
HAL Id: hal-01342108
https://hal.science/hal-01342108v1

Submitted on 5 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards Conflict Management in User Interface
Composition Driven by Business Needs

Audrey Occello, Anne-Marie Déry-Pinna, Michel Riveill

To cite this version:
Audrey Occello, Anne-Marie Déry-Pinna, Michel Riveill. Towards Conflict Management in User In-
terface Composition Driven by Business Needs. 4th International Conference on Human-Centered
Software Engineering (HCSE), Oct 2012, Toulouse, France. pp.233-250, �10.1007/978-3-642-34347-
6_14�. �hal-01342108�

https://hal.science/hal-01342108v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Towards Conflict Management in User Interface
Composition Driven by Business Needs

Anne-Marie Dery-Pinna, Audrey Occello and Michel Riveill

Laboratoire I3S (Université de Nice - Sophia Antipolis - CNRS)
Bâtiment Polytech’Sophia – SI 930 route des Colles – B.P. 145

F-06903 Sophia Antipolis Cedex, France
{pinna, occello, riveill}@polytech.unice.fr

Abstract. This paper presents a composition engine that handles User interface
(UI) in the context of application composition. The aim is to detect and manage
conflicts that may arise when composing UI driven by business needs. The orig-
inality of this composition engine is to reason at an Abstract level which simpli-
fies the composition algorithm and makes it reusable and oblivious to technolo-
gy. The composition engine is the core of the Alias framework that reduces the
re-engineering efforts needed to obtain the UI of an application built by compo-
sition of smaller ones following the “programming in the large” paradigm.

Keywords: User Interface composition, functional composition, composition
conflicts.

1 Introduction

The “programming in the large” approach aims at constructing applications by com-
position of smaller ones. The presentation level is not considered in the paradigms that
enable programming in the large such as Service Oriented Architectures (SOA) [1] or
Component Based Software Engineering (CBSE) [2, 3]. In this context, developers
usually need to apply a complete development cycle (from requirement analysis, task
model, to tests through design and programming) to build the UI from scratch; they
cannot reuse former UIs that come with the applications to be composed, pieces of
them or even analysis elements.

Our goal is to reduce the re-engineering efforts needed to obtain the UI of an appli-
cation built by composition. Application types are wide; we do not pretend to handle
any kind of them. In fact we consider SOA applications built by composition of ser-
vices. Even if the resulting application corresponding to a new service can be itself
composed with other ones, this recursive composition process is not infinite. Hence,
the granularity of the units to be composed is not coarse. This means that the corre-
sponding UIs that we handle focus on rendering the use of service operations.

We propose a composition engine that exploits information about the functional
composition (the business needs and then desired usages) to deduce which part of UIs

should be reused and which interaction links with the functionalities should be main-
tained. This deduction is based on an abstract representation which focuses on the UI
composition needs in order to propose an algorithm reusable on several platforms.
UIs, FCs and functional compositions are then expressed in a pivotal formalism [4].

The abstract representation used by the composition engine is based on an architec-
tural decoupling derived from the separation of concerns principle. We assume that
each application is made of two distinct parts: the functional core (FC), and an at-
tached UI. This assumption is not very restrictive in the sense that many architectures
prone for the separation of the UI from the FC like in the Arch model [5], in the PAC
model [6] and in the MVC model [7] for example. The composition engine deduces
UI composition based on functional composition provided that the functional compo-
sition (using orchestrations in SOA) is performed by the developers in response to
end-user business needs after a requirement analysis: functional compositions may be
seen as an implicit and partial incarnation of the desired usages expressed from the
business point of view.

The composition engine output allows for the generation of a first sketch of the UI
to the designer using transformation rules. This sketch reuses parts of former UIs, pre-
serves the consistency between the functional level and the UI level respecting the
composition needs and the previous interaction links between UIs and FCs in the
composed applications. Then, the designer may concentrate on ergonomics. For this,
the composition engine builds automatically an operational UI sketch for an applica-
tion A as a function of: 1) the way FCs of smaller applications are composed to form A
(functional composition); and 2) the interactions between each FC to be composed
and their respective UIs. In this paper, we focus on the composition engine rules, on
the UI composition conflicts that may arise, and on conflict management.

