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Abstract –System failures can be induced by internal degradation mechanisms or by external causes. 

In this paper, we consider the reliability ofsystems experiencing both degradation and random shock 

processes. The dependencies between degradation processes and random shocks, and among 

degradation processes areexplicitly modelled. The degradation processes of system components are 

modeled by multi-state models (MSMs) and physics-based models (PBMs).The piecewise-

deterministic Markov process modeling framework is employed to combine MSMs and PBMs, and 

for incorporating degradation and random shocks dependencies.The Monte Carlo simulation and 

finite-volume methodsare used to compute the system reliability. Asubsystem of a residual heat 

removal system in a nuclear power plant is considered as illustrative case. 
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Acronyms 

PBMs   Physics-based models 

MSMs   Multi-state models 

PDMP   Piecewise-deterministic Markov process 

MCS   Monte Carlo simulation 
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FV   Finite-volume 

RHRS    Residual heat removal system  

 

Notations 

𝑲   Group of degradation processes modeled by MSMs 

𝑳   Group of degradation processes modeled by PBMs 

𝑺𝐾𝑛
   Finite state set of degradation process𝐾𝑛  

𝑌𝐾𝑛
 𝑡    State variable of degradation process 𝐾𝑛  

𝜆𝑖 𝑗 | 𝜽𝐾𝑛
   Transition rate from state 𝑖 to 𝑗 

𝓕𝐾𝑛
   Set of failure states of degradation process 𝐾𝑛  

𝑿𝐿𝑚
 𝑡   Time-dependent continuous variables of degradation process 𝐿𝑚  

𝑿𝐿𝑚
𝑫  𝑡   Non-decreasing degradation variables vector 

𝑿𝐿𝑚
𝑷  𝑡   Physical variables vector 

𝓕𝐿𝑚    Set of failure states of degradation process 𝐿𝑚  

𝑁 𝑡    Number of random shocks occurred until time 𝑡 

𝜇   Arrival rate of random shock process 

𝑌𝐾𝑛

′  𝑡    Degradation level of 𝐾𝑛considering random shocks  

𝓕𝐾𝑛

′    Set of failure states of 𝑌𝐾𝑛

′  𝑡  

𝑊𝑖    Shock load of the 𝑖-th shock 

𝐷   Maximal material strength 

𝑯𝑖    Instantaneous random increase caused by the𝑖-th cumulative shock 

𝑁𝑐 𝑡    Number of cumulative shocks occurred until time 𝑡 

𝑫𝐿𝑚    Degradation level of 𝐿𝑚  considering random shocks 
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𝒀 𝑡    Degradation state of the processes of set 𝑲 

𝑿 𝑡    Degradation state of the processes of set 𝑳 

𝜽𝑲   Environmental and operational factors in 𝑲 

𝜽𝑳   Environmental and operational factors in 𝑳 

𝒁 𝑡    Degradation process of the system 

𝒀′ 𝑡    Degradation state of the processes of set 𝑲considering random shocks 

𝑿′ 𝑡    Degradation state of the processes of set 𝑳 considering random shocks 

𝑇𝑘    𝑘-th jump time in 𝒀′ 𝑡  

𝒁𝑘 =  𝑿𝑘
′ , 𝒀𝑘

′   State of 𝒁 𝑡 , 𝑿′ 𝑡 , 𝒀′ 𝑡  after𝑘-th jump of𝒀′ 𝑡  

𝒇𝑳
𝒀′  𝑡 (𝑿 𝑡 |𝜽𝑳) Deterministic physics equations of 𝑿 𝑡  

𝜆𝒚𝑖 ,𝒚𝑗 (𝒙 | 𝜽𝑲)  Transition rate of 𝒀′ 𝑡  from state 𝒚𝑖  to 𝒚𝑗  

𝑁 𝒊, (𝑑𝒙, 𝒚𝑗 ), 𝑑𝑡  Semi-Markov kernel of 𝒁𝑛 , 𝑇𝑛 𝑛≥0 

𝑑𝐹𝒊 𝑡    Probability distribution of holding time given 𝒁𝑘 = 𝒊 

 

 

1. INTRODUCTION 

The evaluation of the system reliability over time is an important and critical task. For example, 

the reliability of safety systems in nuclear power plants, such as reactor shutdown, emergency core 

cooling systems and other safety multi-component systems in nuclear industry, need to meet safety 

requirements imposed by regulation to ensure their operational safety (Marseguerra, et al., 2004). The 

instances when the requirements are not satisfied can be identified byreliability analysis. Reliability 

improvement actions can, then, be performed by design on maintenance, to avoid possible human and 

economic losses. In this paper, we investigate the reliability assessment of multi-component systems 

subject to dependent degradation processes influenced by random shocks. The dependencies pose 

challenging issues in system reliability modeling and assessment (Schöttl, 1996) (e.g. for micro-

electromechanical systems, which are complex systems experiencing dependent component failure 

processes and multiple dependent competing failure processes for each component (Song, et al., 

2014b)). System failures can be induced byinternal degradation mechanisms (e.g. wear, fatigue and 

erosion)orby external causes(e.g. thermal and mechanical shocks)(Jiang, et al., 2015). The 
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interactions between these factors needto be considered under certain circumstances, e.g. 

whendegradation processes andrandom shocksare s-dependent (e.g. single-event overloadswith safe 

shock magnitudescan influence the fatigue crack growth of stents by causing instantaneous increase 

on the crack propagation(Keedy and Feng, 2013)), orthe degradation state of some components in 

onesystem can influence the degradation dynamics or the remaining useful life of the others(e.g. the 

degradation of the pre-filtration stations leading to a lower performance level of the sand filter in a 

water treatment plant(Rasmekomen and Parlikad, 2013)). Neglecting these aspects may result in 

overestimation of system reliability (Wang and Pham, 2012). 

In industrial systems, many critical components (e.g. valves and pumps in the nuclear and 

aerospace industries) are designed to be highly reliable, for which statistical degradation/failure data 

are often limited. In this case, multi-state models (MSMs) (Black, et al., 2005, Giorgio, et al., 2011, 

Moghaddass and Zuo, 2014) and physics-based models (PBMs) (Chookah, et al., 2011, Daigle and 

Goebel, 2011, Wang, et al., 2014) can be used to describe the evolution of degradation in components 

and systems. A MSM describes the degradation process in a discrete way, supported by material 

science knowledge (Lin, et al., 2015b) and/or available but limited degradation/failure historical data 

from field collection or degradation tests (Giorgio, et al., 2011). On the contrary, a PBM gives an 

integrated mechanistic description of the component life consistent with the underlying real 

degradation mechanisms under operating conditions (Hu, et al., 2014), by using physics knowledge 

modeled by corresponding mathematical equations (Chookah, et al., 2011). In practice, degradation 

models of different nature have to be applied depending on the available information of the 

degradation processes. Recently, the piecewise-deterministic Markov process (PDMP) modeling 

framework has been employed to incorporate PBMs and MSMs, and to treat the dependencies among 

degradation processes but without considering the influences of random shocks(Lin, et al., 2015a). On 

the other hand, random shocks can accelerate the degradation processes (e.g. internal thermal shocks 

and water hammers onto power plant components (Salonen, et al., 2007)).  

The reliability of systems experiencing both degradation and random shocks is a problem that has 

been widely studied(Becker, et al., 2002, Jiang, et al., 2012, Lin, et al., 2015b, Peng, et al., 2010, 

Rafiee, et al., 2014, Song, et al., 2014a, Song, et al., 2014b, Wang and Pham, 2012, Yang, et al., 

2011).The dependency among these processes leading to failure has posed some challengesto 

reliability modeling.A literature review is presented below, to position our contributions within the 

existing works. Previous research has focused on the dependency between one type of degradation 

processes (continuous or multi-state) and random shocks.For continuous degradation processes,Peng, 

et al. (2010)considered systems with one lineardegradation path where shocks can bring additional 

abrupt degradation damage if the shock loads donot exceed the maximum strength of the 

material;multi-component systems subject to multiple linear degradation paths have been further 

considered bySong, et al. (2014b); Jiang, et al. (2012)considered changes in themaximal strength of 

the material when systems are deteriorating under different situations;Becker, et al. (2002)extended 
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the theory of dynamic reliability to incorporate random changes of the degradation variables due to 

random shocks;Ye, et al. (2011)considered the destructive power of a shock depending not only on the 

shock magnitude but also on the state of the system;Wang, et al. (2011)considered two types of the 

effects of shocks: a sudden increase in the failure rate after a shock and a direct random change in the 

degradation after the occurrence of a shock;Rafiee, et al. (2014)proposed reliability models for 

systems for whichthe degradation path has achanging degradation rate according to particular random 

shock patterns;Song, et al. (2014a)studied random shocks with specific sizes or functions,which can 

selectively affect the degradation processes of one or more components (not necessarily all 

components) in one system.For multi-state degradation processes,Yang, et al. (2011)combined 

random shocks with Markov degradation models where shocks can lead the systems to further 

degraded states;Lin, et al. (2015b)integrated random shocks into multi-state physics models of 

degradation processeswhere the influences of shocks are dependent on the current degradation 

condition; Ruiz-Castro (2016)considered external shocks which could produce several effects; 

extreme failure, cumulative damage and when the damage reaches a threshold state, a non-repairable 

failure occurs, and changes in the internal performance of the device.Note that no work has 

considered systems with both continuous and multi-state degradation processes and subject to random 

shocks, and few studies have explicitly considered both the dependencies between degradation 

processes and random shocks, and among degradation processes themselves.Wang and Pham 

(2012)employed copulasto handle these two types of dependencies; however,sufficient 

degradation/failure data is required to determine the copula functionsthrough statistical inference.  

