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Index Terms – Degradation dependency, importance measures, multiple dependent 

competing degradation processes, piecewise-deterministic Markov process (PDMP), finite-

volume approach, residual heat removal system, nuclear power plant.  

 

 

Abstract - Component importance measures (IMs) are widely used to rank the importance of 

different component within a system and guide allocation of resources. The criticality of a 

component may vary over time, under the influence of multiple dependent competing 

degradation processes and maintenance tasks. Neglecting this may lead to inaccurate 

estimation of the component IMs and inefficient related decisions (e.g. maintenance, 

replacement, etc.). The work presented in this paper addresses the issue by extending the 

mean absolute deviation IM by taking into account: (1) the dependency of multiple 

degradation processes within one component and among different components; (2) discrete 

and continuous degradation processes; (3) two types of maintenance tasks: condition-based 

preventive maintenance via periodic inspections and corrective maintenance.Piecewise-

deterministic Markov processes are employed to describe the stochastic process of 

degradation of the component under these factors. A method for the quantification of the 

component IM is developed based on the finite-volume approach. A case study on one section 

of the residual heat removal system of a nuclear power plant is considered as an example for 

numerical quantification. 
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Acronyms 

IMs   Importance measures 

PBMs   Physics-based models 

MSMs   Multi-state models 

GSA   Global sensitivity analysis 

BIM   Birnbaum IM 

MAD   Mean absolute deviation 

MSSs    Multi-state systems 

PM    Preventive maintenance 

CM    Corrective maintenance 

FV    Finite-volume  

RHRS    Residual heat removal system  

 

Notations 

𝑄   Number of components in the system 

𝑳   Group of degradation processes modeled by PBMs 

𝑲   Group of degradation processes modeled by MSMs 

𝑫𝑂𝑞
   Degradation state of component 𝑂𝑞  

𝑋𝐿𝑚
         𝑡    Time-dependent continuous variables of degradation process 𝐿𝑚  

𝑋𝐿𝑚

𝑫         𝑡    Non-decreasing degradation variables vector 

𝑋𝐿𝑚

𝑷         𝑡    Physical variables vector 

𝓕𝐿𝑚
   Set of failure states of degradation process 𝐿𝑚  

𝑌𝐾𝑛
 𝑡    State variable of degradation process 𝐾𝑛  

𝑺𝐾𝑛
   Finite state set of degradation process 𝐾𝑛  
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𝓕𝐾𝑛
   Set of failure states of degradation process 𝐾𝑛  

𝑯𝑖    Predefined state set of PM for degradation process 𝑖 

𝑇𝑖    Fixed period of PM for degradation process 𝑖 

𝑍  𝑡    Degradation state of the system 

𝑁𝑚    Number of maintenance tasks experienced by the system 

𝑇𝑚𝑖𝑠𝑠    System mission time 

𝑇𝑚
𝑘    Execution time of the k-th maintenance task 

𝑍𝑘
      𝑡    Degradation state of the system defined on  𝑇𝑚

𝑘−1, 𝑇𝑚
𝑘   

𝜽𝑲   Environmental and operational factors in 𝑲 

𝜆𝑖  𝑗 |𝑋      𝑡 , 𝜽𝑲  Transition rate from state 𝑖  to 𝑗  

𝜽𝑳   Environmental and operational factors in 𝑳 

𝑓𝑳      𝑍𝑘
      𝑡 , 𝑡 𝜽𝑳  Deterministic physics equations in 𝑳 

𝑍′     𝑡    Stochastic process recording the failure of the system 

𝓕   System failure state set 

𝐶𝐼𝑂𝑞
 𝑡   Component IM of component 𝑂𝑞  at time 𝑡 

𝑓𝑫𝑂𝑞
           𝑡  𝑑𝑥𝑳𝑝

       , 𝑦𝑲𝑞
         Probability distribution of 𝑫𝑂𝑞

         𝑡   

𝑝𝑡
𝑍𝑘      

 𝑑𝑥 , 𝑖  |𝜽  Probability distribution of processes 𝑍𝑘
     (𝑡)   

𝑃𝑛
𝑍𝑘      

 𝐴, 𝑖 |𝜽   Approximate value for 𝜌𝑡
𝑍𝑘      

 ∙,∙ |𝜽  on  𝑖  × [(𝑛 + 1)∆𝑡, (𝑛 + 2)∆𝑡[× 𝐴 

  𝐴𝑘−1, 𝑖𝑘−1           Set containing all the states that step to the state (𝐴, 𝑖 ) after the  

(𝑘 − 1)-th maintenance task 

𝐴/  𝑥𝑳𝑝
       , 𝑦𝑲𝑞

         Mesh by fixing 𝑫𝑂𝑞
        (𝑡)to (𝑥𝑳𝑝

       , 𝑦𝑲𝑞
       ). 

 

 

1. INTRODUCTION 

In reliability engineering, component importance measures (IMs) are used to quantify and 

rank the importance of different components within a system. By determining the criticalities 
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of the components, limited resources can be allocated according to components prioritization 

for reliability improvement during the system design and maintenance planning phases[1].  

The criticality of a component changesover time,due totheevolutionof its underlying 

degradationprocesses[2]. Also, in practice, components are often subject to multiple 

competing degradation processes and any of them may individually lead to component 

failure[3]. The dependency among the degradation processes within one component (e.g. in a 

micro-engine, the shock process can enhance the wear process of rubbing surfaces and each 

process can lead to failure [4]) and of different components (e.g. in a water treatment plant, 

the decaying pre-filtrationsoften lower the performance of sand filter [5]) have to be 

considered in the calculation of component IMs.Moreover,the degradation processes can be 

interrupted by maintenance tasks(e.g.one componentcan be restored to its initial state by 

preventive maintenance if any of itsdegradations exceed therespective critical level[6] and by 

corrective maintenanceuponits failure[7]). 

Neglecting the factors that influence the state of being of componentscan result in 

inaccurate estimation ofcomponent IMs and, thus, mislead the system designers, operatorsand 

managersinthe assignment of priorities to component criticalities.In this paper, we investigate 

the criticality of components taking into account the influence of multiple dependent 

competing degradation processes and maintenance tasks. 

Physics-based models (PBMs) [8]and multi-state models (MSMs)[9]areused to 

describethe component degradation processes considered in our work.The former 

translatesphysics knowledge into mathematical equations thatdescribe the underlying 

continuous degradation processes associated to a specific mechanism,e.g. wear, corrosion 

andcracking [10]; the latter approximates the development ofcontinuous degradation by a 

process of transitions between a finite number of discrete states[11]. Recently, the authors 

have employedthe piecewise-deterministic Markov process (PDMP) modeling framework to 

incorporate PBMs and MSMs and to treat the dependency of degradation processes[12].In the 

present work, the authors introduce a set of PDMPs to incorporate alsomaintenance policies. 