The remainder of this paper is organized as follows. Section 2 presents related
word around composition. Section 3 describes a case study to illustrate the interest of
using information about functional composition to drive the UI composition choices.
Section 4 gives an outlook of the context of use of the composition engine: the Alias
framework’s process and the underlying models. Section 5 focuses on the composition
engine and on composition conflict management. Section 6 evaluates the composition
engine proposal. Last section concludes.

2 Related Work

We classify work around compositions according to the parts of applications they
cover. We mentioned the functional core (FC) part and the UI part in the introduction.
We add a third concern: Tasks are used in the HCI research field for user centered
design and development in order to express end-user requirements. Task formalization
allows designers, ergonomists end developers to agree and respect the user needs.
Consequently it is important to consider works on Task composition as well as on FC
or UI compositions. This classification highlights three categories of related work:

• Works only considering functional composition [8, 9, 10, 11] which results
imply to build a new UI from scratch to use the composed application.

• Works only considering UI composition, either for defining specific toolkit
for adaptive UI [12], either based on abstract definition of UIs [13, 14] or ei-
ther adopting end-user programming [15] which results are UIs not linked to
application functionalities (a non runnable application). Work around
Mashups such as iGoogle and Netvibes enables end-user to create their own
application. To achieve the composition, one can only juxtapose different
applications in the same workspace leading to independent UIs.

• Works considering several parts of applications [16, 17, 18, 19, 20]. The in-
teresting element in these approaches is that most of them exploit Task in-
formation either directly from Task analysis models either indirectly to pro-
pose a composition approach of entire applications.

Works of the two first categories are limited to truncated applications where a lot of
additional development is needed. Our approach belongs to the third category of
works that aim at composing entire applications to deliver runnable applications.

Yahoo!Pipes provides a Mashups environment to draw a workflow that aggregates
information from multiple sources. However, users do not have any control on the UI
produced by the workflow description. In [16], a planning problem describing user
needs is transformed into a task representation, which is then transformed into a UI. A
weak point of this approach is the independency of functional elements which are not
composed. In [17, 18, 19, 20], composition only proposes to aggregate UIs without
elements merging. [17, 18, 19] require a specific development for the UIs. [19, 20] do
not use all the possibilities offered by the functional composition.

In contrast, our approach determines UI elements required in the composite appli-
cation including the possibility to merge them. We do not have to realize a specific
development to use our approach but only to follow a good separation of concerns.

Our originality is to establish a connection between the “FC domain” and the “UI
domain” by deducing the UI composition from the functional composition and by con-
serving former associations between UI and FC. This connection preserves the con-
sistency between the two main parts of an application. The reuse of former UIs assures
a transfer of UI design analysis. Our proposition takes into account the fact that tasks
are unfortunately not embedded in applications now but some of them are hidden in
functional compositions which express business needs. Then a part of the desired us-
age is partially recoverable. For example, users’ tasks chaining is injected as sequenti-
ality or parallelism in the expression of the functional composition.

3 Building Application through Composition: The Human
Resource System Case Study

In the rest of this paper, we focus on a Human Resource system case study. We con-
sider two services: the first one provides access to Social Insurance account (e.g.
French “carte vitale”) and the other one provides access to a corporate directory (e.g.
IBM blue pages). Users interact with these services through corresponding UIs.

For a user to interact with a new service built from these services, one must extract
useful features from the existing services, to compose them using orchestrations and
also to compose the relevant parts of the corresponding UIs consistently.

In the remainder of this section, we illustrate the interest of using information about
functional composition to drive the UI composition choices using these services and
two orchestration samples to show UI composition possibilities.

3.1 Service descriptions

Let S1 be a service to access social insurance information. It exposes a getByCard
operation with a card identifier input and with a last name, a first name, a birthday, a
full social insurance number, a medical referee (the doctor that ensures a custom med-
ical supervision), a family status, a handicap rate and an address outputs. Figure 1a
outlines UI1 the UI attached to the S1 service.

Let S2 be a service to access business information about an employee. It exposes a
getBusinessInfo with a full name (last name plus first name) input and with a full
name, a position, an email address, office numbers, buildings and addresses outputs.
Figure 1b outlines UI2 the UI attached to the S2 service.

(a) UI1 attached to S1 (b) UI2 attached to S2

Fig. 1. Possible representation of UI

3.2 Composition cases

Let suppose now that the firm's Department of Human Resources needs some business
and personal information about employees to manage sick leave for illness.

