is a known linear operator and b ∈ RP
is an error term. In the typical situations we have
in mind b is an iid noise with standard deviation
σ > 0.

The purpose of the restoration model studied in
this paper is to retrieve an image close to u, using
only I and H. For instance, in image inpainting,
the operator H maps any image u ∈ RP onto an



image Hu ∈ RP satisfying

(Hu)p =

{
0 , if p ∈ P ′,
up , otherwise, (1)

where P ′ is the domain to inpaint.
For deblurring, the operator H is typically the

convolution operator. For the purpose of image
zooming the operator H is the composition of a
convolution and a subsampling operator (the lat-
ter can also be written under the form (1)) and so
on and so forth. Note that, to simplify notations,
we use the same domain P for the perfect image
u and the degraded image I. This need not be the
case in general.

Finally, for simplicity, we assume that P is pe-
riodized, so that for any (p, q) ∈ P2 the sum p+ q

is defined in such a manner that p+q ∈ P. We also
assume that P is such that p + P = P, whatever
p ∈ P.

1.2 Review of Image Restoration Models

Total variation (TV) has drawn much attention
since Rudin, Osher and Fatemi (ROF) proposed
their celebrated model [39] for denoising (i.e. H =

Id). The variational formulation can be written as

argmin
u∈Ω

|∇u|+ λ‖u− I‖2, (2)

where Ω is either RP (in the discrete setting) or a
space of the functions of bounded variation. When
used as a regularization term, the total variation
|∇u| has the advantage to preserve sharp edges
and the drawbacks to create homogeneous regions
(staircasing) and to over-smooth the textured re-
gions. This is due to the fact that textures are
treated as singularities by the TV term which only
sees local information [27]. This regularization has
later been used to solve many linear inverse prob-
lems such as inpainting [4, 41].

In another direction, generalizing the Yaroslavsky
neighborhood filter [46], the non-local means (NLM)
of Buades, Coll and Morel [8] takes the following
form (we write it in the continuous domain):

NLMI(p) =
1

C(p)

∫
B
vI(p, p

′)I(p′)dp′,

where B is a search window, the weights are pro-
vided by

vI(p, p
′) = exp

(
−D(p, p′)

h2

)
, (3)

where, for a patch B̂ (usually a square centered
around the origin),

D(p, p′) =

∫
B̂
Ga(q) |I(p+ q)− I(p′ + q)|2 dq

and the normalizing factor

C(p) =

∫
B
vI(p, p

′)dp′.

The Gaussian kernel Ga with standard deviation
a ponderates pixels in the ’patch’ area and h is
a filtering parameter. The idea behind NLM is to
restore the pixel in the contaminated image I by
a weighted average of the nearby similar (in the
patch sense) pixels. A key point is that, for ev-
ery pixel, the weights of its neighbors is calculated
based on ’patch’ resemblance instead of intensity
values similarity. Another key point is that the pix-
els p′ used in the average do not have to be close to
p (thus the name non-local). Notice that a similar
idea, coming with a precise statistical analysis, has
been proposed under the name "Discrete Universal
Denoiser" [45].

Considering a thin structure (typically a smooth
curve) in a uniform background, we see in the for-
mula that the weights vI does not differentiate well
the pixels in the thin structure from pixel in the
background. The thin structure indeed leaves in a
domain whose measure is small (at the limit, the
measure of the domain is 0). It provides a negli-
gible contribution to D(p, p′). As a consequence,
NLM tends to underestimate the weights of the
pixels in the thin structure and, as a consequence,
it tends to erase the thin structure. This is espe-
cially true for large patch size and may lead to a
substantial underestimation of the similarity be-
tween two pixels in the thin structure [20].

Moreover, exemplar-based approaches [30, 43]
also use patches to produce striking inpainting re-
sults. These algorithms have been later interpreted
using a probabilistic point of view. In particular,
Levina and Bickel [30] provided a theoretical back-
ground to explain their ability to synthesize tex-
ture. Aujol, Ladjal and Masnou [3] expressed the
exemplar-based methods in a non-local variational
framework and studied their ability to retrieve ge-
ometric features. However, it is difficult to adapt
NLM and other patch based approaches for diffi-
cult image restoration tasks involving highly struc-
tured noise or (even worse) when the operator H
is not invertible and makes the recovery of similar
pixels difficult.

Inspired by the advantages of NLM, Gilboa and
Osher [24, 25] introduced a non-local variational
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model to better recover textures. In [25], they con-
sidered the non-local total variation (NLTV) model
defined (in the continuous domain) by

JNLTV (u) + λ‖u− I‖2,

where the NLTV term JNLTV (u) is defined by∫
P

√∫
B
(u(p)− u(p+ q))

2
v(p, q)dqdp. (4)

In [25], in practical applications, they calculated
the weights v according to patch distance and only
used the 10 most similar pixels in (the discretized)
B. They also mentioned binary weights. They adapted
the celebrated Chambolle’s projection algorithm
[11] to optimize a discretization of the NLTVmodel.
A more general model, involving p-Laplace opera-
tor on graphs, have been proposed in [21]. It also
makes connections between the variational approaches
and other non-local approaches.

Considering applications such as compressive
sensing, when the low sampling rate may lead to
a bad initial guess of the weight function, some
authors [38, 47] suggested to update the weights
during the iterations to improve them. For exam-
ple, Zhang, et al. [47] employed patches and up-
dated the weights by recomputing the initial step
(3) with the current estimate of the clean image.
A similar update is used in [1,38]. To trade off be-
tween the accuracy and computational costs, the
authors only reevaluate the weights every few steps
[47] and in practical implementation, they only use
the first few largest weights in a local search win-
dow and set the rest of them to zero. Of course,
because of these last "tricks", the algorithms may
fail to find the optimal solution of the variational
model which is not fully satisfactory. They however
provide interesting restoration results.

The model studied in this paper is inspired by
the earlier work of Peyre, et al. [37, 38]. In [37],
they considered the weights v defined in the NLM
and updated v using (3) with the current estimate
of the image. The authors mentioned the difficulty
for setting the filtering parameter h [37] since noise
level evolves along the iterative process. In [38],
the authors extended [37] and [47] by regularizing
the graph v. The resulting model has two regular-
ization terms, the first term Jv(u) regularizes the
image, while the second term E(v) is the entropy
of function v defining the underlying graph. Also,
to better recover the textures of the images, the
non-local regularization term was chosen to be the
patch variation of JNLTV (u) in (4). In this varia-
tion, the difference of intensities u(p) − u(p + q),

in (4), is replaced by a patch distance. It has also
been adopted in [1, 22,36].

To conclude, non-local variational models [19,
25, 32, 38] have been widely used to restore im-
ages, because of their capability to utilize the in-
formation from many pixels having a similar neigh-
borhood. However, when treated by these models,
thin structures can be overlooked and are some-
times undetectable in a patch of the damaged im-
age. These method might therefore erase these thin
structures.