PBMs and MSMs are two widely used approaches, especially for highly reliable 

components, whose degradation/failure data are insufficient to build their lifetime 

distributions [12]. The effects of uncertain parameters in the MSMs have been considered in 

[13]. Global Sensitivity Analysis (GSA) has been employed to produce indices that assess the 

importance of the uncertain factors in the models, taking into account interactions among 

them. Such paper focuses on the importanceindices of uncertain factors.  
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In this paper, we consider importance indices of components within multi-component 

systems taking into account the influence of multiple competing degradation processes, 

degradation dependency and maintenance tasks. GSA is not employed for such task, since it is 

not the uncertainty in the parameters that is considered.A literature review on component IMs 

is presented below, toposition our contribution within the existing works.Component IMs 

were first introduced mathematically by Birnbaum [14] in 1969, in a binary setting (i.e. the 

system and its components are either functioning or faulty). The Birnbaum IM (BIM) allows 

ranking components by looking at what happens to the system reliability when the reliabilities 

of the components are changed, one at a time. Afterwards, various IMs have been developed 

for binary components, including reliability achievement worth (RAW), reliability reduction 

worth (RRW), Fussel-Vesely and Barlow-Proschan IMs[15-17]. Other concepts of IMs have 

been proposed with focus to different aspects of the system, such as structure IMs, lifetime 

IMs, differential IMs and joint IMs [18]. 

For components whose description requires more than two states, e.g. to describe different 

degrees of functionalities or levels of degradation, definition of the component IMs have been 

extended in two directions: (1) metrics for components modeled by MSMs; (2) metrics for 

components modeled by continuous processes.Forthe first type, Armstrong [19]proposed IMs 

for multi-state systems (MSSs) with dual-mode failure components. For MSSs with multi-

state components,Griffith [20] formalized the concept of system performance based on 

expected utility and generalized the BIM to evaluate the effect of component improvement on 

system performance.Wu and Chan [21]improvedthe Griffith IM by proposinga new utility 

importance of a state of a component to measure which componentor which state of a certain 

component contributes the most to system performance.Si et al.[22] proposed the integrated 

IM, based on Griffith IM, to incorporate the probability distributions and transition rates of 

the component states, and the changes in system performance.Integrated IM can be used to 

evaluate how the transition of component states affects the system performance from unit time 

to different life stages, to system lifetime, and provide useful information for preventive 

actions (such as monitoring enhancement, construction improvement etc.)[23, 24]. The multi-

state generalized forms of classically binary IMs have been proposedby Zio and 

Podofillini[25]and Levitin et al.[26]:these IMsquantify the importance of a multi-state 

componentfor achieving a given level of performance.Ramirez-Marquez and 

Coit[27]developed two types of composite IMs: (1) the general composite IMsconsidering 

only the possible component states; (2) the alternative composite IMs considering both the 
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possible component states and the associated probabilities.For the second type, 

Gebraeel[28]proposed a prognostics-based ranking algorithm to rank theidentical components 

based on their residual lives. Liu et al.[29]extended the BIM for components with multi-

dimensional degradation processes under dynamic environments.Note that no IM has been 

developed for components whose (degradation) states are determined by both discrete and 

continuous processes, and are dependent upon other components, as it is often the case in 

practice [30]. 

To include dependency, Iyer[31] extended the Barlow-Proschan IM for components 

whose lifetimes are jointly absolutely continuous and possibly dependent, and Peng et 

al.[2]adapted the mean absolute deviation (MAD) IM (one of the alternative composite IMs) 

for statistically correlated (s-correlated) components subject to a one-dimension continuous 

degradation process; this enables to measure the expected absolute deviation in the reliability 

of a system with s-correlated degrading components, caused by different degrading 

performance levels of a particular component and the associated probabilities. To the 

knowledge of the authors, component IMs taking into account the dependency of multiple 

degradation processes within one component and among different components, with the 

inclusion of maintenance activities, have not been investigated in the literature(studies of IMs 

for repairable systems with s-independent components can be found in [24, 32]). 

In this work, we extend the MAD to a more general settingof modeling by PDMP [33],to 

provide timely feedback on the criticality of a component with respect to the system reliability. 

The extension considers: (1) the dependency of multiple degradation processes within one 

component and different components; (2) discrete and continuous degradation processes; (3) 

two types of maintenance tasks, condition-based preventive maintenance (PM) via periodic 

inspections and corrective maintenance (CM).Then, a method forthe quantification of 

component IM is designed based on the finite-volume (FV) approach[34]. 

The rest of this paper is organized as follows. Section 2 presents the assumptions and 

degradation models under dependency and maintenance. Section 3 describes the proposed 

component IM. Section 4 introduces the proposed quantificationmethod. Section 5 provides a 

numerical example referredto one subsystem of the residual heat removal system (RHRS)[35], 

to demonstrate the application of the proposed component IM and feasibility of the 

quantification method. Finally, Section 6 concludes the work. 
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2. MODELING DEGRDATION OF UNDER DEPENDENCY AND 

MAINTENANCE PDMP 

2.1. General assumptions 

 

 Consider a multi-component system,made of 𝑄 components coded in the vector𝑶 =

{𝑂1, 𝑂2, … , 𝑂𝑄}, each one with multiple degradation processes, possibly dependent. 

The degradation processes can be separated into two groups: (1)𝑳 = {𝐿1 , 𝐿2 , … , 

𝐿𝑀}modeled by M PBMs;(2)𝑲 = {𝐾1 , 𝐾2 , … , 𝐾𝑁} modeled by NMSMs, where 

𝐿𝑚 , 𝑚 = 1, 2, … , 𝑀  and 𝐾𝑛 , 𝑛 = 1, 2, … , 𝑁  are the indicesof the degradation 

processes. 

 The degradation state of a component 𝑂𝑞 ∈ 𝑶, 𝑞 = 1, 2, … , 𝑄 , is determined by its 

degradation processes 𝑫𝑂𝑞
⊆ 𝑳 ∪ 𝑲 and the component fails either when one of the 

degradation processes evolves beyond a threshold of failure in the continuous state 

stochastic processor reaches the discrete failure statein the multi-state stochastic 

transition process. 

 A degradation process 𝐿𝑚 ∈ 𝑳 in the first groupisdescribed by𝑑𝐿𝑚
 time-dependent 

continuous variables 𝑋𝐿𝑚
         𝑡 =  𝑋𝐿𝑚

𝑫         𝑡 , 𝑋𝐿𝑚

𝑷         𝑡  ∈ ℝ𝑑𝐿𝑚 , whose 

evolutionsaredescribed by a set of first-order differential equations (physics equations) 

in terms of: (1) the non-decreasing degradation variables vector𝑋𝐿𝑚

𝑫         𝑡 (e.g. crack 

length)representing the component degradation condition; (2) the physical variables 

vector𝑋𝐿𝑚

𝑷         𝑡  (e.g. velocity) influencing 𝑋𝐿𝑚

𝑫         𝑡 and vice versa. Due to degradation 

process 𝐿𝑚 ,the component fails when any degradation variable 𝑥𝐿𝑚

𝑖  𝑡 ∈ 𝑋𝐿𝑚

𝑫         𝑡  

exceeds its corresponding failure threshold denoted by 𝑥𝐿𝑚

𝑖 ∗
. The set of failure states 

of the degradation variables𝑋𝐿𝑚
         𝑡  is denoted by 𝓕𝐿𝑚

.  

 A degradation process 𝐾𝑛 ∈ 𝑲 in the second group is described by the state 

variable𝑌𝐾𝑛
 𝑡 ,which takes values from a finite state set 𝑺𝐾𝑛

= {0𝐾𝑛
, 1𝐾𝑛

, … , 𝑑𝐾𝑛
}, 

where ‘𝑑𝐾𝑛
’ is the perfect functioning state and ‘0𝐾𝑛

’ is the complete failure state. All 

intermediate states are functioning or partially functioning.The evolution of the 

degradation process is characterized by the transition rates between states. The failure 

state set of the multi-state stochastic transition process of degradation 𝑌𝐾𝑛
 𝑡  is 

described by 𝓕𝐾𝑛
= {0𝐾𝑛

}. 
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 Dependencies between degradation processes may existboth within and between 

groups𝑳and 𝑲. The detailed formulations are given in eqs. (1-3). 