A first approach may be to use the two services simultaneously as in the mash up
manner with the goal to group business and insurance information for a given person.
The UIs are displayed side by side but there is no information exchange between the

two services. This kind of composition may engender a set of UI problems: The name
is shown twice, addresses are dispatched in the two UIs and so on.

Another way to proceed is to compose the two services using orchestration mecha-
nisms and reuse partially the former UIs to interact with the new service.

Let Composition1 be the orchestration of S1 and S2 in sequence such that the data
input of S2 operation (the full name) is provided by the concatenation of the first name
and last name outputs of S1 operation. S3, the new service resulting from this orches-
tration, exposes a getEmployeeHRInfo operation with a card identifier input (the data
used to invoke S1 in the orchestration). The outputs of S3 operation are: the first
name, the last name, the personal address, the professional offices, buildings and ad-
dresses the insurance number, the medical referee. This is not the union of S1 and S2
operation outputs because information such as the handicap rate are not needed by the
HR Department and should not be disclosed for privacy considerations anyway. Let
UI3 be the UI attached to S3 that reuses parts of UI1 and UI2 (Fig. 2).

Fig. 2. A possible UI attached to S3

Let Composition2 be a variation of Composition1 where the personal address out-
put from S1 and the professional addresses output from S2 are merged as they concern
contact information in both cases. Then, S4, the service corresponding to this new
composition, exposes an operation that holds a parameter less than the S3 operation
because of the merged outputs.

Figure 3 illustrates possible UIs that may be built from previous UIs reflecting the
use of S4. In Figure 3a, addresses are stacked vertically and identified with a “loca-
tion” label. In Figure 3b, addresses are laid out as a mosaic and identified with a “ad-
dress” label.

(a) Addresses are represented like in UI1 (b) Addresses are represented like in UI2

Fig. 3. Possible UIs for S4

3.3 UI composition requirements

These two examples of composition highlight the fact that the way of composing S1
and S2 implies the creation of a new service which UI must be adapted to the new
behavior. The analysis of the functional composition and of the former UIs should
detect redundant display (e.g.: the name appearing twice in the composed UI) and not
to display useless information (e.g. the family status). Moreover the new UI should
ensure layout grouping for related information (e.g. contact information both present
in S1 and S2 respective UIs). S4 highlights a complexity in UI composition when the
functional composition involves grouping data that have different presentation in the
former UIs. This kind of conflict can be representative of incoherence in the way the
user centered design analysis of the services has been done. How will the addresses be
displayed? Following the recommendations in UI1 like in Fig. 3a or following the
recommendations in UI2 like in Fig. 3b?

4 Context of Use of the Alias Composition Engine

This section gives an outlook of the context in which is used the proposed composi-
tion engine. We describe the composition process in which the engine is integrated,
the underlying models on which the engine rely and an intuitive presentation of the
proposed composition mechanisms.

The Alias process starts from a set of separate services with associated UIs and
from a composition of these services. An automatic learning phase creates (1) abstract
models of the relationships between UIs and FCs and between FCs. Then, the compo-
sition engine (2) analyzes all models with its set of composition rules and proposes
(3a) potential conflicts or (3b) a possible UI for the service composition. The process
ends with (4) the generation of code for the new UI and for the links to the FC part.

Figure 4 sums up the process steps. Steps 1 and 4 are platform dependent as we need
to produce transformation rule for each technological space to be handled. Steps 2 and
3 are platform independent as the Alias composition engine is technological agnostic.

Fig. 4. Main composition steps of the Alias process

In Alias, each application is modeled as an assembly of a UI component and a FC
component and compositions are expressed in a similar way to component assemblies
such as in UML2.0 component diagram [21]. Describing formally the underlying
models is not in the scope of this paper but they can be found in [4]. UI and FC parts
of an application are represented as components with ports and compositions as bind-
ings between components. However the granularity of the port is finer here: at the data
or operation level not at the programming interface level. UI input ports correspond to
user inputs (collected through widgets such as textfields, lists, checkboxes, …) and UI
output ports correspond to system output (rendered through widgets such as labels,
images, tables, …). FC intput ports correspond to operation input parameters and FC
output ports correspond to operation output parameters. Trigger ports correspond to
user actions in UI (fired through widgets such as buttons, menu items, …) and to op-
eration calls in FC.

This abstract representation of applications is obtained by automatic transfor-
mations (see section 6). From this abstract representation, the composition engine
produces a suggested UI (the first sketch of the composed UI). The suggested UI is
then transformed into code making the application operational.