Also, the construction of the weights between
the pixels is usually done according to some pixel
similarity criterion in the degraded images I. When
some weights are unknown (for instance when in-
painting a missing domain or zooming an image),
they are updated during the iterative process, ac-
cording to an ad-hoc procedure [38]. More gener-
ally, these methods are difficult to apply and lack
precise modeling when the output of the degrada-
tion operator H does not look like an image (think
about the restoration an image from random mea-
surements or Computerized Tomography.)

When compared to these methods, the model
studied in this paper is a regularized non-local to-
tal variation (RNLTV) model. It shows the advan-
tages to both: - better restore thin structures; -
allow the construction of non-local models for dif-
ficult inverse problems involving degradation op-
erator whose output does not resemble the input
image.

1.3 Overview of the Paper

In Section 2, we present the RNLTV model. Sec-
tion 3 details the proximal alternating linearized
minimization (PALM) algorithm [6] minimizing the
proposed model. We also provide in this section the
gradient of the different terms, show that the gra-
dients are Lipschitz continuous and provide their
Lipschitz constants. The numerical experiments in
Section 4 demonstrate the efficiency of the pro-
posed method on denoising, inpainting and zoom-
ing experiments.

2 The Studied Model

2.1 Framework and Model Description

From now on, we discretize the problem and con-
sider a lattice P. We consider a set B ⊂ P. In the
typical situation we have in mind, B is a square
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centered at the origin with radius1 r. Throughout
the paper, we call patch or window a set p+B for
some p ∈ P.

We also denote the cardinality of any finite set
C by |C|. Moreover, for any finite dimensional vec-
tor space V (in practice we have either V = RP ,
V = RP×B or V = RB) and any positive definite
operator L mapping V into itself, we consider the
weighted norm [17]

‖x‖L = 〈x, Lx〉
1
2 , ∀x ∈ V,

where 〈., .〉 denotes the usual scalar product in V .
When L is an identity matrix (L = Id), we simply
denote ‖x‖ instead of ‖x‖Id.

Given these notations, we define, for any p ∈ P,
weights vp = (vpq )q∈B ∈ RB, where each weight vpq
is the cost for the dissimilarity |up − up+q|. Said
differently, vp ∈ RB can be seen as the parameters
of a finite difference operator defined at the pixel
p. In practice we will force these weights vp ∈ RB
to belong to the set

U =

v ∈ RB+,
∑
q∈B

vq = 1

 ,

where R+ are the non-negative reals. This con-
straints guarantees that every pixel of the image
contributes similarly to the overall cost. We de-
note the collection of all the weights in the image
by v = (vp)p∈P ∈ UP .

Given v, we define the non-local total variation
of u ∈ RP by

TV (v, u)

=
∑
p∈P

Ψµ

√∑
q∈B

vpq (up − up+q)2

 ,
(5)

where µ > 0 and Ψµ is the Moreau envelope
of the absolute value function, also called Huber
function [5, page 368]:

ψµ(t) =

{
|t| − µ

2 , if |t| ≥ µ,
t2

2µ , otherwise.

Note that (4) is a continuous analogue of (5) with-
out the Huber function Ψµ. Moreover, we consider,
for any v ∈ UP , the regularity criterion R defined
by

R(v) = γ
∑
p∈P

∑
p′∈N

‖vp − vp+p
′
‖2, (6)

1 We use r = 5 in the experiments.

where γ is a non-negative parameter and N is a
small neighborhood2 of 0.

Finally, we consider a data fidelity term D.
This term either takes the form

D(u) = λ‖Hu− I‖2,

for some parameter λ ≥ 0, or, for a parameter
τ ≥ 0,

D(u) = χ|‖Hu−I‖2≤τ (u),

where the indicator function χ|C is 0 if the con-
dition C is satisfied and infinity otherwise. The
advantage of the latter formulation is that τ can
be deduced from the noise standard deviation σ

(A standard choice is indeed τ = |P|σ2).
The restored image we are interested in is the

argument u of a minimizer of

argmin
u∈RP ,v∈UP

R(v) + TV (v, u) +D(u). (7)

Although the parameters are not presented explic-
itly in (7), the model depends on the parameters
µ, γ and either λ or τ .

In the problem (7), the constraint on v is com-
pact and, unless in very particular counter-example,
we expect the objective function to be coercive in
u. The objective function being also lower semi-
continuous, the problem (7) has a solution. We
will see however that TV and R are differentiable
and have Lipschitz gradient (see Proposition 1, 2
and 3). The main difficulty concerning the numer-
ical resolution of (7) is that, because of the term
TV (u, v), the objective function is not convex.

2.2 Comments on the Model

The connectivity principle [28, 33] states that hu-
man prefers to see that disjoint edges are con-
nected through the missing domains. It is well-
known that the classic inpainting models includ-
ing TV models [4,41], have difficulty in connecting
the ’slim’ objects [13,14], thus inpainting methods
involving higher order information [13,40], such as
curvature, were proposed to improve the results.
However, if the size of the unknown regions sep-
arating slim objects get too large, then even the
fourth-order PDE-based model (TV-H−1) [40] will
leave the thin structures broken. From Figure 1, we
can see that TV model do not connect any lines,
TV-H−1 can connect the middle one. However, it is

2 In the experiments, we consider 4-connectivity: N =
{(1, 0), (0, 1)}.
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clean polluted

TV TV-H−1

RNLTV

Fig. 1 A synthetic image with thin lines contaminated by
11× 11 missing squares. In the case of large missing areas
both the TV [41] and the fourth-order PDE-based inpaint-
ing model (TV-H−1) [40] fails to follow the Connectivity
Principle properly, but our RNLTV can connect those dis-
joint thin lines.

an ellipse with wrong color that fills in the interval
between the disjoint lines. The zero curvature on
the line could be the reason leading to the bizarre
shape. Our RNLTV connects the broken lines and
exactly restores the middle line.

We focus on maximizing the ability of the NLTV
model to restore thin structures by allowing the
weights v in the non-local TV to change during
the iterations. Note that the conventional NLTV
is essentially a local method [26], due to the lim-
ited size of the window B and the patch, NLTV can
not use the global information in the whole image
to further restore the polluted image. Similarly, the
NLM [7] was proposed as a global method to search
the whole image for similar pixels [29], but is im-
plemented in a ’semi-local’ way [9], that means the
searchings are restricted to a local window. Addi-
tionally, increasing the size of the local search re-
gion will also cause heavy computational burden,
and can not always lead to improvements [24,29].

Moreover, despite the parameter γ, the update
of the weights v does not rely on difficult and em-
pirical parameter tuning. For example, in the de-
noising case, the noise level decreases during the
iterative process and since, when updated with

(3), the filtering parameter h depends on the noise
level, one should normally adapt h according to
the iteration number to get more accurate weights
[37,38].

3 Implementing the PALM Algorithm

In the last couple of years, alternating minimiza-
tion algorithms [2, 6, 15, 16, 17, 35] were developed
to solve optimization problems over multiple vari-
ables. A proof of convergence in the non-convex
setting for an alternating variant of the forward-
backward algorithm, tagged PALM, has been pro-
posed in [6]. It is perfectly adapted to the struc-
ture of (7). A preconditioned version has also been
studied in [17].