 For degradation process 𝑖 ∈ 𝑳 ∪ 𝑲,the inspection task 𝐼𝑖of PM is performed with fixed 

period𝑇𝑖  and bringsthe related component back to its initial statewhen𝑖is found in the 

predefined state set 𝑯𝑖 . 

 The component is restored to its initial state by CM, as soon as it fails. 

 The inspection tasks and all maintenance actions are done instantaneously and without 

errors. 

An illustration of two components 𝑂1  and 𝑂2  is shown in Fig. 1, where𝑫𝑂1
= {𝐿1}and 

𝑫𝑂2
= {𝐾1} . PM is performed for 𝐿1  if 𝑋𝐿1

𝑫        𝑡 exceeds its threshold 𝑥𝐿1
𝑝 at the time of 

inspection and for 𝐾1 if 𝑌𝐾1
 𝑡  is in state 1 at the time of inspection. 

 

 

Fig. 1. An illustration of two components. 

 

2.2. Degradation model of the system 

The degradation state of the system is represented as  
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𝑍  𝑡 =

 

 
 
 
  

𝑋𝐿1
        𝑡 

⋮

𝑋𝐿𝑀
         𝑡 

 = 𝑋      𝑡 

 

𝑌𝐾1
 𝑡 

⋮
𝑌𝐾𝑁

 𝑡 
 = 𝑌      𝑡 

 

 
 
 
 

∈ 𝑬 = ℝ𝑑𝑳 × 𝑺, ∀𝑡 ≥ 0           (1) 

where𝐸 is the space combining ℝ𝑑𝑳 (𝑑𝑳 =  𝑑𝐿𝑚
𝑀
𝑚=1 ) and 𝑺 (𝑺 =  𝑺𝐾𝒏

𝑁
𝑛=1 ). 

A setof PDMPs𝑍𝑘
      𝑡 , 𝑘 = 1,2, … is employed to model the system degradation processes, 

where a new PDMP is established once a maintenance task is performed.Let 𝑁𝑚  denote the 

total number of maintenance tasks (PM and CM) the system has experienced till the mission 

time𝑇𝑚𝑖𝑠𝑠 , then,𝑍𝑘
      𝑡 , 𝑘 = 1,2, … , 𝑁𝑚  is defined on  𝑇𝑚

𝑘−1, 𝑇𝑚
𝑘  , where 𝑇𝑚

𝑘 , 𝑘 = 1,2, … , 𝑁𝑚  

denotes the execution time of the k-th maintenance task and𝑇𝑚
0 = 0.𝑍𝑁𝑚 +1

              𝑡 is defined on 

 𝑇𝑚
𝑁𝑚 , 𝑇𝑚𝑖𝑠𝑠  .Fig. 2 shows this for the degradation processes in Fig. 1.  

 

 

 

Fig. 2. An illustration of two components, modeled byPDMPs. 

 

The evolution of the elements 𝑍𝑘
      𝑡 , 𝑘 = 1,2, … , 𝑁𝑚 + 1 ,of the system state vector 

𝑍  𝑡 involves (1) the stochastic transition process of𝑌   𝑡 and (2) the deterministic progression 

of 𝑋      𝑡 , between successive transitions of𝑌   𝑡 , given 𝑌   𝑡 . The first process is governed by 

the transition ratesof 𝑌   𝑡 : 
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𝑙𝑖𝑚
∆𝑡 → 0

𝑃  𝑌   𝑡 + ∆𝑡 = 𝑗  𝑍𝑘
      𝑡 = (𝑋      𝑡 , 𝑌   𝑡 = 𝑖 )𝑇 , 𝜽𝑲  

= 𝜆𝑖  𝑗 |𝑋      𝑡 , 𝜽𝑲 ∆𝑡, ∀ 𝑖 , 𝑗 ∈ 𝑺, 𝑖 ≠ 𝑗 (2) 

wherethe parameter vector 𝜽𝑲represents environmental and operational factorsinfluencing the 

degradation processes in𝑲, and𝜆𝑖  𝑗 |𝑋      𝑡 , 𝜽𝑲  is the transition rate from state 𝑖  to 𝑗 . The 

second evolution processis described by the deterministic physics equations as follows: 

𝑋   𝑡 =  

𝑋𝐿1
         𝑡 

⋮

𝑋𝐿𝑀
          𝑡 

 =  

𝑓𝐿1
        𝑍𝑘

      𝑡 , 𝑡 𝜽𝐿1
 

⋮

𝑓𝐿𝑀
         𝑍𝑘

      𝑡 , 𝑡 𝜽𝐿𝑀
 

 = 𝑓𝑳      𝑍𝑘
      𝑡 , 𝑡 𝜽𝑳 =  𝜽𝐿1

, 𝜽𝐿2
, … , 𝜽𝐿𝑀

  (3) 

wherethe parameter vector 𝜽𝐿𝑚
, 𝑚 = 1,2, … , 𝑀 represents environmental and operational 

factors influencing the degradation processes in𝐿𝑚 .𝑍𝑘
      𝑇𝑚

𝑘−1 (the initial states of 𝑍𝑘
      𝑡 , 𝑘 =

2, … , 𝑁𝑚 + 1)can be obtained according to 𝑍𝑘−1
           𝑇𝑚

𝑘−1  and the (k-1)-th maintenance task.The 

degradation states of the system till 𝑇𝑚𝑖𝑠𝑠 can be represented by 

𝑍  𝑡 =  𝟏 𝑇𝑚
𝑘−1 ,𝑇𝑚

𝑘  (𝑡) ∙ 𝑍𝑘
      𝑡 

𝑁𝑚
𝑘=1 + 𝟏

 𝑇𝑚
𝑁𝑚 ,𝑇𝑚𝑖𝑠𝑠  

(𝑡) ∙ 𝑍𝑁𝑚 +1
              𝑡 (4) 

Since maintenance is performed instantaneously, the failure states of the system are infinitely 

approachable by𝑍  𝑡 , instead of being truly reached. We, then, use another stochastic process 

𝑍′     𝑡 , which canrecord the failure of the system as follows: 

𝑍′     𝑡 = 𝟏 0,𝑇𝑚
1  (𝑡) ∙ 𝑍1

      𝑡 +  𝟏 𝑇𝑚
𝑘−1 ,𝑇𝑚

𝑘  ∙ 𝑍𝑘
      𝑡 

𝑁𝑚
𝑘=2 + 𝟏

 𝑇𝑚
𝑁𝑚 ,𝑇𝑚𝑖𝑠𝑠  

(𝑡) ∙ 𝑍𝑁𝑚 +1
              𝑡 (5) 

Let 𝓕 denote the system failure state set: then, the system reliability at 𝑇𝑚𝑖𝑠𝑠 can bedefined 

as follows: 

𝑅 𝑇𝑚𝑖𝑠𝑠  = 𝑃 𝑍′     𝑠 ∉ 𝓕, ∀𝑠 ≤ 𝑇𝑚𝑖𝑠𝑠  = 𝑃   𝑍𝑘
      𝑇𝑚

𝑘  ∉ 𝓕 ∩  𝑍𝑁𝑚 +1
              𝑇𝑚𝑖𝑠𝑠  ∉

𝑁𝑚
𝑘=1

𝓕(6) 

Since the component is restored to its initial state by corrective maintenance as soon as it 

fails, the failure states of the system can only be reached by 𝑍′     𝑡  at the execution time of 

the maintenance tasks 𝑇𝑚
𝑘 , 𝑘 = 1,2, … , 𝑁𝑚  or at the mission time 𝑇𝑚𝑖𝑠𝑠 . Therefore, the event 

𝑍′     𝑠 ∉ 𝓕, ∀𝑠 ≤ 𝑇𝑚𝑖𝑠𝑠  can be represented by  𝑍𝑘
      𝑇𝑚

𝑘  ∉ 𝓕 ∩  𝑍𝑁𝑚 +1
              𝑇𝑚𝑖𝑠𝑠  ∉ 𝓕 

𝑁𝑚
𝑘=1 . 