In this paper, we extend the PDMP modeling framework for system reliability assessment, 

considering not only the dependencies among degradation processes but also the impacts of random 

shocks. To the best knowledge of the authors, this is the first work investigating systems with both 

continuous and multi-state degradation processes, subject to random shocks and considering the 

dependencies between degradation processes and random shocks, and among degradation processes. 

Since the analytical solution is difficult to obtain due to thecomplexity of the system being considered, 

we employ two numerical approaches to assess system reliability: the Monte Carlo (MC) 

simulation(Marseguerra and Zio, 1996) and the finite-volume (FV)(Cocozza-Thivent, et al., 2006) 

methods. 

The remainder of this article is organized as follows. Section 2 provides the assumptions and 

descriptions of the degradation processes and random shocks. Section 3 presents the extended 

modelfor systems with degradation and random shock processes, consideringtheir dependencies. The 

proposed MC simulationand FV methods are presented in Section 4. Section 5 presents an illustrative 

study taken from a real residual heat removal system (RHRS) operated by Électricité de France (EDF). 

The RHRS is used for cooling the reactor during and following shutdown, contributing to safety by 

removing heat from the core and transferring it to the environment. Specifically, we consider an 

important subsystem consisting of a pneumatic valve and a centrifugal pump in series. This system 
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setting is widely used, under different conditions, in a variety of domains for fluid delivery (from 

water supply to spacecraft fueling systems) (Daigle and Goebel, 2011, Daigle and Goebel, 2013). 

Numerical results and analysis are presented in Section 6. Section 7 concludes the work. 

 

2. ASSUMPTIONS AND MODEL DESCRIPTIONS 

We consider a multi-component system. Each component may be affected by multiple 

degradation mechanisms or processes, possibly dependent. The degradation processes can be 

separated into two groups: (1)𝑲consists ofprocesses fit to be modeled by MSMs; (2) 𝑳consists 

ofprocesses fit to be modeled by PBMs.  

 

2.1. Degradation models 

 

2.1.1. MSMs 

We follow the assumptions on MSMs made in Lin, et al. (2014): 

 A degradation process, 𝑌𝐾𝑛
 𝑡  , 𝐾𝑛 ∈ 𝑲of group (1), takes values from a finite state set 

denoted by 𝑺𝐾𝑛
= {0, 1, … , 𝑑}, where 𝑑 is the perfect functioning state and 0 is the complete 

failure state. The component is functioning or partially functioning in the intermediate 

degradation states. The transition rates 𝜆𝑖 𝑗 | 𝜽𝐾𝑛
 , ∀ 𝑖, 𝑗 ∈ 𝑺𝐾𝑛

, 𝑖 > 𝑗 characterize the 

degradation transition probabilities from state 𝑖  to state 𝑗 , where 𝜽𝐾𝑛
 represents the 

environmental factors relevant to 𝐾𝑛  and the related parameters of 𝜆𝐾𝑛
. We follow the 

assumption of Markov property made inGiorgio, et al. (2011), Yeh (1997) and Zuo, et al. 

(2000); Markov processes are widely used to describe components degradation processes. 

The transition rates between different degradation states are estimated from the degradation 

and/or failure data from historical field collection. The failure state set of the process𝐾𝑛  is 

denoted by 𝓕𝐾𝑛
= {0}. 

 

2.1.2. PBMs 

We follow the assumptions on PBMs made in Lin, et al. (2014): 

 A degradation process 𝑿𝐿𝑚
 𝑡 , 𝐿𝑚 ∈ 𝑳of group (2), has 𝑑𝐿𝑚  time-dependent continuous 

variables, whose evolution is characterized by a system of first-order differential equations 

𝑿𝐿𝑚
  𝑡 = 𝒇𝐿𝑚

  𝑿𝐿𝑚
 𝑡 , 𝑡  𝜽𝐿𝑚  , i.e. physics equations, where 𝜽𝐿𝑚  represents the 

environmental factors influential to 𝐿𝑚  (e.g. temperature and pressure) and the parameters 

used in 𝒇𝐿𝑚 . This assumption is made in Lorton, et al. (2013) and widely used (Daigle and 
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Goebel, 2011, Daigle and Goebel, 2013). Note that higher-order differential equations can 

be converted into a system of first-order differential equations by introducing extra 

variables(Zwillinger, 1998). 

 𝑿𝐿𝑚
 𝑡 = (𝑿𝐿𝑚

𝑫  𝑡 , 𝑿𝐿𝑚
𝑷  𝑡 ) contains: (1) the non-decreasing degradation variables 𝑿𝐿𝑚

𝑫  𝑡  

(e.g. leak area) describing the degradation process, where 𝑫  is the set of degradation 

variables indices  (the same assumption has been already widely used(Daigle and Goebel, 

2011, Daigle and Goebel, 2013, Keedy and Feng, 2013)); (2) the physical variables 𝑿𝐿𝑚
𝑷  𝑡  

(e.g. velocity and force), which influence 𝑿𝐿𝑚
𝑫  𝑡 , where 𝑷 is the set of physical variable 

indices. The generic degradation process 𝐿𝑚 reaches failure when one 𝑥𝐿𝑚
𝑖  𝑡 ∈ 𝑿𝐿𝑚

𝑫  𝑡  

reaches or exceeds its corresponding failure threshold denoted by 𝑥𝐿𝑚
𝑖 ∗

. The failure state set 

of the process 𝐿𝑚  is denoted by 𝓕𝐿𝑚 . 

 

2.2. Random shocks 

Random shocks can influence the degradation processes of the components. The following 

assumptions are made, similarly to various previous works(Jiang, et al., 2012, Peng, et al., 2010, 

Rafiee, et al., 2014, Song, et al., 2014a, Yang, et al., 2011). 

 Random shocks occur in time according to a homogeneous Poisson process {𝑁 𝑡 , 𝑡 ≥ 0} 

with constant arrival rate𝜇(Fig. 1), where the random variable 𝑁 𝑡  denotes the number of 

random shocks occurred until time 𝑡. 

 The damages of random shocks aredivided into two types: extreme and cumulative. 

 Extreme and cumulative shocks are mutually exclusive. 

 Extreme shocksimmediately lead the componentsto failure, whereas cumulative shocks 

gradually deteriorate the components. 

 

 

 

Fig. 1. Random shock process 

 

3. DEPENDENT DEGRADATION PROCESSES AND RANDOM SHOCKS  

 

3.1. Dependency between degradation processes and random shocks 

Due to the different nature of PBMs and MSMs, the impacts of random shocks on the two groups 
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of components are characterized in different ways.  

 

3.1.1. Impacts on MSMs 

In the generic degradation process𝐾𝑛 ∈ 𝑲, random shocks can cause the process variable𝑌𝐾𝑛
 𝑡 to 

step from state 𝑖 to a further degraded state 𝑗 with probability 𝑝𝑖𝑗 , 𝑖 > 𝑗(Yang, et al., 2011), with𝑝𝑖0 

denoting the probability that the random shockis extreme, i.e. leading to failure state 0 upon 

occurrencefrom state𝑌𝐾𝑛
 𝑡 = 𝑖 . By combining the original degradation and the random shock 

processes, the resulting process 𝒀𝐾𝑛

′  𝑡  is a homogeneous continuous-time Markov chain of the type 

depicted in Fig. 2. Each layer indicates one degradation state of 𝑌𝐾𝑛
 𝑡 , and the numbers in each layer 

indicate the numbers of shocks experienced up to time 𝑡 in the process 𝐾𝑛 , denoted by 𝑘. The state of 

𝒀𝐾𝑛

′  𝑡  is, then, represented by thepair  𝑌𝐾𝑛
 𝑡 , 𝑘 . The transitions represented by solid lines are due 

to the original degradation process, characterized by the original transition rates, which do not 

influence the value of 𝑘. The transitions represented by dotted lines are due to random shocks, which 

cause 𝑘 to be increased by one. 𝜇𝑝𝑖𝑗 , 𝑖 > 𝑗 is the rate of occurrence of a shock which will cause the 

process stepping to the 𝑗-th layer from the𝑖-th layer. Note that 𝐾𝑛  fails whenever𝑌𝐾𝑛
 𝑡  reaches the 

degradation state 0, no matter how many shocks it has experienced. Therefore, the space of the failure 

states of 𝒀𝐾𝑛

′  𝑡  is denoted by 𝓕𝐾𝑛

′ = { 0, 𝑏 , ∀𝑏 ∈ ℕ} . The state space of 𝒀𝐾𝑛

′  𝑡  is denoted by 

𝑺𝐾𝑛

′ =   𝑎, 𝑏 , ∀𝑎 ∈ 𝑺𝐾𝑛
, 𝑏 ∈ ℕ . 

 

 

 

Fig. 2. Degradation process 𝐾𝑛  and random shocks. 

 

3.1.2. Impacts on PBMs 

In the generic degradation process𝐿𝑚 ∈ 𝑳, the 𝑖-th shock becomes extreme if the shock load 𝑊𝑖  

exceeds the maximal material strength 𝐷, otherwise, it can bring an instantaneous random increase 𝑯𝑖  
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to 𝑿𝐿𝑚
 𝑡 (Song, et al., 2014b). The overall degradation level of 𝐿𝑚  is expressed as  follows: 

𝑫𝐿𝑚
 𝑡 =  

𝑿𝐿𝑚
 𝑡 +  𝑯𝑖

𝑁𝑐 𝑡 
𝑖=1 , 𝑖𝑓 𝑁′ 𝑡 ≠ 0

𝑿𝐿𝑚
 𝑡 ,        𝑖𝑓 𝑁′ 𝑡 = 0  

                                           (1) 

where 𝑁𝑐(𝑡)is the number of cumulative shocks occurred in the developing 𝐿𝑚process before the 

extreme shock occurs until time 𝑡. The process𝐿𝑚 leads to failure if 𝑫𝐿𝑚
 𝑡  reaches the predefined 

failure state set 𝓕𝐿𝑚  or a shock with load larger than 𝐷 occurs. An example of degradation process𝐿𝑚  

considering random shocks is shown in Fig. 3, where 𝑊𝑖  is the shock load of the 𝑖-th shock occurred 

at time 𝑡𝑖 , 𝑖 = 1,2,3.The center figure in Fig. 3 represents the evolution of the physical variable (e.g. 

velocity and force), which can influence the degradation variable (top figure)and may also be 

influenced by random shocks (bottom figure). 