Below, we provide the details for implementing
the PALM algorithm generating a sequence that
converges to a stationary point of (7). First, we
give a few notations and describe the algorithm
in Section 3.1. Next, we derive the components of
the algorithm. Section 3.2, 3.3 and 3.4 are devoted
to the calculation of the gradients of the regular-
ization terms in (7) and there Lipschitz constants.
Then we discuss the proximal operator proxDL (u′)

in Section 3.5 in detail.

3.1 Notations and Overview of the Algorithm

We denote ∇uTV (v, u) and ∇vTV (v, u) as the
partial gradient of TV (., .) with regards to the
variable u and v respectively. The PALM algo-
rithm adapted to (7) is described in Algorithm 1.
In summary, the Algorithm 1 alternates forward-
backward iterations for each one of the two block
of variables: u and v.

For any v ∈ UP and any u ∈ RP , we assume
that we know a linear operator L and constants l
and l′ (for the detailed calculations of these quan-
tities see Section 3.2, 3.3 and 3.4) satisfying the
majorization conditions [17] described below:

– For any v ∈ UP , L is such that there exists
m > 0 satisfying

‖u‖L ≥ m‖u‖, ∀u ∈ RP ,

and for any u and u′ ∈ RP

TV (v, u′) ≤ TV (v, u)

+ 〈∇uTV (v, u) , u′ − u〉

+
1

2
〈u′ − u, L(u′ − u)〉 .

(8)
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– For any u ∈ RP , l ≥ 0 and l′ ≥ 0 are such that
l + l′ > 0 and for any v and v′ ∈ UP

TV (v′, u) ≤ TV (v, u)

+ 〈∇vTV (v, u) , v′ − v〉

+
l

2
‖v′ − v‖2,

(9)

and

R(v′) ≤ R(v) + 〈∇R(v), v′ − v〉

+
l′

2
‖v′ − v‖2.

(10)

Moreover, the proximal operators used in Al-
gorithm 1 are defined, for any u′ ∈ RP , by

proxDL (u′) = argmin
u∈RP

D(u) +
1

2
‖u− u′‖2L, (11)

and for any v′ ∈ UP ,

proxχ|UP (v′) = argmin
v∈UP

‖v − v′‖2, (12)

simply is the orthogonal projection onto UP .

Algorithm 1: Overview of the algorithm
Input:
I: Degraded image
H: Linear operator to invert
B: Support of the weights
N : Support for the finite differences defining R
γ, µ, λ/τ : parameters
Output:
u: Restored image
v: Weights

begin
Initialize the image u and v;
while not converged do

step 1: Update u:

u = proxDL
(
u− L−1∇uTV (v, u)

)
step 2: Update v:
v = prox

χ|UP
(
v − ∇vTV (v,u)+∇R(v)

l+l′

)

The Algorithm 1 has many advantages. In the
context of our problem, it is shown in [17] that the
sequence generated by (even an inexact version of)
Algorithm 1 has good convergence properties:

– The objective function decays along the itera-
tive process.

– The iterates converge to a stationary point of
our problem.

– The sum over the iterative process of the dis-
tance between two successive iterates is finite.

All these properties are satisfied by the sequence
generated by Algorithm 1. Finally, in order to im-
plement the algorithm, we need to

– compute ∇uTV (v, u) and construct the oper-
ator L (see Section 3.2);

– compute ∇vTV (v, u) and the constant l satis-
fying (8) (see Section 3.3);

– compute ∇R(v) and the constant l′ satisfying
(9) (see Section 3.4);

– compute the proximal operator (11) (see Sec-
tion 3.5);

– compute the proximal operator (12): Notice that
this reduces to multiple projections onto sim-
plex. The latter projection is well studied prob-
lem for which fast algorithms exists [18].

3.2 Calculation of ∇uTV (v, u) and L

For any v ∈ UP , we consider the following non-
local analogue of the finite difference operator:

Dv : RP −→ RP×B

u = (up)p∈P 7−→
(√

vpq (up − up+q)
)
(p,q)∈P×B

We also denote, for p ∈ P,

(Dvu)p = ((Dvu)p,q)q∈B ∈ RB

and ‖(Dvu)p‖ =
√∑

q∈B(Dvu)2p,q.
We obtain after some simple calculations that

its adjoint is given, for any w = (wp,q)(p,q)∈P×B,
by (see Appendix 6.1)

(D∗vw)p =
∑
q∈B

(√
vpq wp,q −

√
vp−qq wp−q,q

)
,

for all p ∈ P.
Moreover, if we consider, for w ∈ RP×B, the

norm

‖w‖∞,2 = max
p∈P
‖wp‖, where wp = (wp,q)q∈B ∈ RB.

We can prove (see appendix 6.2) that for any u ∈
RP and any (fixed) v ∈ UP

TV (v, u) = max
‖w‖∞,2≤1

〈Dvu,w〉 −
µ

2
‖w‖2. (13)

From this expression and using the Theorem 1
in [34] (reminded in Appendix 6.3), we can deduce
the following proposition whose proof is detailed in
Appendix 6.3. Notice that a similar statement and
construction is given for the usual total variation
in [44].
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Proposition 1 For any u ∈ RP , we have

∇uTV (v, u) = D∗vw
∗(u),

where w∗(u) ∈ RP×B is the maximizer of (13) and
is provided in closed form by:

w∗(u)p,q =

{
(Dvu)p,q

µ , if ‖(Dvu)p‖ ≤ µ,
(Dvu)p,q
‖(Dvu)p‖ , otherwise.

Moreover, u → ∇uTV (v, u) is Lipschitz continu-
ous with Lipschitz constant

l” =

√
2
√
|B|+ 1

µ
.

As a consequence, we have for any u and u′ ∈ RP

TV (v, u′) ≤ TV (v, u)

+ 〈∇uTV (v, u) , u′ − u〉

+
l”

2
‖u′ − u‖2.

(14)

A straightforward consequence of (14) is that
for any diagonalizable linear operatorG whose eigen-
values are all larger than 1 (and in particular for
G = Id), the property (8) holds for L = l”G.

3.3 Calculation of ∇vTV (v, u) and l

Let us first define, for any fixed u ∈ RP , the linear
operator Au :

RP×B −→ RP ,
(vp,q)(p,q)∈P×B 7−→

(∑
q∈B vp,q(up − up+q)2

)
p∈P

.

The interest for this operator comes from the
fact that for any v ∈ UP

TV (v, u) =
∑
p∈P

Ψµ

(√
(Auv)p

)
.

Notice that, when v ∈ UP , we have for any p ∈ P

(Auv)p ≥ 0.

We easily obtain (see Appendix 6.4) that the ad-
joint A∗u of Au is given for any w ∈ RP by

(A∗uw)p,q = wp(up − up+q)2, ∀(p, q) ∈ P × B.

Using these notations, we can prove (see Ap-
pendix 6.5) the following proposition.