 

3. COMPONENT IM 

Ramirez-Marquez and Coit[27]proposed the MAD IM for MSSs with multi-state 

components, which evaluates the components criticality taking into account allthe possible 

states and associated probabilities. Peng et al.[2]adaptedit for binary systems with s-correlated 

components subject to one continuous degradation process.  
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For components whose (degradation) states are determined by both discrete and 

continuous processes,we proposean extension of MAD to provide timely feedbacks of 

thecriticality of component 𝑂𝑞 with multiple dependent competing degradation processes 

modeled by MSMs and PBMs, and giving consideration toPM and CM. The formulation is 

presentedas follows: 

𝐶𝐼𝑂𝑞
 𝑡 = 𝐸   𝑃  𝑍′     𝑠 ∉ 𝓕, ∀𝑠 ≤ 𝑡|𝑫𝑂𝑞

        (𝑡) − 𝑅 𝑡   (7) 

where𝑫𝑂𝑞
         𝑡 = (𝑋𝑳𝑝

       (𝑡) = (𝑋𝐿𝑝1
          𝑡 , … , 𝑋𝐿𝑝𝑛

          𝑡 ), 𝑌𝑲𝑞
       (𝑡) = (𝑌𝐾𝑞1

 𝑡 , … , 𝑌𝐾𝑞𝑚
 𝑡 )) and𝑫𝑂𝑞

=

{𝑳𝑝 = {𝐿𝑝1
, … , 𝐿𝑝𝑛

}, 𝑲𝑞 = {𝐾𝑞1
, … , 𝐾𝑞𝑚

}}.It accounts for the expected absolute deviation in 

the system reliability caused by changes of all degradation processes of component𝑂𝑞 .Let 

ℝ𝑑𝑳𝑝 = ℝ
 𝑑𝐿𝑝 𝑖

𝑛
𝑖=1  and 𝑺𝑲𝑞

=  𝑺𝐾𝑞𝑖

𝑚
𝑖=1  denote the state space of 𝑋𝑳𝑝

       (𝑡) and 𝑌𝑲𝑞
       (𝑡) , 

respectively;eq. (7) can, then, be expressed as 

𝐶𝐼𝑂𝑞
 𝑡 =   𝑓𝑫𝑂𝑞

           𝑡  𝑑𝑥𝑳𝑝
       , 𝑦𝑲𝑞

        
𝑥𝑳𝑝        ∈ℝ

𝑑𝑳𝑝𝑦𝑲𝑞         ∈𝑺𝑲𝑞

 

|𝑃(𝑍′     𝑠 ∉ 𝓕, ∀𝑠 ≤ 𝑡|𝑋𝑳𝑝
        𝑡 = 𝑥𝑳𝑝

       , 𝑌𝑲𝑞
        𝑡 = 𝑦𝑲𝑞

       ) −  𝑅 𝑡 | (8) 

where𝑓𝑫𝑂𝑞
           𝑡  𝑑𝑥𝑳𝑝

       , 𝑦𝑲𝑞
         is theprobability distributionof𝑫𝑂𝑞

         𝑡 . 

Let 𝑁𝑚
𝑡 ≥ 1 denote the number of maintenance tasks that the system has experienced till 𝑡. 

According to eq. (6), we can obtain that: 

𝑅 𝑇𝑚𝑖𝑠𝑠  = 𝑃     𝑍𝑘
      𝑇𝑚

𝑘  ∉ 𝓕 
𝑁𝑚

𝑡

𝑘=1  ∩  𝑍𝑁𝑚
𝑡 +1

              𝑡 ∉ 𝓕     (9) 

and 

𝑃(𝑍′    (𝑠) ∉ ℱ, ∀𝑠 ≤ 𝑡|𝑋𝑳𝑝
        𝑡 = 𝑥𝑳𝑝

       , 𝑌𝑲𝑞
        𝑡 = 𝑦𝑲𝑞

       ) = 

 
 
 
 

 
 
 𝑑𝑥𝑳𝑝

       

𝑓𝑫𝑂𝑞
           𝑡  𝑑𝑥𝑳𝑝

       , 𝑦𝑲𝑞
        

𝑃  [   𝑍𝑘
      𝑇𝑚

𝑘  ∉ ℱ 

𝑁𝑚
𝑡

𝑘=1

 ∩  

 (𝑍
𝑁𝑚

𝑡 +1

𝑫𝑂𝑞             
 𝑡|𝑋𝑳𝑝

        𝑡 = 𝑥𝑳𝑝
       , 𝑌𝑲𝑞

        𝑡 = 𝑦𝑲𝑞
        ∉ ℱ)], 𝑖𝑓 𝑓𝑫𝑂𝑞

           𝑡  𝑑𝑥𝑳𝑝
       , 𝑦𝑲𝑞

        ≠ 0

0, 𝑖𝑓 𝑓𝑫𝑂𝑞
           𝑡  𝑑𝑥𝑳𝑝

       , 𝑦𝑲𝑞
        = 0

  

(10) 

where𝑍
𝑁𝑚

𝑡 +1

𝐷𝑂𝑞             
 𝑡|𝑋𝑳𝑝

        𝑡 = 𝑥𝑳𝑝
       , 𝑌𝑲𝑞

        𝑡 = 𝑦𝑲𝑞
        = (𝑋𝐿1

        𝑡 , … , 𝑋𝑳𝑝
        𝑡 = 𝑥𝑳𝑝

       , … , 𝑋𝐿𝑀
         𝑡 , 𝑌𝐾1

 𝑡 , 

… , 𝑌𝑲𝑞
        𝑡 = 𝑦𝑲𝑞

       , … , 𝑌𝐾𝑁
 𝑡 )𝑇. 
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4. FV SCHEME FOR COMPONENT IM QUANTIFICATION 

Let 𝑝𝑡
𝑍𝑘      

 𝑑𝑥 , 𝑖  |𝜽 = 𝜽𝑳 ∪ 𝜽𝑲 , ∀𝑥     ∈ ℝ𝑑𝑳 , 𝑖   ∈ 𝑺  denote the probability distribution of 

processes 𝑍𝑘
     (𝑡) . Due to the complex behavior of the PDMP, the analytical solution for 

theprobability distribution is difficult to obtain [36]. TheFV approachdeveloped in [34]can be 

used to obtain the approximated solution by discretizing the time space and the state space of 

the continuous variables, achievingaccurate results within an admissible computing time,as 

shown in  [37]. 

 

4.1. FV scheme for PDMP 

4.1.1. Assumptions 

This approach can be applied under the following assumptions: 

 𝜆𝑖  𝑗 ,∙ |𝜽𝑲 , ∀𝑖 , 𝑗 ∈ 𝑺are continuous and bounded functions from ℝ𝑑𝑳  to ℝ+. 