The bindings between a UI component and a FC component are very important for
the UI composition computation as they help in identifying which functionality is re-
lated to which UI elements and vice versa. Searching for such bindings during the
abstraction step makes it possible to differentiate functionalities related to user tasks

(functionalities that are called as a result from a user interactions and/or functionalities
which results are presented to users) from system tasks (functionalities executed with-
out user implication). During the abstraction step, only the first category of functional-
ities and only UI elements that are related to the FC are reified. As a consequence, we
can observe an isomorphism between the ports of UI components and the ports of FC
components in the Alias formalism.

The representation of the interactions between S1 (resp. S2) and its attached UI in
the Alias formalism is illustrated in Figure 5 which highlights the isomorphism be-
tween the components’ ports. The downward arrows at the left of components connect
user inputs (ex. fullname) to operation parameters and the upward arrows at the right
of components connect operation results to their UI representation (address). The
downward arrows at the middle of components link user actions to operation calls
(getBusinessInfo).

Fig. 5. Representation of S1/UI1 and S2/UI2 in Alias

In Alias, each functional composition is also modeled as an assembly of compo-
nents. The bindings between FC components are very important for the UI composi-
tion computation as they help in identifying which functionalities and data are kept in
the functional composition.

The representation of Composition1 (the first orchestration of S1 and S2 services)
in the Alias formalism is illustrated in the Figure 6. The S3 component represented at
the bottom of the figure is composed of the two former components: S1 and S2.

The composition engine of Alias deduces which UI elements to reuse and which of
them trigger conflicts by correlating information about: 1) functionalities and data that
should be kept thanks to FC bindings and 2) their corresponding elements at the UI
level thanks to UI to FC and FC to UI bindings. Potential conflicts may occur when
two parts of former UIs are bound to the same operation of the new FC. Figure 6
shows the application corresponding to Composition1: UI3 is bound to S3.

Fig. 6. Representation of S3 and its corresponding UI in Alias

The Alias framework has been implemented in Java for the abstraction and con-
cretization steps (steps 1 and 4) and the composition engine has been implemented in
Prolog (steps 2 and 3). The transformations involved in steps 1 and 4 have been writ-
ten for Flex and SWING for the UI part, WSDL for the service part, and BPEL for the
orchestration definition.

5 Alias Composition Engine

This section describes the composition engine which deduces a first sketch of the UI
preserving the interaction consistency between the new UI and the new FC. The com-
position engine makes it possible to:

• Identify which UI elements of the former UIs to keep. In our example (see
Figure 2), the handicap rate output is not exposed outside the “functional
box” in the Figure 6. Then it is not represented in the UI component (UI3).
The medical referee output is published (made available outside of the “func-
tional box”). Then it is kept and represented in UI component (UI3).

• Analyze the data flows and reproduce them at the UI level.
• Point out the potential conflict points for UI composition.
• Solve the detected conflicts either automatically or interactively.

The different ways to solve conflicts are discussed informally in section 5.1. The
different composition rules used by the composition engine to deduce the UI composi-
tion, to identify and solve the UI composition conflicts are described in section 5.2.

5.1 UI conflict management

a. UI Selection Solved implicitly by Functional Composition Choices. The
functional composition indicates which UI elements to select automatically when: (1)
an output of a FC is bound to the input of another one (workflow impact at the UI
level) and (2) some outputs, inputs or functionalities are not kept in the final FC
(implicit selection of UI elements). The following cases of UI element selection/
replacement /suppression is managed by the composition engine automatically
(composition rule 1 in the section 5.2).

Case of UI selection deduced from input-output and input-input functional bindings.
Using information from the functional compositions avoids reusing redundant UI ele-
ments. When FCs are bound, some inputs of a FC are automatically collected from
outputs of other FCs. Such inputs are no more needed at the UI level. Then similar
information may disappear implicitly. It avoids human mistakes or confusion caused
by redundant information. When composed FCs are bound to internal FCs, the situa-
tion is slightly different: the inputs of the internal FC are filled with the inputs of the
composed FC. Then the corresponding UI inputs must be kept.

In the example, the fullname input of S2 is filled with the concatenation of the first-
name and lastname outputs of S1 then the input of S2 is no more exposed by S3 and
S4. In consequence, the fullname is no more present in the new UI. The contract num-
ber input of S1 is exposed by S3 because it is needed by the getEmployeeHRInfo op-
eration (the operation that calls the getByCard operation of S1 in the orchestration). In
consequence, the insurance number is kept in the new UI.