 

 

 

Fig. 3. An example of degradation process𝐿𝑚with random shocks. Top Figure:degradation 

variable; Center Figure: physical variable; Bottom Figure: random shock process. 

 

3.2. Dependency among degradation processes 

Dependencies may exist among degradation processes within each group and between the two 

groups. The degradation states of the processes of set𝑲may influence the evolution of the continuous 

variablesof the degradation processes of set𝑳, andthe degradation levels ofthe lattermay influence the 

transition times and transition directions of the former(the detailed formulations are shown in eqs. (2) 

and (3)) (Lin, et al., 2015a). 

Let 𝒀 𝑡 = (𝑌𝐾1
 𝑡 , … , 𝑌𝐾𝑁

 𝑡 ) ∈ 𝑺 = {0, 1, … , 𝑑𝑺}  and 𝑿 𝑡 =  𝑿𝐿1
 𝑡 ,… , 𝑿𝐿𝑀

 𝑡  ∈ ℝ𝑑𝐿 .The 

evolution of 𝒀 𝑡 is governed by the transition rates which depend on the states of the degradation 

processes in the first group 𝑿 𝑡  and also in the second group 𝒀 𝑡 , as follows: 
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𝑙𝑖𝑚
∆𝑡 → 0

𝑃   𝒀(𝑡 + ∆𝑡) = 𝒋 𝑿 𝑡 , 𝒀 𝑡 = 𝒊, 𝜽𝑲 =  𝜽𝐾𝑛

𝑁

𝑛=1

 /∆𝑡 

= 𝜆𝒊 𝒋 | 𝑿 𝑡 , 𝜽𝑲 , ∀ 𝑡 ≥ 0, 𝒊, 𝒋 ∈ 𝑺, 𝒊 ≠ 𝒋                                         (2) 

The evolution of 𝑿 𝑡  is described by mathematical equations representing the underlying physics and 

depends on the states of the degradation processes in the second group 𝒀 𝑡  and also in the first group 

𝑿 𝑡 , as follows: 

𝑿  𝑡 =  𝑿𝐿1
  𝑡 ,… , 𝑿𝐿𝑀

  𝑡  =  𝒇𝐿1

𝒀 𝑡   𝑿 𝑡 , 𝑡  𝜽𝐿1
 , … , 𝒇𝐿𝑀

𝒀 𝑡   𝑿 𝑡 , 𝑡  𝜽𝐿𝑀    

= 𝒇𝑳
𝒀 𝑡   𝑿 𝑡 , 𝑡  𝜽𝑳 =  𝜽𝐿𝑚

𝑀
𝑚=1   (3) 

 

3.3. PDMPs for systems subject to degradation dependency and random shocks 

Let 𝒁 𝑡 denote the overall degradation process of the system: 

𝒁 𝑡 =  𝑿′ 𝑡 =  𝑫𝐿1
 𝑡 , … ,𝑫𝐿𝑀

 𝑡  , 𝒀′ 𝑡 = (𝒀 𝑡 , 𝑁 𝑡 ) ∈ 𝑬 = ℝ𝑑𝐿 × 𝑺′ (4) 

where 𝑬 is a space combining ℝ𝑑𝐿  and 𝑺′ = 𝑺 × ℕ.Let 𝑇𝑘 , 𝑘 ∈ ℕ denote the 𝑘-th jump time in𝒀′ 𝑡  

and 𝒁𝑘 = 𝒁 𝑇𝑘 =  𝑿′ 𝑇𝑘 , 𝒀′ 𝑇𝑘  =  𝑿𝑘
′ , 𝒀𝑘

′  . The evolution of 𝒁 𝑡  between two consecutive 

jumps of 𝒀′ 𝑡 , between which no shock occurs to the system and the degradation state does not 

change, can be written as follows: 

𝒁  𝑡 =  𝑿′  𝑡 , 𝒀′  𝑡   

=  𝒇𝑳
𝒀′  𝑡 (𝑿 𝑡 |𝜽𝑳), (𝟎, 0) , 𝑓𝑜𝑟 𝑡 ∈  𝑇𝑘 , 𝑇𝑘+1 (5) 

According to the definition inCocozza-Thivent (2011), 𝒁 𝑡  is a PDMP since (1)it can be written as 

𝒁 𝑡 = 𝜑 𝒁𝑘 , 𝑡 − 𝑇𝑘 , 𝑓𝑜𝑟 𝑡 ∈  𝑇𝑘 , 𝑇𝑘+1  and 𝜑  satisfies 𝜑 𝒚, 𝑡 + 𝑠 = 𝜑 𝜑 𝒚, 𝑡 , 𝑠 , ∀𝑡, 𝑠 ≥ 0, 𝒚 ∈

 𝑬, and 𝑡 → 𝜑 𝒚, 𝑡 , ∀𝑡 ≥ 0, 𝒚 ∈ 𝑬 is right continuous with left limits and (2)  𝒁𝑛 , 𝑇𝑛 𝑛≥0is a Markov 

renewal process defined on the space𝑬 × ℝ+.The probability that 𝒁 𝑡  will step to state 𝒋from state𝒁𝑘  

in the time interval  𝑇𝑘 , 𝑇𝑘 + 𝑡 , given  𝒁𝑖 , 𝑇𝑖 𝑖≤𝑘  is as follows: 

𝑃 𝒁𝑘+1 = 𝒋, 𝑇𝑘+1 ∈  𝑇𝑘 , 𝑇𝑘 + 𝑡  |  𝒁𝑖 ,  𝑇𝑖 𝑖≤𝑘  = 𝑃 𝒁𝑘+1 = 𝒋, 𝑇𝑘+1 ∈  𝑇𝑘 , 𝑇𝑘 + 𝑡  | 𝒁𝑘  ,  

∀𝑘 ∈ ℕ , 𝒋 ∈  𝑬, 𝒋 ≠ 𝒁𝑘           (6) 

 𝒁𝑛 , 𝑇𝑛 𝑛≥0  is characterized by the semi-Markov kernel𝑁 𝒊 = (𝒙𝑖 , 𝒚𝑖), (𝑑𝒙, 𝒚𝑗 ), 𝑑𝑡 = 𝑃 𝑿𝑘+1
′ ∈

 𝒙, 𝒙 + 𝑑𝒙 , 𝒀𝑘+1
′ = 𝒚𝑗 , 𝑇𝑘+1 − 𝑇𝑘 ∈  𝑡, 𝑡 + 𝑑𝑡  | 𝒁𝑘 = 𝒊 , ∀𝑘 ∈ ℕ, 𝒚𝑖 , 𝒚𝑗 ∈ 𝑺′ , 𝒙𝑖 , 𝑑𝒙 ∈ ℝ𝑑𝐿 , 𝑑𝒙 →

𝟎, 𝑑𝑡 → 0, which can be reformulated as follows: 

𝑁 𝒊 = (𝒙𝑖 , 𝒚𝑖), (𝑑𝒙, 𝒚𝑗 ), 𝑑𝑡  

= 𝑃 𝑿𝑘+1
′ ∈  𝒙, 𝒙 + 𝑑𝒙 , 𝒀𝑘+1

′ = 𝒚𝑗  | 𝑇𝑘+1 − 𝑇𝑘 ∈  𝑡, 𝑡 + 𝑑𝑡 , 𝒁𝑘 = 𝒊  

∙ 𝑃 𝑇𝑘+1 − 𝑇𝑘 ∈  𝑡, 𝑡 + 𝑑𝑡  | 𝒁𝑘 = 𝒊  

= 𝑄 𝜑 𝒊, 𝑡 , (𝑑𝒙, 𝒚𝑗 ) 𝑑𝐹𝒊 𝑡 (7) 

where 𝑄 𝜑 𝒊, 𝑡 , (𝑑𝒙, 𝒚𝑗 ) is the probability distribution of state 𝒁𝑘+1  given 𝑇𝑘+1 − 𝑇𝑘 = 𝑡  and 
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𝒁𝑘 = 𝒊 and 𝑑𝐹𝒊 𝑡 is the probability distribution of 𝑇𝑘+1 − 𝑇𝑘  given 𝒁𝑘 = 𝒊.𝑄 𝜑 𝒊, 𝑡 , (𝑑𝒙, 𝒚𝑗 )  can 

be reformulated as follows: 

𝑄 𝜑 𝒊 = (𝒙𝑖 , 𝒚𝑖), 𝑡 , (𝑑𝒙, 𝒚𝑗 )  

= 𝑃 𝑿𝑘+1
′ ∈  𝒙, 𝒙 + 𝑑𝒙 , 𝒀𝑘+1

′ = 𝒚𝑗  | 𝑇𝑘+1 − 𝑇𝑘 ∈  𝑡, 𝑡 + 𝑑𝑡 , 𝒁𝑘 = 𝒊  

= 𝑃 𝑿𝑘+1
′ ∈  𝒙, 𝒙 + 𝑑𝒙  |𝒀𝑘+1

′ = 𝒚𝑗 , 𝑇𝑘+1 − 𝑇𝑘 ∈  𝑡, 𝑡 + 𝑑𝑡 , 𝒁𝑘 = 𝒊  

∙ 𝑃 𝒀𝑘+1
′ = 𝒚𝑗  | 𝑇𝑘+1 − 𝑇𝑘 ∈  𝑡, 𝑡 + 𝑑𝑡 , 𝒁𝑘 = 𝒊 (8) 