Proposition 2 For any fixed u ∈ RP , we have for
any v ∈ UP

∇vTV (v, u) = A∗uu
∗(v),

where for all p ∈ P

(u∗(v))p =

{
1

2
√

(Auv)p
, if

√
(Auv)p ≥ µ,

1
2µ , if µ >

√
(Auv)p ≥ 0.

Moreover, the function v 7−→ TV (v, u) is concave
over RP×B+ and (9) holds for l = 0.

3.4 Calculation of ∇R(v) and l′

Let us first define the linear operator B:

RP×B −→ RP×B×N ,
(vp,q)(p,q)∈P×B 7−→ (vp,q − vp+p′,q)(p,q,p′)∈P×B×N .

We immediately deduce from (6) that for any
v ∈ RP×B

R(v) = γ ‖Bv‖2.

We also easily obtain (see Appendix 6.6) that the
adjoint B∗ of B is provided for any w ∈ RP×B×N
by

(B∗w)p,q =
∑
p′∈N

wp,q,p′−wp−p′,q,p′ ,∀(p, q) ∈ P × B.

We can now state the following proposition whose
proof is provided in Appendix 6.7.

Proposition 3 For any v ∈ UP , we have

∇R(v) = 2γB∗Bv.

Moreover, v → ∇R(v) is Lipschitz continuous with
Lipschitz constant 6

√
2γ|N |. As a consequence, (10)

holds for l′ = 6
√
2γ|N |.

3.5 Calculation of proxDL (u′)

Below, we provide closed form expressions that
permit to compute proxDL (u′) for the two data fi-
delity terms considered in this paper. In the de-
noising case, H is a identity; for the purpose of
image inpainting, H multiply every entry of the
image by either 1 or 0 (see (1)).

– When D(u) = λ‖u− I‖2 and L = l”Id.
In this case, we want to compute

prox
λ‖u−I‖2
L (u′)

= argmin
u∈RP

λ‖u− I‖2 + l”

2
‖u− u′‖2,

=
2λ

2λ+ l”
I +

l”

2λ+ l”
u′.

7



– When D(u) = χ|‖u−I‖2≤τ (u) and L = l”Id.
In that setting, we have

prox
χ|‖u−I‖2≤τ
L (u′)

= argmin
u:‖u−I‖2≤τ

‖u− u′‖2L

=

{
u′ , if ‖u′ − I‖2 ≤ τ,
I +

√
τ

‖u′−I‖ (u
′ − I) , otherwise.

– When D(u) = λ‖Hu− I‖2
In this case,

prox
λ‖H.−I‖2
L (u′)

= argmin
u∈RP

λ‖Hu− I‖2 + l”

2
‖u− u′‖2,

= u∗,

where for all p ∈ P
• if H is defined by (1) for some fixed subset
of pixels P ′ ⊂ P

u∗p =

{
u′p , if p ∈ P ′,
2λIp+l”u

′
p

2λ+l” , otherwise.

• if H is a general linear operator (e.g. the
subsampling operator used for zooming) then

2λHT (Hu− I) + l” (u− u′) = 0,

thus u∗ can be solved by the conjugate gra-
dient (CG) method from a sparse linear equa-
tion as follow

Au = b,

whereA =
(
2λHTH + L

)
and b = 2λHT I+

l”u′. Note that, although we use CG (call
Matlab function pcg(A,b)) to solve this sub-
problem, the elementwised max norm of the
residual max |Au∗ − b| is around 10−13.

4 Numerical experiments

In order to illustrate the behavior of the model,
we consider in this section three applications: im-
age inpainting, zooming and denoising. We evalu-
ate the ability of the method to restore both syn-
thetic and natural images with a particular em-
phasis on the restoration of thin structures. We
compare the performance of the proposed RNLTV
model with the performance of state of the art
methods. We also illustrate how the weights v are
adjusted once the convergence has been reached
using the Isotropy Map described in Section 4.1.
Finally, Section 4.2 is devoted to the inpainting

(−5,5) (−4,5)
...

(4,5) (5,5)

(−5,4) (−4,4)
...

(4,4) (5,4)

.

.

.
.
.
.

.

.

.
.
.
.

(−5,−4) (−4,−4)
...

(4,−4) (5,−4)

(−5,−5) (−4,−5)
...

(4,−5) (5,−5)

Fig. 2 The window B of size 11× 11. Every q ∈ B has a
coordinate.

experiments, Section 4.3 presents zooming results
and Section 4.4 contains the experiments on the
denoising problem.

Notice that we have used the different data-
fidelity terms mentioned in Section 2.1. They all
show similar computational cost and convergence
properties. For completeness, we summarize the
data fidelity term chosen for each experiments in
Table 1.

Table 1 The different data-fidelity terms used in the ex-
periments.

D(u)
inpainting and zooming λ‖Hu− I‖2
denoising (synthetic image) χ|‖u−I‖2≤τ (u)

denoising (natural image) λ‖u− I‖2

4.1 The Isotropy Map

To represent the distribution of the weights v, we
introduce the isotropy map M(v) ∈ RP . At ev-
ery pixel p ∈ P, the feature M(v)p represents
whether the weights in vp are distributed isotrop-
ically or not. Intuitively, the distribution is not
isotropic when the significant weights are concen-
trated along a thin region of the window p + B.
The feature therefore needs to reflect the discrep-
ancy between the projections of vp onto two axes
one of which is aligned with the orientation of vp,
the other being orthogonal. Notice that the dis-
crepancy is maximal when the coordinate system
is aligned with the orientation of vp.

8



Fig. 3 Coordinate change and projection of the weights
on the new coordinate system.

More precisely, given an angular precision pa-
rameter K ∈ N 3 we define the small angle θ = π

2K

as shown in Figure 3. Then we consider all the co-
ordinate (x, y) clock-wise rotated by an angle mθ,
for m ∈ M, withM = {0, 1, 2, . . . ,K − 1}. Doing
so, we get several orthonormal bases denoted by

im = (sin(mθ), cos(mθ)),

jm = (cos(mθ),− sin(mθ)).

We remind that any pixel q ∈ B is represented
in the basis (im, jm) by the coordinates

(〈q, im〉, 〈q, jm〉).

Therefore, the average distance to the origin of the
projections of vp onto the axes im and jm are de-
fined by

P xm =
∑
q∈B

∣∣vpq 〈q, im〉∣∣ ,
P ym =

∑
q∈B

∣∣vpq 〈q, jm〉∣∣ .
The isotropy map is then defined by

M(v)p = log

(
max

({
P xm
P ym

,
P ym
P xm

}
m∈M

))
.

Clearly, M(v)p is non-negative. Also, it is easy to
check that the only way to get smallM(v)p is that
P xm ∼ P ym for all m ∈ M. This implies that vp is
somewhat isotropic. On the contrary, if M(v)p is
large, then there exists m ∈ M such that P xm and
P ym are dissimilar. From this condition, we con-
clude that vp distributes anisotropically. In sum-
mary, M(v) can be taken as an indication of the
degree of isotropy of vp, for every pixel p ∈ P.