Case of UI selection/replacement deduced from the elements exposed in the function-
al composition (composite).

Using information from the functional compositions avoids reusing useless UI ele-
ments. When an input is not selected in the new behavior, the user should not have to
give its useless value via the UI anymore. When a result is no more calculated in the
new behavior, its visualization becomes obsolete. When functionalities are no more
needed or when they shift from interactive tasks to system tasks (because of bindings),
the composed FC does not exposed it anymore. Then, the UI elements corresponding
to functionality triggers disappear as the user will not activate these functionalities
anymore. On the other side, the internal functionalities not exposed but bound to a
functionality of the composed FC are managed separately. Their corresponding UI
element is replaced by that of the functionality of the composed FC.

In the example, UI elements like the family status are no more present in the new
UI as S3/S4 does not expose the corresponding outputs. Moreover, as the getBusiness-
Info operation becomes a system task (all its inputs are automatically filled), the
“show fellow’s information” button is not kept in the new UI. Finally, the “show in-
surance information” button is replaced by a “show employee HR information” button
in the new UI as the getEmployeeHRInfo operation of S3/S4 calls the getByCard op-
eration of S1.

b. Conflicts Solved explicitly by the Composition Engine. The composition engine
cannot proceed to automatic UI element selection when several UI inputs (resp.
outputs) are bound to a unique input (resp. output) of the composed FC (composition
rules 2 and 3 in section 5.2). In such cases, the composition engine detects potential
conflict points (composition rule 4 in section 5.2) and alerts the developers (Fig. 7). In
the example, Composition2 raises a conflict since there are two possibilities for
displaying merged addresses.

Fig. 7. Conflict detection in UI4

To proposed conflicts management methods are either to: 1) keep all UI elements,
2) keep one of the possible elements, or 3) create a new UI element. The framework
may let the developers choose the conflict management method as shown in Figure 8.
For example, the developer may decide between several former UI design in order to
inform the engine about the best choice for usage.

Fig. 8. Alias framework menu to choose the conflict resolution method (shown for UI4 here)

In the example (Composition2), the representation of merged addresses may be (i)
like in UI1 or (ii) like in UI2 or (iii) a new element may be created. This first possibil-
ity is illustrated in Figure 9 (the location element from UI1 is kept whereas the ad-
dress element from UI2 is not).

Fig. 9. A possible UI for S4 proposed by Alias as a function of the UI conflict resolution

5.2 Composition rules

The composition engine is based on a set of rules identifying the elements to keep
from former UIs and detecting conflicts between UI elements.

Composition rule 1 - Potential Reused UI element detection.
This rule determines the set of UI elements which are not used in the new UI and

thus the set of UI elements that may be reused in the new UI. This rule signals to the
developers which UI elements are not kept by the functional composition. Then they
may change the functional composition if they think that the removal of some UI ele-
ments highlights a consequence of a bad interpretation of the user requirements in
term of functionalities.

Composition rule 2 - Potential conflicting UI output detection.
This rule determines the set of UI outputs which are potential conflict points for the

new UI (bound to the same output of the new FC).

Composition rule 3 - Potential conflicting UI input detection.
This rule determines the set UI inputs which are potential conflict points for the

new UI (bound to the same input of the new FC).

Composition rule 4 - Conflict resolution.
Several strategies could be adopted: 1) the engine may solve conflicts automatical-

ly using assumptions either provided by the developers or default choices; 2) the en-
gine may also operate interactively asking the developers to remove the conflicts us-
ing an extra UI (the UI of the framework dedicated to conflict management).

Resolution algorithm or automatic solving. This algorithm takes in parameter the
predominant UI and returns the set of kept UI elements. The predominant UI choice
indicates which representation to advantage in case of ambiguities. This information
may be given by the developers at the beginning of the process after an analysis of the
hidden design choices made on the former UIs. The default value (the first UI de-
clared in Alias) can be used to obtain a first sketch rapidly otherwise.