Let 𝑝𝑡(𝑑𝒛 = (𝑑𝒙, 𝒚𝑖)) denote the probability distribution of 𝒁 𝑡 , which obeys the Chapman-

Kolmogorov equation (Davis, 1993)  as follows: 

    𝜆𝒚𝑖 ,𝒚𝑗 (𝒙 | 𝜽𝑲)( 𝜓 𝒚𝑗 , 𝑦 𝜇 𝒚𝑖 , 𝒚𝑗 , 𝒙  𝑑𝒚 − 𝜓 𝒚𝑖 , 𝒙 
ℝ𝑑𝐿

)𝑝𝑠(𝑑𝒙, 𝒚𝑖)𝑑𝑠

𝒚𝑗∈𝑺
′ℝ𝑑𝐿

𝒚𝑖∈𝑺
′

𝑡

0

+ 

   𝒇𝑳
𝒚𝑖(𝒙|𝜽𝑳)𝑑𝑖𝑣 𝜓 𝒚𝑖 , 𝒙  𝑝𝑠 𝑑𝒙, 𝒚𝑖 𝑑𝑠

ℝ𝑑𝐿
𝒚𝑖∈𝑺

′

𝑡

0

− 

 ∫ 𝜓 𝒚𝑖 , 𝒙 ℝ𝑑𝐿𝒚𝑖∈𝑺
′ 𝑝𝑡 𝑑𝒙, 𝒚𝑖 +  ∫ 𝜓 𝒚𝑖 , 𝒙 ℝ𝑑𝐿𝒚𝑖

′∈𝑺′ 𝑝0 𝑑𝒙, 𝒚𝑖 = 0(9) 

where𝜆𝒚𝑖 ,𝒚𝑗 (𝒙 | 𝜽𝑲) is the transition rate of𝒀′ 𝑡  from state𝒚𝑖  to 𝒚𝑗 ,𝜓(∙,∙)  is any continuously 

differentiable function from  𝑺′ × ℝ𝑑𝐿  to ℝ  with a compact support and 𝜇 𝒚𝑖 , 𝒚𝑗 , 𝒙  𝑑𝒚  is the 

probability of 𝑿′ 𝑡 ∈  𝒚, 𝒚 + 𝑑𝒚  after jumping from 𝒙 when 𝒀′ 𝑡  steps to state 𝒚𝑗  from state 𝒚𝑖 . 

The reliability of the system at time 𝑡 is defined as follows: 

𝑅 𝑡 = 𝑃 𝒁 𝑠 ∉ 𝓕, ∀𝑠 ≤ 𝑡 = ∫ 𝑝𝑡(𝑑𝒛)
𝒛∉𝓕

(10) 

where 𝓕isthe space of the failure states of the system. 

In the general modeling framework, the temporal variability is considered as follows: (1) the 

randomness in MSMs could imply the temporal variability of the degradation processes modeled by 

PBMs, as shown in Figs. (3) and (8); (2) in PBMs, the temporal variability of the degradation 

variables can be attributed to the time-varying physical variables associated with the underlying 

degradation mechanisms. 

The parameters in the proposed model are mainly divided into three groups: (1) transition rates in 

multi-state models; (2) parameters in physics equations of physics-based models and (3) parameters 

characterizing random shock processes. The values of the first group can be estimated, using 

degradation and/or failure data from historical field collection or degradation tests, through maximum 

likelihood estimation for complete or incomplete data (Lisnianski, et al., 2010, Ogurtsova, 2014); they 

can also be estimated by domain experts using physics knowledge (e.g. the values of the transition 

rates in multi-state physics model (Lin, et al., 2015b)) are described by physics equations). For the 

second group, the laws of physics are used to build the equations describing the development of the 

underlying degradation mechanisms (e.g. fatigue, wear, corrosion, etc.) (Daigle and Goebel, 2011); 

the related parameter values can be estimated through regression models using degradation and/or 

failure data. For example, the physics equations of the fatigue cracking of the seal are built according 
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to Paris-Erdogan law (Newby, 1991), which relates the stress intensity factor range to the crack 

growth under a fatigue stress regime; the values of the parameters are estimated through least squares 

regression methods by using data on crack length and cycles. The values of the third group can be 

estimated using related degradation and/or failure data obtained from historical field collection or 

shock tests (Chan and Englert, 2001), using likelihood-based inference or regression models (Ye, et 

al., 2011). For example, the Brown-Proschan model is employed to model wear and shock processes 

of tire treads (Ye, et al., 2011), whereby the likelihood function can be derived based on cumulative 

hazard function and the parameter values are estimated through maximum likelihood estimation.  

 

4. SYSTEM RELIABILITY ASSESSMENT UNDER DEPENDENT DEGRADATION AND 

RANDOM SHOCK PROCESSES 

The analytical solution of 𝑅 𝑡  is difficult to obtain mainly due to the complex PDMPs used to 

model the dependent degradation and random shock processes (Labeau, 1996). Therefore, we 

consider the following two approximate methods: the MC simulation method (Marseguerra and Zio, 

1996) based on the semi-Markov kernel of  𝒁𝑛 , 𝑇𝑛 𝑛≥0 (eq. (7)) and the FV method (Cocozza-Thivent, 

et al., 2006) based on the Chapman-Kolmogorov equation (eq. (9)). They are two widely used 

approaches for solving PDMPs to evaluate reliability quantities. The FV method approximates the 

probability density function of PDMPs by discretizing the state space of the continuous variables and 

the time space. It is a method that can lead to comparable results as the MC simulation method, using 

less computing time for low dimensional problems (Eymard and Mercier, 2008).However, it is 

typically unsuited for high-dimensional problems or problems with complex equations describing the 

deterministic evolution. Besides, it is relatively more difficult to implement than the MC simulation 

method.  

 

4.1. MC simulation method 

The MC simulation method to compute the system reliability at time 𝑡consists ofreplicating 

several times the lifeprocess of the system by repeatedly samplingitsholding time and arrival state 

from the corresponding probability distributions.Each replication continues until the time of system 

evolution reaches𝑡 or until the system enters a state in the failure set𝓕.The procedure of the MC 

simulation method is as follows:  

Set 𝑁𝑚𝑎𝑥  (the maximum number of replications) and 𝑘 = 0 (index of replication) 

Set𝑘′ = 0 (number of replicationsthat end in a systemfailure state) 

While𝑘 < 𝑁𝑚𝑎𝑥  

Initialize the system by setting 𝒁 = (𝑿′ 0 , 𝒀′ 0 )(initial system state), and the time 𝑇 = 0 (initial 

system time) 
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Set𝑡′ = 0 (state holding time) 

While𝑇 < 𝑡 

Sample a 𝑡′by using the probability distribution 𝑑𝐹𝒁 𝑡  

Sample an arrival state 𝒚for stochastic process 𝒀′ 𝑡 and an arrival state 𝒙 for process 𝑿′ 𝑡 by 

using eq. (8) 

Set𝑇 = 𝑇 + 𝑡′ 

If𝑇 ≤ 𝑡 

Set 𝒁 =  𝒙, 𝒚  

If𝒁 ∈ 𝓕 

Set𝑘 ′ = 𝑘 ′ + 1 

Break 

End if 

Else(when 𝑇 > 𝑡) 

If𝜑 𝒁, 𝑡 + 𝑡′ − 𝑇 ∈ 𝓕 

Set𝑘 ′ = 𝑘 ′ + 1 

Break 

End if 

End if 

End While 

Set𝑘 = 𝑘 + 1 

End While □ 

The estimated system reliability at time 𝑡 can be obtained by 

𝑅𝑀𝐶
  𝑡 = 1 − 𝑘 ′/𝑁𝑚𝑎𝑥           (11) 

where k' represents the number of trials that end in the failure state of the system, and the sample 

variance (Lewis and Böhm, 1984) is:  

𝑣𝑎𝑟𝑅𝑀𝐶  𝑡 = 𝑅𝑀𝐶
  𝑡 (1 − 𝑅𝑀𝐶

  𝑡 )/(𝑁𝑚𝑎𝑥 − 1) (12) 

The MC simulation method is widely used in practice to evaluate system reliability(Zio, 2013). It 

is based on the strong law of large numbers and the central limit theorem and provides an unbiased 

estimator(Zio, 2013). The error on the estimate can be controlled within a confidence interval built 

based on the sample variance given in eq. (12), which can guarantee the consistency of the estimate. 

The accuracy of the MC simulation method increases as the number of replications increases. The MC 

simulation method is efficient in solving high-dimensional problems, since the sample variance does 

not depend on the number of dimensions. There are techniques to further improve the efficiency of 

MC simulation method (such as importance sampling, sequential MC, linear sampling, subset 

sampling, etc.)(Zio, 2013), which have to be designed according to the specific problems and have not 

been considered in our general reliability assessment framework. 
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4.2. FV method 

The FV method is an alternative for theapproximated solution of the system reliability, based on a 

discretization of the state space of the continuous variables and time space(Eymard and Mercier, 

2008).Here, we employ an explicit FV scheme developed by Cocozza-Thivent et al. (Cocozza-

Thivent, et al., 2006).The numerical scheme aims at constructing an approximate value 𝜌𝑡 𝒙, 𝒚𝑖 𝑑𝒙 

for 𝑝𝑡 𝑑𝒙, 𝒚𝑖 . The estimated system reliability at time 𝑡, then, can be calculated as follows:  

𝑅𝐹𝑉
  𝑡 = ∫ 𝜌𝑡 𝒛 𝑑𝒛𝒛∉𝓕

    (13) 

Appendix A contains a detailed description of the FV method. Due to the complexity of the Chapman-

Kolmogorov equation (eq. (9)), there is no explicit expression for the variance or uncertainty 

associated with the estimate. However, the convergence of the method is proven in Cocozza-Thivent, 

et al. (2006) under the condition that ∆𝑡 → 0 and  ℳ /∆𝑡 → 0, where  ℳ is the space step and ∆𝑡 is 

the time step. The efficiency and the accuracy of the method have been shown through the numerical 

example in Cocozza-Thivent, et al. (2006). 