3 In the experiments, we use K = 90.

Fig. 4 Inpainting masks with missing data marked in
black. Left: checkerboard mask; Right: word mask

4.2 Inpainting

In this section, we use two masks presented in Fig-
ure 4, where the black pixels indicate the region
to be inpainted. We set values of parameters in
RNLTV as follow: λ = 5000 and µ = 0.8 where
we remind that the image graylevels range in [0, 1].
The number of iterations4 is 3000, the radius r = 5

and the γ values are in Table 2. We compare the
result of the model with some related methods: the
MATLAB function inpaintn [23,42], TV inpainting
and TV-H−1 inpainting [10,40]. All these methods
share the particularity of being based on a image
regularity criterion. They all share the good prop-
erty of being easy to adapt to solve other inverse
problems.

Table 2 Values of the parameters γ of RNLTV for the
restoration of the images in Figure 5, when corrupted by
the checkerboard or word mask (see Figure 4). The other
parameters are µ = 0.8, λ = 5000. The restoration results
are presented in Figure 6-9.

checkerboard mask word mask
γ γ

Synthetic 3 2
Boat 3 3
Barbara 4 3
Fingerprint 3 3

4.2.1 Synthetic Image

In order to illustrate the ability of RNLTV to in-
paint straight and curved thin structures, we con-
struct a synthetic image with 3 ancient Chinese
characters (see Figure 5).

In Figure 6, RNLTV outperforms the other meth-
ods. There are two strong strokes in the synthetic

4 We are aware of the fact that designing a good stop-
ping criterion would permit to save time. However, since
the paper presents a new model, we preferred to loose com-
putational time in order to obtain results that truly reflect
the behavior of this model.
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Synthetic image Boat

Barbara Fingerprint

Fig. 5 Test images.

image: the arc in the character in the top left cor-
ner, and the cross in the middle of the character in
the bottom left corner. From the first row of Fig-
ure 6, we observe that only RNLTV can connect
all the thin edges correctly. The TV regularization
propagates the background color into the missing
domains (see the 3 curved lines on the right). The
method "inpaintn" and TV-H−1 cannot clearly in-
paint the missing edges in the missing squares on
the thin edges. For example, in the middle parts of
the 3 curved lines. The method "inpaintn" creates
nonexisting white spots, and blurs the rest of the
3 curved lines. The TV-H−1 model connects the
thin edge with a wrong shape and a wrong inten-
sity. Taking the character on the bottom left corner
for example, we can see that TV-H−1 fills larger in-
tensity values into some missing squares located on
the top horizontal line, which yields lighter color
than it is supposed to be, while puts smaller in-
tensity values into some missing squares located
on the bottom horizontal line. The RNLTV model
connects all the edges correctly except at the end
points, see the ends of the 3 curved lines.

In the second row of Figure 6, we display simi-
lar restoration results, for inpainting the word mask.
The TV regularization connects the disjoint strong
objects, but still fails on the thin ones. Again, the
algorithm "inpaintn" and TV-H−1 cannot recover
the images.

In Figure 7, we plot the isotropy map M(v) ∈
RP for the initial and final weights v in RNLTV.
This illustrates that RNLTV has the ability to fill
the missing regions with reasonable weights. As
can be seen in the first column of Figure 7, the

initial v resulting v

Fig. 7 Plots of the isotropy map M(v) ∈ RP calculated
from weights the v in RNLTV. The corresponding restored
images u are in Figure 6. Top: for the checkerboard mask;
Bottom: for the word mask. Left: initial guesses of the
weights computed from the damaged image; Right: weights
v after convergence of RNLTV.

initial weights are distributed isotropically both
in the regions to be inpainted and the homoge-
neous regions. However, the regularization term
R(v) permits to interpolate "coherent weights" in
the missing areas. For example, due to the influ-
ence of their neighbors, the inpainted weights lo-
cated on the lost thin curves are anisotropic and
align with their neighbors.

4.2.2 Natural Image

In this section, we inpaint natural images in the re-
gions described by the two masks in Figure 4. The
test images are Boat, Barbara and Fingerprint (see
Figure 5). They contain isolated thin structures or
textures where thin structures are grouped.

In the first row of Figure 8, the TV regulariza-
tion takes the color of the sky and fills it into the
missing areas. In particular, the thin ropes become
dashed lines. The methods "inpaintn" and TV-
H−1 return blurry restoration results. Even worse,
the method "inpaintn" creates non-existing white
spots around the ropes. The RNLTV model recov-
ers most ropes. In the first row of Figure 8, even
the ropes and the mast crossing each other are bet-
ter restored with RNLTV. Moreover, only RNLTV
can recover the mast on the right.

On Figure 9, when inpainting the checkerboard
mask, the stripe pattern on the scarf are com-
pletely ruined by all the methods except RNLTV.
In the second row of Figure 9, we obtain similar

10



degraded image TV inpaintn TV-H−1 RNLTV

Fig. 6 Results of different methods when restoring the degraded synthetic image with the checkerboard and word masks
presented in Figure 4.

degraded image TV inpaintn TV-H−1 RNLTV

Fig. 8 Restoration results for different methods when inpainting with the checkerboard (Top) and word (Bottom) masks
presented in Figure 4.

degraded image TV inpaintn TV-H−1 RNLTV

Fig. 9 Restoration results for different methods when inpainting with the checkerboard (Top) and word (Bottom) masks
presented in Figure 4.
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results. RNLTV still gets clear inpainting results,
even on the scarf folds near the face. However,
when restoring images corrupted by the checker-
board mask. Of course, since we use periodic bound-
ary condition, we observe some boundary effects
with RNLTV. There are many ways to avoid this
artifact.

In the first row of Figure 10, the TV regular-
ization and the methods "inpaintn" and TV-H−1

create fake lines crossing the friction ridges. More-
over, these results contain many discontinuous fric-
tion ridges in the right top corner. The RNLTV
model connects all the broken friction ridges and
tends to generate well contrasted, smooth ridges.
The same comments are true for images on the sec-
ond row of Figure 10, the results of the methods
"inpaintn" and TV-H−1 are blurred. In both ex-
amples, the TV regularization inpaints the missing
areas with wrong colors.

Table 3 PSNR values of different methods when inpaint-
ing with the checkerboard and word masks. Sy: Synthetic
image; Bo: Boat; Fi: Fingerprint; Ba: Barbara;cb: the
checkerboard mask; word: the word mask

mask polluted TV inpaintn TV-H−1 RNLTV

Sy cb 3.38 18.55 19.61 20.01 26.78
word 7.43 20.80 21.81 23.64 28.97

Bo cb 5.41 25.53 26.82 26.88 28.60
word 9.24 15.38 15.26 30.79 33.79

Ba cb 5.31 24.94 24.50 24.75 28.36
word 9.24 29.06 28.38 28.64 33.71

Fi cb 7.08 16.47 19.60 19.25 22.69
word 11.04 21.08 10.57 24.36 27.73

4.3 Zooming

We compare the zooming results of RNLTV with
the results of two methods: the bicubic interpo-
lation and the TV based restoration. In all the
experiments, the image data Id is computed by
the Matlab function imresize (Id = imresize(u,
0.25)) from an original image u with a subsam-
pling of a factor 4, as presented in the first column
of Figure 11 and 12. The bicubic interpolation is
simply implemented by calling the Matlab function
imresize again (imresize(ud, 4, ’bicubic’)); We
set λ = 1000 and µ = 0.6 in the RNLTV model.