 𝑓𝑳
𝑖        ∙,∙ 𝜽𝑳 , ∀𝑖 ∈ 𝑺 are continuous functions from ℝ𝑑𝑳 × ℝ+  to ℝ𝑑𝑳  and locally 

Lipschitz continuous. 

 𝑓𝑳
𝑖        ∙, 𝑡 𝜽𝑳 , ∀𝑖 ∈ 𝑺 are sub-linear, i.e. there are some 𝑉1 > 0 and 𝑉2 > 0 such that  

∀𝑥 ∈ ℝ𝑑𝑳 , 𝑡 ∈ ℝ+  𝑓𝑳
𝑖        𝑥 , 𝑡 𝜽𝑳  ≤ 𝑉1( 𝑥  +  𝑡 ) + 𝑉2 

 𝑑𝑖𝑣(𝑓𝑳
𝑖        ∙,∙ 𝜽𝑳 ), ∀𝑖 ∈ 𝑺are almost everywhere bounded in absolute value by some 

real value 𝐷 > 0 (independent of 𝑖 ). 

 

4.1.2. Solution approach 

The time space ℝ+ is divided into small intervals ℝ+ =  [𝑛∆𝑡, (𝑛 + 1)∆𝑡[𝑛=0,1,2,… by 

setting the length of each interval∆𝑡 > 0and the state space ℝ𝑑𝑳  of 𝑋      𝑡  is divided into an 

admissible mesh ℳ which satisfies that: 

(1)  𝐴𝐴∈ℳ = ℝ𝑑𝑳 . 

(2) ∀𝐴, 𝐵 ∈ ℳ, 𝐴 ≠ 𝐵 ⇒ 𝐴 ∩ 𝐵 = ∅. 

(3) 𝑚𝐴 = ∫ 𝑑𝑥     
𝐴

> 0, ∀𝐴 ∈ ℳ, where 𝑚𝐴 is the volume of grid 𝐴. 

(4) 𝑠𝑢𝑝𝐴∈ℳ𝑑𝑖𝑎𝑚 𝐴 < +∞where 𝑑𝑖𝑎𝑚 𝐴 = 𝑠𝑢𝑝∀𝑥 ,𝑦  ∈𝐴 𝑥 − 𝑦  . 
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The numerical scheme aims at constructing an approximate value 𝜌𝑡
𝑍𝑘      

 𝑥 ,∙ |𝜽 𝑑𝑥 for 

𝑝𝑡
𝑍𝑘      

 𝑑𝑥 ,∙ |𝜽 , such that 𝜌𝑡
𝑍𝑘      

 𝑥 ,∙ |𝜽  is constant on each 𝐴 × {𝑖 } × [𝑛∆𝑡, (𝑛 + 1)∆𝑡[, ∀𝐴 ∈

ℳ, 𝑖 ∈ 𝑺, [𝑛∆𝑡, (𝑛 + 1)∆𝑡[∈  𝑇𝑚
𝑘−1, 𝑇𝑚

𝑘  :   

𝜌𝑡
𝑍𝑘      

 𝑥 , 𝑖 |𝜽 = 𝑃𝑛
𝑍𝑘      

 𝐴, 𝑖 |𝜽 , ∀𝑖 ∈ 𝑺, 𝑥 ∈ 𝐴, 𝑡 ∈ [𝑛∆𝑡, (𝑛 + 1)∆𝑡[            (11) 

𝑃0
𝑍𝑘      

 𝐴, 𝑖 |𝜽 , ∀𝑖 ∈ 𝑺, 𝐴 ∈ ℳis defined as follows: 

𝑃0
𝑍𝑘      

 𝐴, 𝑖 |𝜽 = ∫ 𝑝0
𝑍𝑘      

 𝑑𝑥 , 𝑖 |𝜽 
𝐴

/𝑚𝐴                                    (12) 

Then, 𝑃𝑛+1
𝑍𝑘      

 𝐴, 𝑖  |𝜽 , ∀𝑖 ∈ 𝑺, 𝐴 ∈ ℳ, 𝑛 ∈ ℕ  can be calculated considering the deterministic 

evaluation of 𝑋      𝑡  and the stochastic evolution of 𝑌      𝑡  based on 𝑃𝑛
𝑍𝑘      

 ℳ, 𝑖 |𝜽  by the 

Chapman-Kolmogorov forward equation[38], as follows: 

𝑃𝑛+1
𝑍𝑘      

 𝐴, 𝑖 |𝜽  

=
1

1+∆𝑡𝑏𝐴
𝑖 𝑃𝑛+1

𝑍𝑘       
 𝐴, 𝑖 |𝜽 + ∆𝑡  

𝑎𝐴
𝑗  𝑖 

1+∆𝑡𝑏𝐴
𝑗  𝑃𝑛+1

𝑍𝑘       
 𝐴, 𝑗 |𝜽 𝑗 ∈𝑺                           (13) 

where 

𝑎𝐴
𝑗 𝑖 

= ∫ 𝜆𝑗  𝑖 , 𝑥 |𝜽𝐾 𝑑𝑥     
𝐴

𝑚𝐴 , ∀𝑖 ∈ 𝑺, 𝐴 ∈ ℳ                            (14) 

is the average transition rate from state 𝑗  to state 𝑖  for grid 𝐴, 

𝑏𝐴
𝑖 =  𝑎𝐴

𝑖 𝑗 
𝑗  ≠ 𝑖 , ∀𝑖 ∈ 𝑺, 𝐴 ∈ ℳ                                         (15) 

is the average transition rate out of state 𝑖  for grid 𝐴, 

𝑃𝑛+1
𝑍𝑘       

 𝐴, 𝑖 |𝜽 =  𝑚𝐵𝐴
𝑖 

𝐵∈ℳ 𝑃𝑛
𝑍𝑘      

 𝐵, 𝑖 |𝜽 /𝑚𝐴 , ∀𝑖 ∈ 𝑺, 𝐴 ∈ ℳ               (16) 

is the approximate value of probability density function on  𝑖  × [(𝑛 + 1)∆𝑡, (𝑛 + 2)∆𝑡[× 𝐴 

according to the deterministic evaluation of 𝑋      𝑡 , 

𝑚𝐵𝐴
𝑖 = ∫ 𝑑𝑦     

{𝑦  ∈𝐵 |𝑔𝑖       𝑦  ,∆𝑡|𝜽𝐿 ∈𝐴}
, ∀𝑖 ∈ 𝑺, 𝐴, 𝐵 ∈ ℳ                            (17) 

is the volume of the part of grid 𝐵 which will enter grid 𝐴 after time ∆𝑡 according to the 

deterministic evaluation of 𝑋      𝑡 , where𝑔𝑖      ∙,∙ : ℝ𝑑𝑳 × ℝ → ℝ𝑑𝑳 is the solution of 

𝜕

𝜕𝑡
𝑔𝑖      𝑦 , 𝑡|𝜽𝑳 = 𝑓𝑳

𝑖        𝑔𝑖      𝑦 , 𝑡|𝜽𝑳 , 𝑡 𝜽𝑳 (18) 

with 

𝑔𝑖      𝑦 , 0|𝜽𝑳 = 𝑦                (19) 

𝑔𝑖      𝑦 , ∆𝑡|𝜽𝑳 gives the state of the deterministic behavior of 𝑋      𝑡  after time ∆𝑡, starting from 

the state𝑦  while the processes 𝑌   𝑡 stay in state 𝑖 . 
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4.2. Quantification of component IM 

Given the initial probability distribution𝑝0
𝑍1     

 𝑑𝑥 , 𝑖 |𝜽  of the system, 𝑃0
𝑍1     

 𝐴, 𝑖 |𝜽 , ∀𝑖 ∈

𝑺, 𝐴 ∈ ℳ, can be obtained as: 

𝑃0
𝑍1     

 𝐴, 𝑖 |𝜽 = ∫ 𝑝0
𝑍1     

 𝑑𝑥 , 𝑖 |𝜽 
𝐴

/𝑚𝐴                 (20) 

𝑃
 𝑇𝑚

1 /∆𝑡 

𝑍1     
 𝐴, 𝑖 |𝜽 , ∀𝑖 ∈ 𝑺, 𝐴 ∈ ℳcan, then, be calculated through the FV scheme. 