 

5. CASE STUDY 

We consider a subsystem of a residual heat removal system (RHRS) in a nuclear power plant, 

which consists of a pneumatic valve and a centrifugal pump in series shown in Fig. 4. 

For the degradation model of the pump,weconsider a MSM modified from the one originally 

supplied by EDF(Lin, et al., 2015a), while for the valve we take the PBM proposed inDaigle and 

Goebel (2011).  

 

 

 

Fig. 4. Subsystem of RHRS, consisting of a centrifugal pump and a pneumatic valve. 

 

5.1. Centrifugal pump 

The degradation process of the pump is modeled by a four-state, continuous-time, homogeneous 

Markov chain as shown in Fig. 5. 
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Fig. 5. Degradation process of the pump. 

 

Among the four states of the pump, state3  is the perfect functioning state and state0  is the 

complete failure state. Let 𝑌𝑝 𝑡  denote the degradation state of the pump at time 𝑡 and 𝑺𝑝 =

{3, 2, 1, 0} denote the degradation states set.The pump is functioning until 𝑌𝑝 𝑡 = 0. The parameters 

𝜆32, 𝜆21 and 𝜆10 are the transition rates between the degradation states, estimated from the available 

degradation and/or failure data. The pump vibrates when it reaches the degradation states 2 and 1; the 

intensity of the vibration of the pump on states 2 and 1 is evaluated by the experts as ‘smooth’ and 

‘rough’, respectively. The set of the failure states of the pump is 𝓕𝑝 = {0}. 

 

5.2. Pneumatic valve 

The simplified scheme of the pneumatic valve is shown in Fig. 6. The degradation of the valve is 

the external leak at the actuator connections to the bottom pneumatic port due to corrosion, and is 

modeled by a PBM due to limited statistical degradation data on the valve behavior. It is much more 

significant than the other degradation mechanisms according to the results shown inDaigle and 

Goebel (2011). 

 

 

 

Fig.6. Simplified scheme of the pneumatic valve (Daigle and Goebel, 2011). 

 

Let 𝐷𝑏(𝑡) denote the area of the leak hole at the bottom pneumatic port of the valve at time 𝑡.The 

development of the leak size is described by𝐷𝑏
  𝑡 = 𝜔𝑏 ,where 𝜔𝑏  is the original wear coefficient.The 

valve is considered failed when the size of the external leak exceeds a predefined threshold𝐷𝑏
∗. The set 

of the failure states of the valve is 𝓕𝑣 =  𝐷𝑏
∗, +∞ . 

 

Return Spring

Piston

Bottom chamberBottom 

pneumatic port

Top chamber

Top

pneumatic port

Fluid 



16 
 

5.3. Dependency between degradation processes 

Dependency in the degradation processes of the two components has been indicated as a relevant 

problem by the experts of EDF: the pump vibrates due to degradation (Zhang, et al., 2006) which, in 

turn, leads the valve to vibrate, aggravating its own degradation processes (Moussou, et al., 2001).The 

development of the leak size of the valve is, then, reformulated as follows(Lin, et al., 2015a): 

𝐷𝑏
  𝑡 = 𝜔𝑏(1 + 𝛽(𝑌𝑝 𝑡 ))                                                   (14) 

where 𝛽(𝑌𝑝 𝑡 ) is the function indicating the relative increment of the growth rate of the external leak 

caused by the vibration of the pump at the degradation state 𝑌𝑝 𝑡 .   

 

5.4. Random shocks 

According to the experts of EDF, random shocks like water hammers and internal thermal shocks 

(Salonen, et al., 2007) can worsen the degradation condition of both components of the subsystem 

considered or even immediately lead them to failures. 

Random shocks can deteriorate the pump from its currentstate𝑖 to a degraded state𝑗 ,as 𝑝𝑖𝑗 =

9×(0.1)(𝑖−𝑗+1)

1−(0.1)(𝑖+1) , 𝑖 ≥ 𝑗,where 𝑝𝑖0 denotes the probability of an extreme random shock leading the pump 

from state 𝑖 directly to failure state 0.The formulation is taken fromYang, et al. (2011), which satisfies 

that  𝑝𝑖𝑗
0
𝑗=𝑖 = 1. By combining the degradation process of the pump with therandom shock process, 

the resultingprocesstakes the form shown in Fig. 7. The state of the process is represented by𝑌 𝑡 =

 𝑌𝑝(𝑡), 𝑚 ,𝑚 ∈ ℕ, wherem is the number of shocks experiencedby the pump.The state space of the 

new process is denoted by 𝑺 = { 𝑎, 𝑏 , ∀𝑎 ∈ 𝑺𝑝 , 𝑏 ∈ ℕ} andthe set of failure states of the pump is 

𝓕𝒑
′ = { 0, 𝑏 , ∀𝑏 ∈ ℕ}. 

 

 

 

Fig. 7. Degradation and random shock processes of the pump. 
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For the valve, the 𝑖-th shock becomes extreme if the shock load 𝑊𝑖exceedsthe maximal material 

strength𝐷 ,otherwise, it can bring aninstantaneous random increase𝐻𝑖  to the total externalleak 

size(Song, et al., 2014b). Since the shock load and the damage cannot be negative,𝑊𝑖  and 𝐻𝑖  are 

assumed to be i.i.d. random variables following folded normal distributions(Leone, et al., 1961),𝑊𝑖 =

 𝑎  and 𝐻𝑖 =  𝑏 , where 𝑎~𝑁(𝜇𝑕 , 𝜎𝑕
2) and 𝑏~𝑁(𝜇𝑤 , 𝜎𝑤

2 ). 

 

5.5. PDMP for the system considering dependency 

An illustration of the composite degradation process of the valve considering random shocks and 

the degradation state of the pump is shown in Fig. 8, where the system experienced a random shock at 

time 𝑡𝑖 , with the shock load 𝑊𝑖 , 𝑖 = 1,3,4. The first two shocks cause instantaneous random increases 

on 𝐷 𝑡 , the last shock leads the valve to failure. The vibration of the pump accelerates the 

degradation process of the valve at times𝑡2  and 𝑡3, when the pump stepped to a further degraded 

state.The development of the leak size of the valvedoes not depend on other physical variables 

according to the given physics equations. Therefore, no physical variables are considered in Fig. 8 and 

no randomness is observed between two changing points. Nevertheless, there is actually randomness, 

i.e. the random changing points and the random increments. Moreover, if we consider the randomness 

in physical variables, then there will be randomness on the curve between two changing points. 

 

 

 

Fig. 8. An illustration of the degradation of the valveconsidering random shocks and the 

degradation state of the pump. Top Figure: degradation process of the valve; Center Figure: random 

shock processes; Bottom Figure: degradation process of the pump. 

 

The degradation processes of the whole system can berepresented by:  

𝒁 𝑡 =  𝐷 𝑡 , 𝑌 𝑡   ∈  ℝ+ × 𝑺 = 𝑬           (15) 
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Let 𝑇𝑘 , 𝑘 ∈ ℕ denote the 𝑘 -th jump timein𝑌 𝑡 and𝒁𝑘 =  𝐷𝑘 , 𝑌𝑘 = 𝒁 𝑇𝑘 . The evolution of 𝒁 𝑡  

between two consecutive jumps of 𝑌 𝑡 , between which no shock occurs to the system and the 

degradation state of the pumpdoes not change, can be written as follows: 

𝒁  𝑡 =  𝐷  𝑡 , 𝑌  𝑡   

=  𝜔𝑏(1 + 𝛽(𝑌𝑝(𝑡))), (0, 0)  

=  𝜈(𝑌(𝑡)), (0, 0) , 𝑓𝑜𝑟 𝑡 ∈  𝑇𝑘 , 𝑇𝑘+1 (16) 

where 𝜈(∙)is used to denote the corresponding equation. 

By integrating eq. (25), we can obtain that: 

𝒁 𝑡 =  𝐷𝑘 +  𝑡 − 𝑇𝑘 𝜔𝑏(1 + 𝛽(𝑌𝑝(𝑇𝑘))), 𝑌𝑘  

= (𝜑1 𝒁𝑘 , 𝑡 − 𝑇𝑘 , 𝑌𝑘), 𝑓𝑜𝑟 𝑡 ∈  𝑇𝑘 , 𝑇𝑘+1  

= 𝜑 𝒁𝑘 , 𝑡 − 𝑇𝑘 , 𝑓𝑜𝑟 𝑡 ∈  𝑇𝑘 , 𝑇𝑘+1 (17) 

where 𝜑1(∙) and 𝜑(∙) are used to denote the corresponding equations. 