The thin blood vessels are clearly zoomed by
RNLTV as presented in the last column of Figure
11. Furthermore, Figure 11 shows a shortcoming
of the TV based restoration, that is, it tends to
create piecewise constant zones in the homogenous

Table 4 PSNR values of the different methods for zooming
of images downsampled by a factor of 4.

bicubic TV RNLTV
Vessel 34.42 12.69 35.15
Ship 24.58 22.90 24.46

regions which is the tissue around the vessels and
reduces the contrast of thin structures. The PSNR
values in Table 4 confirm the observation.

In Table 4, when zooming "Lacournouaille", al-
though the PSNR value of the result of bicubic is
slightly higher, from Figure 12, one can observe
that RNLTV based zooming leads to a better vi-
sual quality whereas the bicubic interpolation gets
a more blurry result, see the mast pointing to the
one clock direction on the right part of Ship.

4.4 Denoising

In this section, we compare RNLTV to two related
regularization methods: the TV denoising (ROF
[39]) and the NLTV denoising [25]. For the NLTV,
we simply set the γ to 0 in our RNLTV code. The
NLTV and RNLTV use identical initial weights for
the same problem. The initial weights are obtained
by applying (3) in which the image I is replaced
by the result of the ROF model (i.e. the image
presented in the TV column in the same line as
the two non-local methods in Figure 14-16). The
initial guess for u is still the degraded image.

4.4.1 Synthetic Image

We consider additive Gaussian white noise with
standard deviation σ = 0.12, 0.14, 0.16. As men-
tioned in Table 1, we use the data fidelity term
χ|‖u−I‖2≤τ (u). We set γ = 0.3, τ = |P|σ2 and
µ = 0.6 in the RNLTV model. The number of it-
erations5 is 600.

In Figure 14, we observe that RNLTV produces
sharp edges for all shapes. The contrast is reduced
differently in different parts of the thin structures
in the ROF results. The black region sometimes
"leak" in the background creating some kind of
"blur-like" artifact. Also, the NLTV denoising re-
sult leave some noise. This is due to the fact that,
because of the noise, almost all of the weights dis-
tribute in a similar manner and are all isotropic
(see the first column of Figure 13). By regularizing
the weights v, the RNLTV improves those weights

5 Again, we just take a very large number of iteration for
which we have convergence.
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degraded image TV inpaintn TV-H−1 RNLTV

Fig. 10 Restoration results for different methods when inpainting with the checkerboard (Top) and word (Bottom) masks
presented in Figure 4.

Vessel bicubic interpolation TV RNLTV

Fig. 11 Image zooming. First column: downsample the original image by a factor of 4.

Ship bicubic interpolation TV RNLTV

Fig. 12 Image zooming. First column: downsample the original image by a factor of 4.

(see the second column in Figure 13) which leads
to a better denoising result.

4.4.2 Natural Image

We consider additive Gaussian white noise with
standard deviation σ = 0.04, 0.06 and 0.08 (We
add more noise to Fingerprint, because it is more
noise-resistant than the rest of test images). We
lower the noise level because the thin structures in
the natural test images are less contrasted. We use
the results of TV denoising to initialize RNLTV
and we use the data fidelity term λ‖u − I‖2. The
setting of parameters in RNLTV and NLTV is pre-
sented in Table 5 and 6 respectively. The number

of iterations6 are both 600. The results are in Fig-
ure 15-16.

In all the experiments displayed in Figure 15
(the last row being the more impressive) we ob-
serve a similar phenomenon. The TV regulariza-
tion reduces the contrast or erases the ropes. The
RNLTV method clearly better recovers the ropes
which are more detectable when compared to the
NLTV result. Even the upper part of the main-
mast (which is poorly contrasted) are erased in
the results of TV and NLTV regularization. The

6 Again, we just take a very large number of iteration for
which we have convergence.
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noisy image TV NLTV RNLTV

Fig. 14 Denoising results for a additive white Gaussian noise with standard deviation σ = 0.12 (top row), σ = 0.14
(middle row) and σ = 0.16 (bottom row).

Fig. 13 Plots of the isotropy map M(v) ∈ RP calculated
from weights the v in RNLTV. The corresponding denoised
images u are in Figure 14. Left: initial guesses of the weights
computed from the noisy image (i.e. NLTV); Right: weights
v after convergence of RNLTV.

RNLTV model better restores it (see the bottom
row of Figure 15).

In Figure 17, the RNLTV model obtains the
smoother friction ridges. They are also well con-
trasted. In the last row of Figure 16, the TV de-
noising results contains staircasing effects and a
large part of the texture of the scarf is erased. Sim-
ilarly, some gray stripes on the NLTV denoising
result become less notable. The RNLTV model re-
covers the majority of the thin stripes on the scarf
to their original shapes.

Table 5 Values of parameters in RNLTV for restoration
of the natural images corrupted by white Gaussian noise. µ
is fixed to 0.6, σ is the standard deviation of the Gaussian
noise.

σ=0.04 σ=0.06 σ=0.08
γ λ γ λ γ λ

Boat 0.05 0.5 0.1 0.5 0.2 0.5
Barbara 0.05 0.5 0.1 0.5 0.2 0.5
Fingerprint 0.05 1 0.1 1 0.2 1

Table 6 Values of parameters in NLTV for restoration of
the natural images corrupted by white Gaussian noise. µ
is fixed to 0.6, σ is the standard deviation of the Gaussian
noise.

σ=0.04 σ=0.06 σ=0.08
λ λ λ

Boat 1 0.5 0.5
Barbara 1 0.5 0.2

σ=0.1 σ=0.16 σ=0.2
Fingerprint λ λ λ

0.2 0.1 0.1

5 Conclusion

In this paper, we have studied a RNLTV model
to restore the thin structures through the regular-
ization term on weights v, in a NLTV model. In
order to implement a PALM solver, we compute
the gradients and the Lipschitz moduli of the gra-
dient mapping. The performance of the proposed
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noisy image TV NLTV RNLTV

Fig. 15 Denoising results for a additive white Gaussian noise with standard deviation σ = 0.04 (top row), σ = 0.06
(middle row) and σ = 0.08 (bottom row).

noisy image TV NLTV RNLTV

Fig. 16 Denoising results for a additive white Gaussian noise with standard deviation σ = 0.04 (top row), σ = 0.06
(middle row) and σ = 0.08 (bottom row).
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Fig. 17 Denoising results for the additive white Gaussian noise with standard deviation σ = 0.1, 0.16, 0.2 (from top to
bottom).

Table 7 PSNR values of different methods for restoration
of images corrupted by white Gaussian noise. σ is the stan-
dard deviation of the Gaussian noise.