The conflict resolution algorithm uses information about UI elements: the kind of
representation (multiple or single). A multiple representation serves to visualize a set
of values (set of radio buttons, list box ...), a single representation serves to visualize a
unique value (text field, label …). The conflict resolution algorithm also uses different
UI composition operators to solve the conflicts: selection, union or union without re-
dundancy. The underlying ergonomic rule is to minimize UI redundancy in order to
avoid confusion in usage. The algorithm selects the best UI composition operator to
apply depending on the kind of representation of the UI elements that are in conflict:

1. If there is only one “multiple” representation, then that representation is chosen to
present the merged data

2. If there are several “multiple” representation, then the “multiple” representation of
the predominant UI is chosen to present the merged data.

3. If all the representations are “single”, then all the UI elements are kept. In this last
case, the engine informs the developers of the semantic similarities between the
kept UI elements. Such information helps the developers to select which UI ele-
ments to group when performing the layout of the new UI. It may also points out an
inconsistency between the functional composition and user requirements that may
imply revising the functional composition design.

Algorithm for interactive solving. Conflict resolution can be guided by the develop-
ers who can choose the composition operator they want to apply and the UI represen-
tation(s) they want to keep or the creation of a new UI element and its representation
(this last choice is not possible in automatic mode) as shown in Figure 8.

Composition rule 5 - UI usability warning.
At this step, the labels associated with the elements of the new UI are compared. If

labels with same names are associated with different UI elements, a warning is sent to
the developers. The framework gives the possibility to the developers to rename some
of them if they want.

Application to the case study.
In the second example of composition (Composition2), the composition engine de-

duces that the fullname input of UI2 will not be reused in UI3 as well as the family
status, the handicap rate and the birthday outputs of UI1 and the email and position
outputs of UI2 (composition rule 1). At this step, the developers can verify if the func-
tional composition is well suited. If they feel that a UI element is missing and seems to
lack to the usage (the worker position for example), they can decide to adjust the func-
tional composition so as to keep it in the new UI.

The composition engine also deduces that there is a conflict point concerning the
location output of UI1 and the address output of UI2 (composition rule 2) and that
there are no conflict points on UI input elements (composition rule 3).

To solve the detected conflict in interactive mode, the developers must choose be-
tween the location output representation (single) of UI1 and address output represen-
tation (multiple) and the operator to apply. They can also decide to create a new ele-
ment and choose a new representation. In Figure 3a, they decide to keep the represen-
tation of UI1 and to apply the union operator. In Figure 3b, they decide to keep the
representation of UI2 and to apply the selection operator.

To solve the detected conflict in automatic mode, the engine compares the repre-
sentations of the UI elements that are in conflict and choose the best one. To under-
stand the different solving methods, let consider three cases:

1. If the professional addresses are visualized in a list box (“multiple” representation)
in UI2 and the personal address in a text field (“single” representation) in UI1,
then the engine chooses the UI element from UI2 (the one with a multiple represen-
tation) containing the union of data from the professional addresses output of S2
and from the personal address output of S1.

2. If the professional addresses and the personal address are both visualized in a list
box (“multiple” representation) then the predominant UI representation is kept (UI1
here).

3. If the professional addresses and the personal address are both visualized in labels
(“single” representation) then the engine chooses to keep the two representations.
The engine also informs the developers of the semantic similarities of the UI ele-
ments. The developers will then be able to place the UI elements side by side to
group contact information.

In this example, no usability warning is detected by the engine because each UI el-
ement is associated with a unique label (there is no label having same names).

6 Evaluation of the Alias Approach

The Alias composition engine has been evaluated from different points of view: (i)
modeling pertinence and coverage, (ii) composition engine coherence and (iii) user
interaction with tool assessment. For evaluation purpose, several case studies have
been implemented including the published ones: the mail/notepad scenario [22], the
tour operator [23] and the human resource system (presented in this paper).

Modeling pertinence and coverage: In [23], we have shown how Alias exploits
Model Driven Engineering (MDE) [24] transformations to fill the gap between the
composition engine that is technological agnostic and the real world by: a) abstracting
applications into the Alias formalism automatically (step 1 of the Alias process), and
b) concretizing the sketch of the new UI deduced by the composition engine automati-
cally as well as the interaction links with the FC part of the composed application
(step 4 of the Alias process). The case studies have been useful to check the ad-
vantages of modeling architectural constraint as well as the possibility to abstract in-
trinsically different graphical toolkits such as Java SWING (desktop toolkit) and Flex
(web toolkit).

Composition engine coherence: The composition rules described in this paper re-
spect the formal properties listed in [25]. We checked the rules coherence by feeding
the Prolog engine with a bunch of facts and by analyzing and comparing the inferred
results with the expected ones. This work has consolidated the pivotal formalism and
has been useful to check that the engine conflict detection covers a satisfying set of
conflicts associated with the potential functional compositions.