To calculate eq.(9) and 𝑃[   𝑍𝑘
      𝑇𝑚

𝑘  ∉ ℱ 
𝑁𝑚

𝑡

𝑘=1  ∩ (𝑍
𝑁𝑚

𝑡 +1

𝑫𝑂𝑞             
 𝑡|𝑋𝑳𝑝

        𝑡 = 𝑥𝑳𝑝
       , 𝑌𝑲𝑞

        𝑡 =

𝑦𝑲𝑞
        ∉ ℱ)]in eq. (10), we are only interested in the situation that the system is functioning till 

𝑡; thus,𝑃
 𝑇𝑚

𝑘−1/∆𝑡 

𝑍𝑘      
 𝐴, 𝑖 |𝜽 , ∀𝑖 ∈ 𝑆, 𝐴 ∈ ℳ, 𝑘 = 2, 3, …𝑁𝑚

𝑡 + 1 is initiated as follows: 

𝑃
 
𝑇𝑚
𝑘−1

∆𝑡
 

𝑍𝑘      
 𝐴, 𝑖 |𝜽 =

 
 
 
 

 
 
 𝑃

 
𝑇𝑚
𝑘−1

∆𝑡
 

𝑍𝑘−1           
 𝐴, 𝑖 |𝜽 +  𝑃

 
𝑇𝑚
𝑘−1

∆𝑡
 

𝑍𝑘−1           
 𝐴′ , 𝑖′   |𝜽 

 𝐴′ ,𝑖′    ∈  𝐴𝑘−1 ,𝑖𝑘−1            

 𝐴′ ,𝑖′    ∉𝓕

,

𝑖𝑓   𝐴, 𝑖  ∉ 𝓕  𝑎𝑛𝑑  ∄𝐵 ∈ ℳ, 𝑗 ∈ 𝑺: (𝐴, 𝑖 ) ∈ {(𝐵𝑘−1, 𝑗𝑘−1         )} 

0,

𝑖𝑓   𝐴, 𝑖  ∈ 𝓕  𝑜𝑟  ∃𝐵 ∈ ℳ, 𝑗 ∈ 𝑺: (𝐴, 𝑖 ) ∈ {(𝐵𝑘−1, 𝑗𝑘−1         )} 

 (21) 

where  𝐴𝑘−1, 𝑖𝑘−1          , ∀𝑖 ∈ 𝑺, 𝐴 ∈ ℳ,is the set containing all the states that step to the state 

(𝐴, 𝑖 )caused by the (𝑘 − 1)-th maintenance task. Then, we can obtain that  

𝑃     𝑍𝑘
      𝑇𝑚

𝑘  ∉ 𝓕 
𝑁𝑚

𝑡

𝑘=1  ∩  𝑍𝑁𝑚
𝑡 +1

              𝑡 ∉ 𝓕  =  𝑚𝐴𝑃
 
𝑡

∆𝑡
 

𝑍
𝑁𝑚

𝑡 +1
                 

 𝐴, 𝑖 |𝜽  𝐴,𝑖  ∉𝓕          (22) 

𝑃      𝑍𝑘
      𝑇𝑚

𝑘  ∉ ℱ 

𝑁𝑚
𝑡

𝑘=1

 ∩  𝑍
𝑁𝑚

𝑡 +1

𝑫𝑂𝑞             
 𝑡|𝑋𝑳𝑝

        𝑡 = 𝑥𝑳𝑝
       , 𝑌𝑲𝑞

        𝑡 = 𝑦𝑲𝑞
        ∉ ℱ  =   

 𝑃
 
𝑡

∆𝑡
 

𝑍
𝑁𝑚

𝑡 +1
                 

 𝐴, 𝑖 |𝜽  𝐴,𝑖  ∉𝓕

 𝑥𝑳𝑝        ,𝑦𝑲𝑞          ⊆ 𝐴,𝑖  

∫ 𝑑𝑥     
𝐴/ 𝑥𝑳𝑝        ,𝑦𝑲𝑞          

(23) 

where𝐴/  𝑥𝑳𝑝
       , 𝑦𝑲𝑞

         is the mesh by fixing 𝑫𝑂𝑞
        (𝑡) to (𝑥𝑳𝑝

       , 𝑦𝑲𝑞
       ). 

To calculate𝑓𝑫𝑂𝑞
           𝑡  𝑑𝑥𝑳𝑝

       , 𝑦𝑲𝑞
         in eq. (8), (10), we are interested in the state of the systemat 

𝑡no matter whether the system is functioning till𝑡 or not;thus,𝑃
 𝑇𝑚

𝑘−1/∆𝑡 

𝑍𝑘      
 𝐴, 𝑖 |𝜽 , ∀𝑖 ∈ 𝑺, 𝐴 ∈

ℳ, 𝑘 = 2, 3, …𝑁𝑚
𝑡 + 1 is initiated as follows: 
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𝑃
 
𝑇𝑚
𝑘−1

∆𝑡
 

𝑍𝑘      
 𝐴, 𝑖 |𝜽 =

 
 
 

 
 𝑃

 
𝑇𝑚
𝑘−1

∆𝑡
 

𝑍𝑘−1           
 𝐴, 𝑖 |𝜽 +  𝑃

 
𝑇𝑚
𝑘−1

∆𝑡
 

𝑍𝑘−1           
 𝐴′ , 𝑖′   |𝜽 

 𝐴′ ,𝑖′    ∈  𝐴𝑘−1 ,𝑖𝑘−1            
,

𝑖𝑓 ∄𝐵 ∈ ℳ, 𝑗 ∈ 𝑺: (𝐴, 𝑖 ) ∈ {(𝐵𝑘−1, 𝑗𝑘−1         )}
0,

𝑖𝑓 ∃𝐵 ∈ ℳ, 𝑗 ∈ 𝑺: (𝐴, 𝑖 ) ∈ {(𝐵𝑘−1, 𝑗𝑘−1         )}

   (24) 

We can obtain that 

𝑓𝑫𝑂𝑞
           𝑡  𝑑𝑥𝑳𝑝

       , 𝑦𝑲𝑞
        =  𝑑𝑥𝑳𝑝

        𝑃
 
𝑡

∆𝑡
 

𝑍
𝑁𝑚

𝑡 +1
                 

 𝐴, 𝑖 |𝜽 ∫ 𝑑𝑥     
𝐴/ 𝑥𝑳𝑝        ,𝑦𝑲𝑞          𝐴∈ℳ,𝑖 ∈𝑺

 𝑥𝑳𝑝        ,𝑦𝑲𝑞          ⊆ 𝐴,𝑖  

(25) 

𝐶𝐼𝑂𝑞
 𝑡 can, then, be obtainedbyusingeqs. (8)-(10), (20)-(25). 