σ noisy TV NLTV RNLTV
0.12 16.54 21.76 31.91 39.06

Syn 0.14 15.20 21.64 27.20 34.04
0.16 14.04 21.49 23.67 29.65
0.04 28.02 30.73 31.47 32.25

Boat 0.06 24.50 28.73 29.27 30.26
0.08 22.00 25.97 27.40 28.86
0.04 28.02 29.58 30.64 32.09

Barbara 0.06 24.50 26.76 27.68 30.26
0.08 22.00 23.98 25.48 28.79
0.1 20.06 21.59 21.63 24.09

Fingerprint 0.16 15.98 19.42 19.58 21.41
0.2 14.04 18.33 18.34 19.98

method is demonstrated by numerical experiments
on synthetic images and natural images. In partic-
ular, we see that the regularization of the weights
permit to smooth or interpolate them. This leads
to better restoration results.

In the future, we plan to improve the ability of
the RNLTV model to recover textures, one possi-
ble solution is to use shape-adaptive patches [19].
More precisely, to avoid diminishing thin struc-
tures, we choose the shape of the patch based on
the local geometry, so that the pixels depicting thin
structures in a window will take relatively large
portion of the overall, thus will not be overlooked,
while patches preserve texture areas.
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6 Appendices

6.1 Calculation of the adjoint of Dv

Let us first remind that, for any v ∈ UP ,

Dv : RP −→ RP×B,
u = (up)p∈P 7−→

(√
vpq (up − up+q)

)
(p,q)∈P×B

.

In order to compute its adjoint, we consider
u ∈ RP , v ∈ UP and w ∈ RP×B. We have

〈Dvu,w〉 =
∑
q∈B

∑
p∈P

√
vpq (up − up+q)wp,q.

Moreover, for any q ∈ B
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∑
p∈P

√
vpq (up − up+q)wp,q

=
∑
p∈P

√
vpqupwp,q −

∑
p∈P

√
vpqup+qwp,q,

=
∑
p∈P

√
vpqupwp,q −

∑
p∈P

√
vp−qq upwp−q,q,

=
∑
p∈P

up(
√
vpqwp,q −

√
vp−qq wp−q,q).

Therefore,

〈Dvu,w〉 =∑
p∈P

up

∑
q∈B

(√
vpqwp,q −

√
vp−qq wp−q,q

) ,

from which we conclude that, for all p ∈ P,

(D∗vw)p =
∑
q∈B

(√
vpq wp,q −

√
vp−qq wp−q,q

)
.

6.2 TV under a max form

We want to prove that for any u ∈ RP and any
(fixed) v ∈ UP

TV (v, u) = max
‖w‖∞,2≤1

〈Dvu,w〉 −
µ

2
‖w‖2,

where we remind that, for w ∈ RP×B, the norm
defining the constraint takes the form

‖w‖∞,2 = max
p∈P
‖wp‖, for wp = (wp,q)q∈B ∈ RB.

First, notice that if for all p ∈ P we know w∗p ∈
RB such that

w∗p = argmaxw∈RB:‖w‖≤1 〈Dvup, w〉−
µ

2
‖w‖2, (15)

where we denote Dvup = (Dvup,q)q∈B ∈ RB; we
can deduce from the optimality of all its compo-
nents w∗p that w∗ = (w∗p)p∈P ∈ RP×B satisfies

w∗ = argmaxw∈RP×B:‖w‖∞,2≤1 〈Dvu,w〉 −
µ

2
‖w‖2.

In order to calculate w∗p, for a given p ∈ P, we
first remark that there exists α∗p ≥ 0 such that

w∗p = α∗pDvup.

Then, if we use this expression in (15) we have that

α∗p = argmaxα‖Dvup‖≤1 α‖Dvup‖2 −
µ

2
α2‖Dvup‖2,

= argmaxα‖Dvup‖≤1 α(1− µα

2
),

=

{
1

‖Dvup‖ , if 1
µ >

1
‖Dvup‖ ,

1
µ , otherwise.

We finally obtain that

w∗p =

{
Dvup
µ , if ‖(Dvu)p‖ ≤ µ,
Dvup
‖(Dvu)p‖ , otherwise.

This corresponds to the expression of w∗(u)p in
Proposition 1.

If we now use the expression for w∗p to calculate
the objective function, we find that

max
w∈RB:‖w‖≤1

〈Dvup, w〉 −
µ

2
‖w‖2

=
〈
Dvup, w

∗
p

〉
− µ

2
‖w∗p‖2

=

{
‖Dvup‖2

2µ , if ‖Dvup‖ ≤ µ,
‖Dvup‖ − µ

2 , otherwise.

= Ψµ(‖Dvup‖).

As a consequence,

max
‖w‖∞,2≤1

〈Dvu,w〉 −
µ

2
‖w‖2

=
∑
p∈P

〈
Dvup, w

∗
p

〉
− µ

2
‖w∗p‖2

= TV (v, u).

6.3 Proof of Proposition 1

Let us first remind and adapt to the context of
this paper the theorem 1 stated in [34]. This result
considers finite dimensional real vector spaces V1
and V2, a linear operator A : V1 → V2, a parameter
µ > 0 and a function

fµ(x) = max
u∈Q2

〈Ax, u〉 − µ

2
‖u‖2 ,∀x ∈ V1

where Q2 ⊂ V2 is a closed convex bounded set.
It is stated and proved in [34] that the function

fµ is continuously differentiable at any x ∈ V1.
Moreover, if we denote uµ(x) the unique solution
of the maximization problem defining fµ, we have:

∇fµ(x) = A∗uµ(x),

where A∗ is the adjoint of A. Moreover, x 7−→
fµ(x) is Lipschitz continuous with constant

‖A‖V1→V2

µ
,
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where

‖A‖V1→V2
= max
‖x‖≤1

‖Ax‖.

The Proposition 1 is a straightforward applica-
tion of this statement to the function

TV (v, u) = max
‖w‖∞,2≤1

〈Dvu,w〉 −
µ

2
‖w‖2.

In order to compute the Lipschitz constant, we
need however to find a bound for ‖Dv‖RP→RP×B .
In order to compute it, we consider u ∈ RP . We
have for any v ∈ UP

‖Dvu‖2 =
∑
p∈P

∑
q∈B

vpq (up − up+q)2

≤ 2
∑
p∈P

∑
q∈B

vpq
(
u2p + u2p+q

)
≤ 2

∑
p∈P

u2p + 2
∑
q∈B

∑
p∈P

u2p+q

≤ 2‖u‖2 + 2|B|‖u‖2,

where |B| denotes the cardinality of B. We then
deduce7 that for any v ∈ UP

‖Dv‖RP→RP×B ≤
√
2
√
|B|+ 1.

Finally, it is standard that (14) is a consequence of

the fact that l” =
√
2
√
|B|+1

µ is a Lipschitz bound
for u 7−→ ∇uTV (v, u).

6.4 Calculation of the adjoint of Au

Let us first remind that for u ∈ RP , the operator
Au : RP×B −→ RP and is defined for any v ∈ UP
and any p ∈ P by

(Auv)p =
∑
q∈B

vp,q(up − up+q)2.