User interaction with tool assessment: The framework prototype has been designed
and continuously evaluated using the 9 heuristics of Nielsen and Molich [26]. Only
the last heuristic “Help and documentation” is not covered as the tool is only at a stage
of research prototype. Using such method is a first step toward assessment of user
interaction with tool but it is not sufficient as end-users do not take part of the process
in formative evaluation methods such as this one. Then, we are using a summative
user-centered evaluation method called cooperative method [27] to collect application
developers’ feedbacks and to assess the usability of the framework and of the compo-
sition engine UI with real users. We are currently establishing evaluation protocols.

Our goal is to evaluate the ability of users (developers) to perform tasks such as: un-
derstanding conflict detection, selecting the best conflict resolution regarding a com-
position goal, etc. The protocols are also designed to allow us to compare what the
developers expect as the UI composition result (they provide it as a diagram) and what
they obtain by using the Alias framework which also provides diagrams (Figures 5, 6
and 9 are extracts of such diagrams). This cooperative evaluation is still in progress.

7 Conclusion

Alias is an approach for composing SOA applications including their user interfaces
(UIs). The originality of Alias composition engine comes from the fact that UI com-
position is deduced from the way functional parts of applications are composed. This
paper has shown: 1) how the Alias composition engine builds a first sketch of the UI
by reusing and composing elements from former UIs and by maintaining the interac-
tion links between the UI level and the functional level and 2) how it manages compo-
sition conflicts.

The goal is not to provide a UI directly usable by end-user in an ergonomic sense
but to shorten UI development cycles by providing a consistent and automatic way to
reuse former UIs while preserving the interaction links with their corresponding appli-
cation functional part. To finalize the application, developers have to improve ergo-
nomic aspects of the UI.

Apart from creating a UI sketch, the Alias composition engine offers additional us-
ages. It can be used to simulate both UI composition and functional composition re-
sults prior to real developments. The composition engine feedbacks (missing UI ele-
ments, conflict points …) are clues making it possible to verify that the functional
composition is such that developers expect it to be.

The experiments convince us about the pertinence of the Alias composition engine
for the reuse of web application UIs developed with Flex and of desktop application
UIs developed with SWING. Our short-term perspectives are to check the possibility
to abstract intrinsically different SOA implementations. With the growing use of Rest-
ful services, we believe that providing abstraction transformations (step 1) for such
SOA implementation is needed as well as for web service ones. Despite the fact that
REST does not fit well with the message-oriented paradigm of the Web service, we
claim that this has no impact on our modeling since the latter fits well with workflow
as well as data flow compositional logic.

Finally, the underlying open issue is to manage divergent composition choices: be-
tween user interaction needs such as proposed in [16, 17] and functional requirements
as we propose. One approach brings the user point of view and usability properties
whereas the other one offers technical requirements on functionality implementation
details (typing rules, semantics, etc.). Another challenge is to cope with compositions
held at different time (runtime or design time) in a coherent way.

Acknowledgments. We thank the DGE M-Pub 08 2 93 0702 project for his funding.

References

1. Papazoglou, M. P., Heuvel, W. J. V. D.: Service oriented design and development
methodology. Int. J. Web Eng. Technol. 2(4), pp. 412-442 (2006).

2. Szyperski C.: Component Software - Beyond Object-Oriented Programming, Addison-
Wesley (1999).

3. Heineman, G., Councilln W., editors. Component-Based Software Engineering, Put-
ting the Pieces Together. Addison-Westley, ISBN : 0-201-70485-4 (2001).

4. Occello, A., Joffroy, C., Pinna-Déry, A.-M., Renevier-Gonin, P., Riveill, M.: Meta-
modeling user interfaces and services for composition considerations. In: SEDE'10,
pp. 33-38, ISCA (2010).

5. Bass, L.J., Coutaz; J.: A Metamodel for the Runtime Architecture of an Interactive
System. In: UIMS Tool Developers Workshop. SIGCHI Bull., vol 24(1), pp. 32-37,
ACM (1992).

6. Coutaz, J.: PAC: An object oriented model for implementing user interfaces. SIGCHI
Bull., 19(2), pp. 37-41 (1987).

7. Reenskaug, T. M. H.: MVC xerox parc.
http://heim.ifi.uio.no/~trygver/themes/mvc/mvcindex.html (1979).

8. Marino J., Rowley M. Understanding SCA (Service Component Architecture). Addi-
son-Wesley Professional, June 30, 360 pages (2009).