Let 𝑝𝑡(𝑑𝑥, 𝒚𝑖) denote the probability distribution of 𝒁 𝑡 . Given the series logic configuration of 

the system considered, the system fails when one of the two components fails;the reliability of the 

system at time 𝑡 is, then, defined as follows: 

𝑅 𝑡 =  𝑃 𝒁 𝑠 ∉ 𝓕, ∀𝑠 ≤ 𝑡 = ∫  𝑝𝑡(𝑑𝑥, 𝒚𝑖)𝒚𝑖∉𝓕𝒑
′

𝑥∉𝓕𝑣
(18) 

where 𝓕 = ℝ+ × 𝓕𝒑
′ ∪𝓕𝑣 × 𝑺isthe set of the failure states of the system. 

The parameter values related to the system degradation processes and random shocks under 

accelerated aging conditions are presented in Table I. The first eight parameter values related to the 

degradation processes are taken fromLin, et al. (2014), the values of 𝜇𝑤 , 𝜎𝑤  and 𝐷 are taken from 

Peng, et al. (2010) and those of𝜇, 𝜇𝑕  and 𝜎𝑕are assumed by expert judgment.Indeed, all parameter 

values are set upon the discussion with the experts from EDF.Indeed, all parameter values are set upon 

the discussion with the experts from EDF. 

 

Table IParameter values 

 

Parameter Value 

𝜆32 3e-3 /s 

𝜆21 3e-3 /s 

𝜆10 3e-3 /s 

𝜔𝑏  1e-8 m
2
/s 

𝛽(3) 0 

𝛽(2) 10% 

𝛽(1) 20% 

𝛽(0) 0 
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𝐷𝑏
∗ 1.06e-5 m

2
 

𝜇 5e-3 /s 

𝜇𝑤  1.2 Gpa 

𝜎𝑤  0.2 Gpa 

𝐷 1.5 Gpa. 

𝜇𝑕  1e-7 m
2
 

𝜎𝑕  2e-8 m
2
 

 

6. NUMERICAL RESULTS AND ANALYSIS 

The MC simulation and the FV methods are employed to estimate the system reliability. All the 

experiments are carried out in MATLAB on a PC with an Intel Core 2 Duo CPU at 3.06 GHz and a 

RAM of 3.07 GB. MC simulations with 103, 104 and 105 replications (named MC1, MC2 and MC3, 

respectively) are applied over a time horizon of 𝑇𝑚𝑖𝑠𝑠 = 1000 𝑠  for the system reliability 

estimation.System holding time, arrival state for stochastic process 𝑌 𝑡 and arrival state for process 

𝐷 𝑡 can be sampled by using the probability distribution eq. (28), the probability mass function eq. 

(30) and the probability distribution eq. (31), respectively. See Appendix B for detailed descriptions of 

these equations. 

The results are shown in Fig. 9. It is seen that the MC simulation method requires a number of 

replications to achieve the desired level of accuracy. The average computation times of MC1, 

MC2and MC3 are 0.21 s, 2.17 s and 21.77 s, respectively. 

 

 

Fig. 9. System reliability estimated by MC1, MC2 and MC3. 

 

For the FV method, the state space ℝ+  of 𝐷 𝑡  has been divided into an admissible mesh 
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ℳ =  [𝑚∆𝑥, (𝑚 + 1)∆𝑥[𝑚=0,1,2,… and the time space ℝ+ has been divided into small intervals 

ℝ+ =  [𝑛∆𝑡, (𝑛 + 1)∆𝑡[𝑛=0,1,2,… . See Appendix C for the application of FV method. 

The system reliability estimated by the FV method, is shown in Fig. 10 with the 

followingdifferent parameter settings: (1) FV1: ∆𝑥 = 5𝑒 − 9, ∆𝑡 = 0.5 ; (2) FV2: ∆𝑥 = 1.5𝑒 −

8, ∆𝑡 = 1.5 and (3) FV3: ∆𝑥 = 4.5𝑒 − 8, ∆𝑡 = 4.5.The accuracy of theFV scheme increases as the 

space step ∆𝑥 and the time step ∆𝑡are reduced. The average computation times of FV1, FV2 and FV3 

are 0.19 s, 1.93 s and 26.39 s, respectively. 

 

 

 

Fig. 10. System reliability estimated by FV1, FV2 and FV3. 

 

The quantitative comparison of the most accurate results obtained by MC3 with those obtained by 

FV3is shown in Table II.The sample variances associated with system reliability values estimated by 

MC3 are less than 2.5e-6 according to eq. (12), which means the results are sufficiently consistent and 

accurate. The quantitative comparison of results obtained by MC3 and FV3 shown in Table II is only 

used to show that FV scheme can achieve comparable results to the MC simulation method (relative 

error less than 0.9%) in the illustrative case. Note that FV3 gives deterministic results since the values 

of ∆𝑥  and ∆𝑡  do not change, which guarantees the accuracy and consistency of the quantitative 

comparison. To provide more information, we have added Fig. 11 to compare the results obtained by 

MC3 with those obtained by FV3 over the time horizon. For this case study, the computational 

expense of the two methods is similar. 

 

Table IIQuantitative comparison of the results obtained by MC3 and FV3 
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    Method 

Time   

MC3 FV3 Relative 

error 

100s 0.9611 0.9607 0.0438% 

200s 0.9021 0.9011 0.1162% 

300s 0.8230 0.8205 0.3027% 

400s 0.7285 0.7263 0.2974% 

500s 0.6284 0.6271 0.2109% 

600s 0.5312 0.5300 0.2394% 

700s 0.4395 0.4397 0.0365% 

800s 0.3576 0.3591 0.4157% 

900s 0.2467 0.2459 0.3204% 

1000s 0.0335 0.0332 0.8955% 

 

 
Fig. 11. Comparison of the results obtained by MC3 and FV3. 

 

The reliability values of the valve, the pump and the system with/without random shocks, 

obtained by MC3, are shown in Fig. 12. The numerical comparisons on the reliability of the system, 

the valve and the pumpwith/without random shocks at the final time of 1000 s are presented in Table 

III. 
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Fig. 12. The reliability of the system, the valve and the pump with/without random shocks. 

 

When random shocks are ignored, the system reliability is basicallydetermined by the pump 

before around 870 s, since the valve is highly reliable. After that, the sharp decrease of the valve 

reliabilitydue to degradation leads tothe same behavior in the system reliability. When random shocks 

are considered, the system reliability is determined by both the pump reliability and the valve 

reliability from the beginning until around 850 s, since the valve is no longer as highly reliable as 

before. Then, the valve reliability decreases sharply due to the joint effects of random shocks and 

degradation, and thisdrives alsothe sharp decrease of the system reliability. We can see from the 

results that neglecting random shocks can result inan underestimation of the reliability of the system 

and of the components.  

 

Table IIIComparison of reliabilitywith/without random shocks at 1000 s 

 

 Reliability without 

random shocks 

Reliability with 

random shocks 

Relative change 

System 0.18 0.033 81.67% 

Valve 0.50 0.099 80.20% 

Pump 0.43 0.32 25.58% 

 

The uncertainties associated with the parameter estimates can influence the estimation of system 

reliability. The actual effect depends on the types and degrees of uncertainties, which are problem 

specific. Following one assumption of our work (i.e. limited historical data), epistemic uncertainty can 

arise due to the incomplete or imprecise knowledge about the degradation processes and the 

governing parameters of the pump and the valve, which has been considered in Lin, et al. (2015a)by 

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

R
e

lia
b

ili
ty

 

 



23 
 

describing the degradation model parameters as intervals (or fuzzy numbers). In the revised 

manuscript, we follow the settings in Lin, et al. (2015a) where a relative deviation of ±10% to the 

original parameters values has been considered for 𝜆32 ,  𝜆21 , 𝜆10 , 𝜔𝑏 , 𝛽(3), 𝛽(2), 𝛽(1) and𝛽(0) 

upon the discussionswith the domain experts from EDF. The lower and upper bounds of system 

reliability under uncertainty, and the original values without uncertainty obtained by MC3 are shown 

in Fig. 13. The lower bound of system reliability with uncertainty decreases more sharply after around 

790 s, earlier than that without uncertainty. It is seen that the system fails after around 964 s, because 

at that time the valve is completely failed. The upper bound of system reliability with uncertainty does 

not experience a rapid decrease because the valve is mostly functioning over the time horizon. 

 

 
Fig. 13. The lower and upper bounds of system reliability with uncertainty, and the original values 

without uncertainty obtained by MC3. 

 

7. CONCLUSIONS 

In this paper, we presentedreliability models for systems experiencing both degradation processes 

and random shocks. The degradation processes involve both continuous and multi-state processes, 

which are modeled by MSMs and PBMs, respectively.The dependencies between degradation 

processes and random shocks and among degradation processes are addressed by PDMP modeling. 

The procedures of the MC simulation and FV methods to solve the model are developed.A subsystem 

of a RHRS in a nuclear power plant, which consists of a pneumatic valve and a centrifugal pump, is 

considered as the illustrative exampleto demonstrate the effectiveness and modeling capabilities of the 

proposed framework.As original contribution and differently from our previous work (Lin, et al., 

2015a), this work is first in considering system reliability under both continuous and multi-state 

degradation processes, random shocks and their dependencies.  

As future work, we will include maintenance in the model and derive optimal maintenance 

policies under the conditions considered. 
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Appendix A: FV method 

 

Assumptions 

The FV method for determining the approximated solution of the system reliability can be developed 

under the following assumptions (Cocozza-Thivent, et al., 2006): 
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 The transition rates 𝜆𝒚𝑖 ,𝒚𝑗 (∙ | 𝜽𝑲), ∀𝒚𝑖 , 𝒚𝑗 ∈ 𝑺′  are continuous and bounded functions from 

ℝ𝑑𝐿  to ℝ+. 

 The physics equations𝒇𝑳
𝒚𝑖   ∙ 𝜽𝑳 , ∀𝒚𝑗 ∈ 𝑺′  are continuous functions from ℝ𝑑𝐿  to ℝ𝑑𝐿  and 

locally Lipschitz continuous. 