Let u ∈ RP , v ∈ RP×B and w ∈ RP , we have

〈Auv, w〉 =
∑
p∈P

wp
∑
q∈B

vp,q(up − up+q)2

=
∑

(p,q)∈P×B

vp,q
(
wp(up − up+q)2

)
We then deduce that the adjoint A∗u of Au is given
for any w ∈ RP by

(A∗uw)p,q = wp(up − up+q)2, ∀(p, q) ∈ P × B.

7 Notice that a similar upper bound is provided in [11]
for the usual finite differences.

6.5 Proof of Proposition 2

Considering v ∈ UP , u ∈ RP and a small variation
h ∈ RP×B, we denote P1 = {p ∈ P|(Auv)p ≥ µ

2 }
and P2 = P \ P1. For h small enough, we have

TV (v + h, u) =
∑
p∈P1

Ψµ

(√
(Auv)p + (Auh)p

)

+
∑
p∈P2

(Auv)p + (Auh)p
2µ

.

Moreover,∑
p∈P1

Ψµ

(√
(Auv)p + (Auh)p

)

=
∑
p∈P1

Ψµ

(√
(Auv)p +

(Auh)p

2
√

(Auv)p
+ o (|(Auh)p|)

)

=
∑
p∈P1

Ψµ

(√
(Auv)p

)

+ Ψ ′µ

(√
(Auv)p

)
(Auh)p

2
√
(Auv)p

+ o (|(Auh)p|)

Denoting for all p ∈ P1

(u∗(v))p =
Ψ ′µ

(√
(Auv)p

)
2
√
(Auv)p

and for all p ∈ P2

(u∗(v))p =
1

2µ

and using the simple closed form expression for the
derivative Ψ ′µ, we get for all p ∈ P

(u∗(v))p =

{
1

2
√

(Auv)p
, if
√
(Auv)p ≥ µ,

1
2µ , if µ ≥

√
(Auv)p ≥ 0.

Using this notation in the previous calculations we
obtain that

TV (v + h, u) = TV (v, u) + 〈u∗(v),Auh〉+ o(‖h‖).

We finally conclude that

∇vTV (v, u) = A∗uu
∗(v),

This proves the first part of Proposition 2.
Let us now show that v 7−→ TV (v, u) is concave

over RP×B+ . In order to do so, we rewrite the lat-
ter formula under the form (u∗(v))p = ϕ((Auv)p)

where the function ϕ is defined for all t ≥ 0 by

ϕ(t) =

{
1

2
√
t
, if
√
t ≥ µ,

1
2µ , if µ ≥

√
t ≥ 0.
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Notice that the function ϕ is non-increasing and
therefore

(ϕ(t1)− ϕ(t2))(t1 − t2) ≤ 0, ∀(t1, t2) ∈ R2. (16)

We now consider v and v′ ∈ RP×B+ and u ∈ RP .
Using Taylor’s Theorem, we know there exists t ∈
[0, 1] such that v” = tv′ + (1− t)v satisfies

TV (v′, u)− TV (v, u)− 〈∇vTV (v, u), v′ − v〉
= 〈∇vTV (v”, u)−∇vTV (v, u), v′ − v〉
= 〈u∗(v”)− u∗(v),Au(v

′ − v)〉

=
∑
p∈P

(ϕ(Auv”p)− ϕ(Auvp))
(
Auv

′
p −Auvp

)
.

However, for any p ∈ P,Auv”p−Auvp = t(Auv
′
p−

Auvp) and Auv”p −Auvp and Auv
′
p −Auvp have

the same sign. Using (16), we then get

(ϕ(Auv”p)− ϕ(Auvp))
(
Auv

′
p −Auvp

)
≤ 0

and finally

TV (v′, u)− TV (v, u)− 〈∇vTV (v, u), v′ − v〉 ≤ 0.

This concludes the proof.

6.6 Calculation of the adjoint of B

Let us remind that B : RP×B −→ RP×B×N and
that for any v = (vp,q)(p,q)∈P×B its image Bv is
defined at any (p, q, p′) ∈ P × B ×N by

(Bv)p,q,q′ = vp,q − vp+p′,q

We consider v ∈ RP×B and w ∈ RP×B×N , we
have

〈Bv,w〉

=
∑

(p,q)∈P×B

∑
p′∈N

(vp,q − vp+p′,q)wp,q,p′ ,

=
∑

(p,q)∈P×B

∑
p′∈N

vp,qwp,q,p′

−
∑
p′∈N

∑
(p,q)∈P×B

vp+p′,qwp,q,p′ ,

=
∑

(p,q)∈P×B

∑
p′∈N

wp,q,p′

−
∑
p′∈N

∑
(p,q)∈P×B

vp,qwp−p′,q,p′ ,

=
∑

(p,q)∈P×B

vp,q

∑
p′∈N

wp,q,p′ − wp−p′,q,p′

 .

We then deduce that the adjoint B∗ of B is
provided for any w ∈ RP×B×N by

(B∗w)p,q =
∑
p′∈N

wp,q,p′ − wp−p′,q,p′ ,

whatever (p, q) ∈ P × B.

6.7 Proof of Proposition 3

For any v ∈ UP , given the expression

R(v) = γ ‖Bv‖2

we immediately have

∇R(v) = 2γB∗Bv.

We only need to calculate the Lipschitz constant
l′ provided in Proposition 3. In order to do so, we
consider v and v′ ∈ UP and denote w = v′−v. We
have

‖∇R(v′)−∇R(v)‖2 = 4γ2‖B∗Bw‖2.

Moreover, using the formula for B∗, we get

‖B∗Bw‖2 =

∑
(p,q)∈P×B

∣∣∣∣∣∣
∑
p′∈N

((Bw)p,q,p′ − (Bw)p−p′,q,p′)

∣∣∣∣∣∣
2

.

The term inside the absolute value can be rewrit-
ten, using the definition of B, under the form∑

p′∈N
((Bw)p,q,p′ − (Bw)p−p′,q,p′)

=
∑
p′∈N

(2wp,q − wp+p′,q − wp−p′,q),

= 2|N |wp,q −
∑
p′∈N

wp+p′,q −
∑
p′∈N

wp−p′,q.

Therefore,

‖B∗Bw‖2

≤
∑

(p,q)∈P×B

3

4|N |2w2
p,q +

∑
p′∈N

wp+p′,q

2

+

∑
p′∈N

wp−p′,q

2


≤ 3

4|N |2‖w‖2 + |N |
∑

(p,q)∈P×B

∑
p′∈N

w2
p+p′,q

+|N |
∑

(p,q)∈P×B

∑
p′∈N

w2
p−p′,q


≤ 3× 6|N |2‖w‖2.
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Finally,

‖∇R(v′)−∇R(v)‖2 ≤ 2× 62γ2|N |2‖v′ − v‖2.

We then conclude that v 7−→ ∇R(v) is Lips-
chitz with Lipschitz constant 6

√
2γ|N |. This con-

cludes the proof.
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