The pseudo-code for the quantification of component IM 𝐶𝐼𝑂𝑞
 𝑡 is presented as follows: 

Set time𝑡,  length of each interval ∆𝑡 and admissible mesh ℳ 

Set the initial probability distribution 𝑝0
𝑍1     

 𝑑𝑥 , 𝑖 |𝜽  

Initialize the probability distribution of 𝑍1
     (0) by using eq. (20) 

For𝑗 = 1to 𝑁𝑚
𝑡 do 

Calculate theprobability distribution of𝑍𝑗
    (𝑇𝑚

𝑗
)by using FV scheme 

Calculate the initial probability distribution of𝑍𝑗+1
         (𝑇𝑚

𝑗
) by using eq. (21) 

End 

Calculate the probability distribution of 𝑍𝑁𝑚
𝑡 +1

             (𝑡) by using FV scheme 

Calculate the system reliability at time 𝑡by using eq. (22) 

Calculate the conditional system reliability at time 𝑡by using eq. (23) 

For𝑗 = 1 to 𝑁𝑚
𝑡 do 

Calculate the probability distribution of𝑍𝑗
    (𝑇𝑚

𝑗
) by using FV scheme 

Calculate the initial probability distribution of𝑍𝑗+1
         (𝑇𝑚

𝑗
) by using eq. (24) 

End 
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Calculate the probability distribution of 𝑍𝑁𝑚
𝑡 +1

             (𝑡)  by using FV scheme 

Calculate the probability distribution of 𝑫𝑂𝑞
         𝑡  by using eq. (25) 

Calculate the component IM 𝐶𝐼𝑂𝑞
 𝑡  by using eq. (8) 

□ 

 

5. ILLUSTRATIVE CASE 

The system consists of a centrifugal pump and a pneumatic valve in series, and is 

asubsystem of the residual heat removal system (RHRS) of a nuclear power plant of 

Électricité de France (EDF). Given the series configuration, the failure of anyone of the 

twocomponentscan lead the subsystem to failure. A dependency in the degradation 

processesof the two components has been indicated by the experts: the pump vibrates due to 

degradation[39]which, in turn, leads the valve to vibrate, aggravatingits own degradation 

processes [40].  

 

5.1. Centrifugal pump 

The pump is modeled by a MSM, modified from the one originally supplied by EDFupon 

discussion with the experts. It is a continuous-time homogeneous Markov chain as shown in 

Fig.3: 

 

 

 

Fig. 3. Degradation process of the pump. 

 

𝑆𝑝 = {0, 1, 2, 3}denotesits degradation states set, where 3 is the perfect functioning state 

and 0 is the complete failure state. The parameters𝜆32 , 𝜆21  and 𝜆10  are the transition rates 

between the degradation states.Due to degradation,the pump vibrates when it reaches the 

degradation states 2and 1. The intensity of the vibration of the pump on states2 and 1 is 

evaluated as by the experts ‘smooth’ and ‘rough’, respectively.  

 

3 2 1 0
λ32 λ21 λ10
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5.2. Pneumatic valve 

The simplified scheme of the pneumatic valveis shown in Fig.4. It is a normally-closed, 

gas-actuated valve with a linear cylinder actuator. 

 

 

 

Fig. 4. Simplified scheme of the pneumatic valve [41]. 

 

The position of the piston is controlledby regulating the pressure of the pneumatic ports to 

fill or evacuate the top and bottom chambers. The degradation mechanism of the valve is 

considered as the external leak at the actuator connections to the bottom pneumatic port due to 

corrosion, and is modeled by a PBM. It is much more significant than the other degradation 

mechanisms according to the results shown in  [41]. The valve is considered failed when the 

size of the external leak exceeds a predefined𝐷𝑏
∗ . The PBM is used by EDF experts for 

degradation modeling, due to limited statistical degradation data on the valve behavior. 

 

5.3. PDMP for the system 

The degradation of the valve 𝑳 = {𝐿1} is described by PBM and the degradation of the 

pump 𝑲 = {𝐾1} is described by MSM. The degradation processes of the whole system are 

modeled by PDMP as follows:  

𝑍  𝑡 =  
𝐷𝑏 𝑡 

𝑌𝑝 𝑡 
  ∈  ℝ+ × 𝑆𝑝                                               (26) 

where𝑌𝑝 𝑡  denotes the degradation state of the pump at time 𝑡 and 𝐷𝑏(𝑡) denotes the area of 

the leak hole at the bottom pneumatic port of the valve at time 𝑡.The space of the failure states 

Return Spring

Piston

Bottom chamberBottom 

pneumatic port

Top chamber

Top

pneumatic port

Fluid 



 
18 

 

of 𝑍  𝑡 is 𝓕 =  0, +∞ × {‘0’} ∪  𝐷𝑏
∗, +∞ × {1, 2, 3}. The development of the leak size is 

described by: 

𝐷𝑏
  𝑡 = 𝜔𝑏(1 + 𝛽𝑌𝑝  𝑡 )                                                  (27) 

where𝜔𝑏  is the original wear coefficient and where 𝛽𝑌𝑝  𝑡  is the relative increment of the 

developing rate of the external leak caused by the vibration of the pump at the degradation 

state 𝑌𝑝 = 2 or 1 . The parameter values related tothe systemdegradation processes under 

accelerated aging conditionsand to the maintenance tasks are presented in Table I. For 

confidentiality reasons, the values presented below are fictitious. 

 

Table I Parameter values related to PDMP and the maintenance tasks 

 

Parameter Value 

𝜔𝑏  1e-8 m
2
/s 

𝛽2 10% 

𝛽1 20% 

𝜆32  3e-3 s-1 

𝜆21  3e-3 s-1 

𝜆10  3e-3 s-1 

𝐷𝑏
∗ 1.06e-5 m

2
 

𝑇𝐿1
 1000 s 

𝑇𝐾1
 1000 s 

𝐻𝐿1
 [8e-6, 𝐷𝑏

∗) m
2
 

𝐻𝐾1
 {1, 2} 

 

The system reliability at time𝑡 can be calculated as follows: 

𝑅 𝑡 = 𝑃 (𝐷𝑏 𝑠 < 𝐷𝑏
∗) ∩ (𝑌𝑝 𝑠 ≠ 0), ∀𝑠 ≤ 𝑡                                  (28) 

The component IMs for the valve and the pump are given in eq. (29) and eq. (30), 

respectively, as follows: 

𝐶𝐼𝑉 𝑡 = ∫ 𝑓𝑫𝑉        𝑡 
 𝑥  𝑃[(𝐷𝑏 𝑠 < 𝐷𝑏

∗) ∩ (𝑌𝑝 𝑠 ≠ 0), ∀𝑠 ≤ 𝑡 𝐷𝑏 𝑡 = 𝑥)] −
ℝ+

 𝑅𝑡|𝑑𝑥(29) 
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𝐶𝐼𝑃 𝑡 =  𝑃[𝑌𝑝 𝑡 = 𝑖] 𝑃[(𝐷𝑏 𝑠 < 𝐷𝑏
∗) ∩ (𝑌𝑝 𝑠 ≠ 0), ∀𝑠 ≤ 𝑡 𝑌𝑝 𝑡 = 𝑖)] −  𝑅 𝑡 |3

𝑖=0     

(30) 

Then, by using the proposed numerical method introduced in section 4, the values of the 

above equations can be calculated. 

 

5.4. Results 

The reliabilitiesof the whole system and the two components over a time horizon of 

𝑇𝑚𝑖𝑠𝑠 =2000s,regarded as the mission time under accelerated conditions,are shown in Fig. 5. 