 The physics equations𝒇𝑳
𝒚𝑖   ∙ 𝜽𝑳 , ∀𝒚𝑖 ∈ 𝑺′  are sub-linear, i.e. there are some 𝑉1 > 0  and 

𝑉2 > 0 such that  

∀𝒙 ∈ ℝ𝑑𝐿 , 𝑡 ∈ ℝ+ 𝒇𝑳
𝒚𝑖   𝒙 𝜽𝑳  ≤ 𝑉1 𝒙 + 𝑉2 

 The functions 𝑑𝑖𝑣(𝒇𝑳
𝒚𝑖   ∙ 𝜽𝑳 ), ∀𝒚𝑖 ∈ 𝑺′  are almost everywhere bounded in absolute value 

by some real value 𝐷 > 0 (independent of 𝒚𝑖). 

 If 𝜙(∙)  is a continuous and bounded function from ℝ𝑑𝐿  to ℝ , then, 

𝒙 → ∫𝜙(𝑦 )𝜇 𝒚𝑖 , 𝒚𝑗 , 𝒙  𝑑𝒚  is continuous from ℝ𝑑𝐿  to ℝ.  

 

Solution approach 

For ease of notation, we let 𝒈𝒚𝑖 ∙, ∙  | 𝜽𝑳 : ℝ𝑑𝐿 × ℝ → ℝ𝑑𝐿  denote the solution of 

𝜕

𝜕𝑡
𝒈𝒚𝑖 𝒙, 𝑡 | 𝜽𝑳 = 𝒇𝑳

𝒚𝑖  (𝒈𝒚𝑖 𝒙, 𝑡 | 𝜽𝑳  | 𝜽𝑳 , ∀𝒚𝑖 ∈ 𝑺′ , 𝒙 ∈ ℝ𝑑𝐿 , 𝑡 ∈ ℝ        (19) 

with 

𝒈𝒚𝑖 𝒙, 0 | 𝜽𝑳 = 𝒙, ∀𝒚𝑖 ∈ 𝑺′ , 𝒙 ∈ ℝdL                                       (20) 

and 𝒈𝒚𝑖 𝒙, 𝑡 | 𝜽𝑳  being the result of the deterministic behavior of 𝑿 𝑡  after time t, starting from the 

point 𝒙 while the processes 𝒀′ 𝑡  hold on state 𝒚𝑖 . 

The state space ℝ𝑑𝐿  of continuous variables 𝑿′ 𝑡  is divided into an admissible mesh ℳ, which is 

a family of measurable subsets of ℝ𝑑𝐿 , i.e., ℳ is a partition of ℝ𝑑𝐿  such that: 

(1)  𝐴𝐴∈ℳ = ℝ𝑑𝐿 . 

(2) ∀𝐴, 𝐵 ∈ ℳ, 𝐴 ≠ 𝐵 ⇒ 𝐴 ∩ 𝐵 = ∅. 

(3) 𝑚𝐴 = ∫ 𝑑𝒙
𝐴

> 0, ∀𝐴 ∈ ℳ, where 𝑚𝐴 is the volume of grid 𝐴. 

(4) 𝑠𝑢𝑝𝐴∈ℳ𝑑𝑖𝑎𝑚 𝐴 < +∞ where 𝑑𝑖𝑎𝑚 𝐴 = 𝑠𝑢𝑝∀𝒙,𝒚∈𝐴 𝒙 − 𝒚 . 

Additionally, the time space ℝ+is divided into small intervals ℝ+ =  [𝑛∆𝑡, (𝑛 + 1)∆𝑡[𝑛=0,1,2,…  by 

setting the time step ∆𝑡 > 0 (the length of each interval). 

The numerical scheme aims at constructing an approximate value 𝜌𝑡 𝒙,∙ 𝑑𝒙 for 𝑝𝑡 𝑑𝒙,∙ , such 

that 𝜌𝑡 𝒙,∙  is constant on each [𝑛∆𝑡, (𝑛 + 1)∆𝑡[× 𝐴 × {𝒚𝑖}, ∀𝐴 ∈ ℳ,𝒚𝑖 ∈ 𝑺′ :   

𝜌𝑡 𝒙, 𝒚𝑖 = 𝑃𝑛 𝐴, 𝒚𝑖 , ∀𝒚𝑖 ∈ 𝑺′ , 𝒙 ∈ 𝐴, 𝑡 ∈ [𝑛∆𝑡, (𝑛 + 1)∆𝑡[                         (21) 

𝑃0 𝐴, 𝒚𝑖 , ∀𝒚𝑖 ∈ 𝑺′ , 𝐴 ∈ ℳ is defined as follows: 

𝑃0 𝐴, 𝒚𝑖 = ∫ 𝑝0 𝑑𝒙, 𝒚𝑖 𝐴
/𝑚𝐴                                               (22) 

Then, 𝑃𝑛+1 𝐴, 𝒚𝑖  can be calculated considering the deterministic evaluation of 𝑿 𝑡  and the 

stochastic evolution of 𝒀′ 𝑡  based on 𝑃𝑛 ℳ, 𝒚𝑖  by the Chapman-Kolmogorov forward equation, as 
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follows: 

𝑃𝑛+1 𝐴, 𝒚𝑖  

=
1

1+∆𝑡𝑏𝐴
𝒚𝑖
𝑃𝑛+1
  𝐴,𝒚𝑖 + ∆𝑡   

𝑎
𝐵,𝐴

𝒚𝑗 ,𝒚𝑖

1+∆𝑡𝑏𝐴
𝒚𝑗
𝑃𝑛+1
  𝐵,𝒚𝑗  𝒚𝑗∈𝑺

′𝐵∈ℳ                     (23) 

where  

𝑎𝐵,𝐴

𝒚𝑗 ,𝒚𝑖 = ∫ 𝜆𝒚𝑗 ,𝒚𝑖(𝒙 | 𝜽𝑲) ∫ 𝜇 𝒚𝑗 , 𝒚𝑖 , 𝒙  𝑑𝒚 𝒙𝐵𝐴
𝑚𝐴                             (24) 

is the average transition rate from state 𝒚𝑗  and grid 𝐵 to state 𝒚𝑖  and grid 𝐴, 

𝑏𝐴
𝒚𝑖 = ∫  𝜆𝒚𝑖 ,𝒚𝑗 (𝒙 | 𝜽𝑲)𝑑𝒙𝒚𝑗∈𝑺

′
𝐴

/𝑚𝐴                                      (25) 

is the average transition rate out of state 𝒚𝑖  for grid 𝐴, 

𝑃𝑛+1
  𝐴,𝒚𝑖 =  𝑚𝐵𝐴

𝒚𝑖
𝐵∈ℳ 𝑃𝑛 𝐵, 𝒚𝑖 /𝑚𝐴                                    (26) 

is the approximate value of probability density function on [(𝑛 + 1)∆𝑡, (𝑛 + 2)∆𝑡[× 𝐴 ×  𝒚𝑖  

according to the deterministic evolution of 𝑿 𝑡 , 

𝑚𝐵𝐴
𝒚𝑖 = ∫ 𝑑𝒚

{𝒚∈𝐵 |𝒈𝒚𝑖  𝒚,∆𝑡 | 𝜽𝑳 ∈𝐴}
                                              (27) 

is the volume of the part of grid 𝐵 which will enter grid 𝐴 after time ∆𝑡, according to the deterministic 

evolution of 𝑿 𝑡 .  

The approximated solution 𝜌𝑡 𝒙,∙ 𝑑𝒙  weakly converges towards 𝑝𝑡 𝑑𝒙,∙  when ∆𝑡 → 0  and  ℳ /

∆𝑡 → 0 where  ℳ = 𝑠𝑢𝑝𝐴∈ℳ𝑑𝑖𝑎𝑚 𝐴 .  

 

Appendix B: Equations for MC simulation method in case study 

 

The semi-Markov kernel of  𝒁𝑛 , 𝑇𝑛 𝑛≥0  is 

 𝒊 = (𝑥, 𝒚𝑖), (𝑑𝑥, 𝒚𝑗 ), 𝑑𝑡 = 𝑄(𝜑 𝒊, 𝑡 , (𝑑𝑥, 𝒚𝑗 ))𝑑𝐹𝒊 𝑡 , ∀𝑘 ∈ ℕ, 𝒚𝑖 , 𝒚𝑗 ∈ 𝑺, 𝑥 ∈ ℝ+, 𝑑𝑥 → 0, 𝑑𝑡 → 0 . 