9. Objectweb Consortium: The Fractal Component Model: http://fractal.objectweb.org/
(2008).

10. Khalaf, R., Mukhi, N., Weerawarana, S.: Service-oriented composition in bpel4ws. In:
WWW’03, Alternate Track Papers and Posters, Budapest, Hungary (2003).

11. Mosser, S., Blay-Fornarino, M., Riveill, M. Service Oriented Architecture Definition
Using Composition of Business-Driven Fragments (workshop). In: MODSE'09, pp. 1-
10, Denver, USA (2009).

12. Grundy J.C., Hosking J.G. Developing Adaptable User Interfaces for Component-
based Systems. Interacting with Computers 14, 2, Elsevier Science Publishers, pp 175-
-194 (2002).

13. Dery, A.M., Fierstone, J.: Component model and programming: a first step to manage
Human Computer Interaction Adaptation. In: Mobile HCI’03, Chittaro, L. (eds.)
LNCS, vol. 2795, pp 456-460. Springer (2003).

14. Lepreux, S., Hariri, A., Rouillard, J., Tabary, J. Tarby, D., Kolski, C.: Towards Multi-
modal User Interfaces Composition Based on UsiXML and MBD Principles. In: HCII
2007. Jacko, J.A. (eds.) LNCS, vol. 4552, pp. 134-143. Springer, Heidelberg (2007).

15. Fujima, J., Lunzer, A., Hornbæk, K. and Tanaka, Y. Clip, Connect, Clone: Combining
Application Elements to Build Custom Interfaces for Information Access. In: UIST’04,
Santa Fe, NM, pp. 175-184, (2004).

16. Gabillon, Y., Petit, M., Calvary, G. and Fiorino, H. Automated planning for userinter-
face composition. In Proc. of the 2nd Int. Wksp. on Semantic Models for Adaptive In-
teractiveSystems: SEMAIS'11, Springer HCI series, 5 pages, (2011).

17. Feldmann M., Hubsch G., Springer T., Schill A.: Improving Task-driven Software
Development Approaches for Creating Service-Based Interactive Applications by Us-

ing Annotated Web Services. In Fifth International Conference on Next Generation
Web Services Practices, pp. 94-97, (2009).

18. Nestler T., Feldmann M., Preußner A., Schill A.: Service Composition at the Presenta-
tion Layer using Web Service Annotations. In Proceedings of the First International
Workshop on Lightweight Integration on the Web at ICWE 2009, (2009).

19. Tsai, W.T., Huang, Q., Elston J., Chen, Y.: Service-oriented user interface modeling
and composition. In: ICEBE ’08, pp. 21--28, IEEE Press, New York (2008).

20. Ginzburg, J., Rossi, G., Urbieta, M., Distante, D.: Transparent interface composition in
Web Applications. Web Engineering, LNCS, vol. 4607, pp. 152-166. Springer, Hei-
delberg (2007).

21. Object Managemant Group: Unified Modeling Language Specification 2. OMG. Doc-
ument formal/2009-02-02 (2009).

22. Pinna-Dery A.-M., Joffroy, C., Renevier, P., Riveill, R., Vergoni, C.: ALIAS: A Set of
Abstract Languages for User Interface Assembly. In: IASTED SEA’08, pp. 77-82.
ACTA Press (2008).

23. Occello A., Joffroy C., Dery-Pinna A.-M.: Experiments in Model Driven Composition
of User Interfaces. In: DAIS’10, LNCS, Vol. 6115 (2010).

24. Schmidt, D.C.: Model-Driven Engineering. IEEE Computer, 39(2), pp. 25-32, (2006).
25. Joffroy C., Caramel, B. Dery-Pinna A.-M., Riveill, M.: When the functional composi-

tion drives the user interfaces composition: process and formalization. In: EICS’11,
ACM (2011).

26. Nielsen, J., and Molich, R. Heuristic evaluation of user interfaces, Proc. ACM CHI'90
Conf. (Seattle, WA, 1-5 April), pp. 249-256 (1990).

27. Monk, A., Wright, P., Haber, J., and Davenport, L.: Improving your human-computer
interface: A practical technique. Prentice Hall International (UK) Ltd (1993).