According to the degradation models of the system, we can obtain that: 

𝑑𝐹𝒊=(𝑥,𝒚𝑖)
 𝑡 = 𝜆𝒚𝑖𝑒

−𝜆𝒚𝑖𝑡𝑑𝑡(28) 

where 𝜆𝒚𝑖  is the sum of the outgoing transition rates of 𝑌(𝑡) from state 𝒚𝑖 , and 

𝑄 𝜑 𝒊, 𝑡 , (𝑑𝑥, 𝒚𝑖)  

= 𝑃 𝐷𝑘+1 ∈  𝑥, 𝑥 + 𝑑𝑥  | 𝑌𝑘+1 = 𝒚𝑗 , 𝑇𝑘+1 − 𝑇𝑘 ∈  𝑡, 𝑡 + 𝑑𝑡 , 𝒁𝑘 = 𝒊  

∙ 𝑃 𝑌𝑘+1 = 𝒚𝑗  | 𝑇𝑘+1 − 𝑇𝑘 ∈  𝑡, 𝑡 + 𝑑𝑡 , 𝒁𝑘 = 𝒊  (29) 

where  

𝑃 𝑌𝑘+1 = 𝒚𝑗  | 𝑇𝑘+1 − 𝑇𝑘 ∈  𝑡, 𝑡 + 𝑑𝑡 , 𝒁𝑘 = 𝒊  

= 𝑃 𝑌𝑘+1 = 𝒚𝑗  | 𝑌𝑘 = 𝒚𝑖  

=
𝜆𝒚𝑖 ,𝒚𝑗

𝜆𝒚𝑖
(30) 

where 𝜆𝒚𝑖 ,𝒚𝑗  is the transition rate of 𝑌(𝑡) from state 𝒚𝑖  to state 𝒚𝑗 , and 
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𝑃 𝐷𝑘+1 ∈  𝑥, 𝑥 + 𝑑𝑥  | 𝑌𝑘+1 = 𝒚𝑗 , 𝑇𝑘+1 − 𝑇𝑘 ∈  𝑡, 𝑡 + 𝑑𝑡 , 𝒁𝑘 = 𝒊  

=

 
 
 

 
 𝑃 𝜑1 𝒊, 𝑡 + 𝐻(𝑇𝑘 + 𝑡) ∈  𝑥, 𝑥 + 𝑑𝑥  ,

𝑖𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝒚𝑖  𝑡𝑜 𝒚𝑗  𝑖𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑕𝑜𝑐𝑘

𝛿𝜑1 𝒊,𝑡 
 𝑑𝑥 ,

𝑖𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝒚𝑖  𝑡𝑜 𝒚𝑗  𝑖𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

                     (31) 

where  𝐻(𝑇𝑘 + 𝑡) is the instantaneous random increase caused by shock at time 𝑇𝑘 + 𝑡, 𝛿 is the Dirac 

delta function and 

𝑃 𝜑1 𝒊, 𝑡 + 𝐻 𝑇𝑘 + 𝑡 ∈  𝑥, 𝑥 + 𝑑𝑥   

=

 
 
 

 
 Φ(

𝐷−𝜇𝑤

𝜎𝑤
) ∙

1

𝜎𝑕
𝜙(

𝑥−𝜑1 𝒊,𝑡 −𝜇𝑕

𝜎𝑕
))𝑑𝑥,

𝑖𝑓 𝑥 < 𝐷𝑏
∗

(1 − Φ(
𝐷−𝜇𝑤

𝜎𝑤
)) ∙ 𝛿𝜑1 𝒊,𝑡 +𝐷𝑏

∗ 𝑑𝑥 + Φ(
𝐷−𝜇𝑤

𝜎𝑤
) ∙

1

𝜎𝑕
𝜙(

𝑥−𝜑1 𝒊,𝑡 −𝜇𝑕

𝜎𝑕
))𝑑𝑥,

𝑖𝑓 𝑥 ≥ 𝐷𝑏
∗

 (32) 

where Φ(∙) and 𝜙(∙) are the cumulative distribution function and the probability density function of a 

folded normal distribution related to the standard normal distribution, respectively. Here, since an 

extreme shock can directly lead the valve to failure, we assume each extreme shock increase the total 

external leak size by 𝐷𝑏
∗  to formulate the problem within the settings of PDMP. Note that this 

assumption will not change the reliability of the valve. 

 

Appendix C: Application of FV method in case study 

 

The probability distribution of 𝒁 𝑡 ,𝑝𝑡(𝑑𝑥, 𝒚𝑖), obeys the Chapman-Kolmogorov equation (Davis, 

1993)  as follows: 

    𝜆𝒚𝑖 ,𝒚𝑗 ( 𝜓 𝒚𝑗 , 𝑦 𝜇 𝒚𝑖 , 𝒚𝑗 , 𝑥  𝑑𝑦 − 𝜓 𝒚𝑖 , 𝑥 
ℝ+

)𝑝𝑠(𝑑𝑥, 𝒚𝑖)𝑑𝑠

𝒚𝑗∈𝑺
ℝ+

𝒚𝑖∈𝑺

𝑡

0

+ 

   𝜈 𝒚𝑖 𝑑𝑖𝑣 𝜓 𝒚𝑖 , 𝑥  𝑝𝑠 𝑑𝑥, 𝒚𝑖 𝑑𝑠
ℝ+

𝒚𝑖∈𝑺

𝑡

0

−   𝜓 𝒚𝑖 , 𝑥 
ℝ+

𝒚𝑖∈𝑺

𝑝𝑡 𝑑𝑥, 𝒚𝑖 + 

 ∫ 𝜓 𝒚𝑖 , 𝑥 ℝ+𝒚𝑖∈𝑺 𝑝0 𝑑𝑥, 𝒚𝑖 = 0                                        (33) 

where 𝜓(∙,∙) is any continuously differentiable function from  𝑺 × ℝ+ to ℝ with a compact support 

and 𝜇 𝒚𝑖 , 𝒚𝑗 , 𝑥  𝑑𝑦  is the probability of 𝐷 𝑡 ∈  𝑦, 𝑦 + 𝑑𝑦  after jumping from 𝑥 when 𝑌 𝑡  steps to 

state 𝒚𝑗  from state 𝒚𝑖  as follows: 
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𝜇 𝒚𝑖 , 𝒚𝑗 , 𝑥  𝑑𝑦 =

 
 
 
 
 

 
 
 
 Φ(

𝐷 − 𝜇𝑤
𝜎𝑤

) ∙
1

𝜎𝑕
𝜙(

𝑦 − 𝑥 − 𝜇𝑕
𝜎𝑕

))𝑑𝑦,

𝑖𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝒚𝑖  𝑡𝑜 𝒚𝑗  𝑖𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑕𝑜𝑐𝑘 𝑎𝑛𝑑 𝑦 < 𝐷𝑏
∗

(1 − Φ(
𝐷 − 𝜇𝑤
𝜎𝑤

)) ∙ 𝛿𝑥+𝐷𝑏
∗ 𝑑𝑦 + Φ(

𝐷 − 𝜇𝑤
𝜎𝑤

) ∙
1

𝜎𝑕
𝜙(

𝑦 − 𝑥 − 𝜇𝑕
𝜎𝑕

))𝑑𝑦

𝑖𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝒚𝑖  𝑡𝑜 𝒚𝑗  𝑖𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑕𝑜𝑐𝑘 𝑎𝑛𝑑 𝑦 ≥ 𝐷𝑏
∗

𝛿𝑥 𝑑𝑦 ,
𝑖𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝒚𝑖  𝑡𝑜 𝒚𝑗  𝑖𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

  

(34) 

𝑃0 𝑚, 𝒚𝑖  is defined as follows: 

𝑃0 𝑚, 𝒚𝑖 = ∫ 𝑝0 𝑑𝑥, 𝒚𝑖 
(𝑚+1)∆𝑥

𝑚∆𝑥
/∆𝑥                                       (35) 

where 𝑝0 𝑑𝑥, 𝒚𝑖 = 𝛿0 𝑑𝑥 ∙ 𝟏{𝒚𝑖=(3,0)}. Then, 𝑃𝑛+1 𝑚, 𝒚𝑖 , 𝑛 ∈ ℕ can be calculated considering the 

deterministic evolution of 𝐷 𝑡  and the stochastic evolution of 𝑌 𝑡  based on 𝑃𝑛 ⋅, ⋅  by the 

Chapman-Kolmogorov forward equation, as follows: 

𝑃𝑛+1 𝑚, 𝒚𝑖  

=
1

1+∆𝑡𝜆𝒚𝑖
𝑃𝑛+1
  𝑚,𝒚𝑖 + ∆𝑡   

𝑎
𝑚 ′ ,𝑚

𝒚𝑗 ,𝒚𝑖

1+∆𝑡𝜆𝒚𝑗
𝑃𝑛+1
  𝑚′ , 𝒚𝑗  𝒚𝑗∈𝑺𝑚 ′∈ℕ                    (36) 

where  

𝑎
𝑚 ′ ,𝑚

𝒚𝑗 ,𝒚𝑖 = 𝜆𝒚𝑗 ,𝒚𝑖 ∫ ∫ 𝜇 𝒚𝑗 , 𝒚𝑖 , 𝑥  𝑑𝑦 𝑑𝑥
(𝑚+1)∆𝑥

𝑚∆𝑥

(𝑚 ′ +1)∆𝑥

𝑚 ′ ∆𝑥
∆𝑥                      (37) 

is the average transition rate from state 𝒚𝑗  and grid [𝑚′∆𝑥, (𝑚′ + 1)∆𝑥[  to state 𝒚𝑖  and grid 

[𝑚∆𝑥, (𝑚 + 1)∆𝑥[, 

𝑃𝑛+1
  𝑚,𝒚𝑖 =  𝑣

𝑚 ′ ,𝑚

𝒚𝑖
𝑚 ′∈ℕ 𝑃𝑛 𝑚

′ , 𝒚𝑖 /∆𝑥                                 (38) 

is the approximate value of probability density function on [𝑚∆𝑥, (𝑚 + 1)∆𝑥[×  𝒚𝑖  according to the 

deterministic evolution of 𝐷 𝑡  between jumps of 𝑌 𝑡  and 

𝑣
𝑚 ′ ,𝑚

𝒚𝑖 = ∫ 𝑑𝑥
{𝑥∈[𝑚 ′ ∆𝑥,(𝑚 ′ +1)∆𝑥[ |(𝜑1 (𝑥,𝒚𝑖),∆𝑡 ∈[𝑚∆𝑥,(𝑚+1)∆𝑥[}

                  (39) 

is the volume of the part of grid [𝑚′∆𝑥, (𝑚′ + 1)∆𝑥[ which will enter grid [𝑚∆𝑥, (𝑚 + 1)∆𝑥[ after 

time ∆𝑡 according to the deterministic evaluation of 𝐷 𝑡 .  

 

 