We can see from the figure that before around 870s (point A), thesystem reliabilityis 

basicallydetermined by the pump reliability, since the valve is highly reliable. After that, the 

sharp decrease of the reliability of the valvedue to degradation drives that of the system 

reliability,until the execution of the inspection tasks for the two components at 1000s. 

Because of the preventive maintenance, the failures of the system, the valve and the pump are 

mitigated. 

 

 

 

Fig. 5. The reliabilities of the system, the valve and the pump 

 

The components IMs are shown in Fig. 6.Before around 400s (point B), the IMs of the 

two components are relatively close.Although the system reliability is dominated by the 

reliability of the pump, theprobability of the pump at state 0over the time horizon is limited to 
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a very small value due to the corrective maintenance shown in Fig. 7, which canlimitthe 

component IM. After around 870s (point C), the pump IM experiences a sharp decrease while 

that of the valve experiences a sharp increase until 1000s, due to the evolution shown in Fig. 

5.After the preventive maintenance is implemented, the difference between the components 

IMs begins to reduce. Then, one can conclude that attentionshould be focused onthe pump 

before 1000s and on the valve afterwards, to achievehigher levels of system reliability. 

 

 

 

Fig. 6. The valve and pump IMs  
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Fig. 7. The probability of the pump at state 0 (failure) 

 

The reliabilities of the whole system and the two components over a time horizon of 

𝑇𝑚𝑖𝑠𝑠 =2000s without maintenance are shown in Fig. 8.Before 1000s, the situationsare the 

same as with maintenance (Fig. 5). The sharp decrease of the reliability of the valve, 

thencontinues due to the lack of preventive maintenance, andthe valve reaches failure after 

around 1060s, and the system fails too. 
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Fig. 8. The reliabilities of the system, valve and pump without maintenance 

 

The related component IMs are shown in Fig. 9. From the figure, we can see thatthe 

criticality of the pump is higher than that of the valve most of the time until around 1015s 

(point E). Due to the absence of preventive maintenance, the system reliability quickly 

decreases to zero afterwards, which leads the components IMs toquickly decrease to zero. The 

gap between the two curves isdue to the difference between the reliabilities of the two 

components, andreaches its maximum value at around 875s (point D), when the valve starts to 

contribute to the system failure. 

 

 

Fig. 9. The valve and pump IMs without maintenance 

 

Finally, the reliabilities of the whole system and the two components over a time horizon 

of 𝑇𝑚𝑖𝑠𝑠 =2000s,without degradation dependency,are shown in Fig. 10.The system reliability 

is determined by the reliability of the pump since the valve is highly reliable. The IMs of the 

two components are shown in Fig. 11. The IM of the pump experiences a sudden change due 

to the preventive maintenance at 1000s, while that of the valve is always equal to zero. 
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Fig. 10. The reliabilities of the system, the valve and the pump without degradation 

dependency 

 

 

 

Fig. 11. The valve and pump IMs without degradation dependency 

 

To investigate the impacts of the periods of the inspection tasks, the IMs of the two 

components with different inspection periods are shown in Fig. 12. We have tested two 
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settings 𝑇𝐿1
= 𝑇𝐾1

= 500𝑠and 𝑇𝐿1
= 𝑇𝐾1

= 250𝑠. From the figure, we can see that the IM of 

the valve is always equal to zero since it is highly reliable andthat the increase of the 

inspection frequency can reduce the IM of the pump. 

 

 

 

Fig. 12. The valve and pump IMs with different inspection periods 

 

6. CONCLUSION 

 

In this paper, we consider components with multiple competing degradation processes 

modeled by PBMs and MSMs. The PDMP modeling framework is employed to incorporate 

multiple dependent competing degradation processes and maintenance policies. To quantify 

the importance of different components within a system, MAD IM has been extended to 

accommodate components whose (degradation) states are determined by both discrete and 

continuous processes. The extended IM can provide timely feedbacks on the criticality of a 

component with respect to the system reliability. The degradation dependencies within one 

component and among different components, and two types of maintenance tasks (condition-

based preventive maintenance by periodic inspections and corrective maintenance) have been 
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taken into account. A quantification method based on the FV approach has been developed 

and illustrated in the application to a case study of a portion of an emergency system (the 

RHRS) from real-world nuclear power plants. The illustrative example shows that the 

extended IM can effectively estimate the criticality of different components under the 

conditions of interest.  

As future work, it would be interesting to study how the sensitivity indices of the 

parameters of a component relate to the importance indices of that component, within a GSA 

framework. 

 

 

REFERENCES 

 

[1] W. Kuo and X. Zhu, "Some recent advances on importance measures in reliability," Reliability, 
IEEE Transactions on, vol. 61, pp. 344-360, 2012. 

[2] H. Peng, D. W. Coit, and Q. Feng, "Component reliability criticality or importance measures 
for systems with degrading components," Reliability, IEEE Transactions on, vol. 61, pp. 4-12, 
2012. 

[3] Y. Wang and H. Pham, "Modeling the dependent competing risks with multiple degradation 
processes and random shock using time-varying copulas," Reliability, IEEE Transactions on, 
vol. 61, pp. 13-22, 2012. 

[4] J. Lei, F. Qianmei, and D. W. Coit, "Reliability and Maintenance Modeling for Dependent 
Competing Failure Processes With Shifting Failure Thresholds," Reliability, IEEE Transactions 
on, vol. 61, pp. 932-948, 2012. 

[5] N. Rasmekomen and A. K. Parlikad, "Maintenance Optimization for Asset Systems With 
Dependent Performance Degradation," Reliability, IEEE Transactions on, vol. 62, pp. 362-367, 
2013. 

[6] S. Albin and S. Chao, "Preventive replacement in systems with dependent components," 
Reliability, IEEE Transactions on, vol. 41, pp. 230-238, 1992. 

[7] L. Jiang, Q. Feng, and D. W. Coit, "Reliability and maintenance modeling for dependent 
competing failure processes with shifting failure thresholds," Reliability, IEEE Transactions on, 
vol. 61, pp. 932-948, 2012. 

[8] E. Keedy and Q. Feng, "A physics-of-failure based reliability and maintenance modeling 
framework for stent deployment and operation," Reliability Engineering & System Safety, vol. 
103, pp. 94-101, 2012. 

[9] A. Lisnianski and G. Levitin, Multi-state system reliability: assessment, optimization and 
applications: World scientific, 2003. 

[10] M. Chookah, M. Nuhi, and M. Modarres, "A probabilistic physics-of-failure model for 
prognostic health management of structures subject to pitting and corrosion-fatigue," 
Reliability Engineering & System Safety, vol. 96, pp. 1601-1610, 2011. 

[11] S. D. Unwin, P. P. Lowry, R. F. Layton, P. G. Heasler, and M. B. Toloczko, "Multi-state physics 
models of aging passive components in probabilistic risk assessment," in International 
Topical Meeting on Probabilistic Safety Assessment and Analysis (PSA 2011), Wilmington, 
North Carolina, 2011, pp. 161-172. 



 
26 

 

[12] Y.-H. Lin, Y.-F. Li, and E. Zio, "Fuzzy Reliability Assessment of Systems with Multiple 
Dependent Competing Degradation Processes," Fuzzy Systems, IEEE Transactions on (In 
press). 

[13] C. M. Rocco and E. Zio, "Global sensitivity analysis in a Multi-state Physics Model of 
Component Degradation based on a hybrid State-Space Enrichment and Polynomial Chaos 
Expansion approach," Reliability, IEEE Transactions on, vol. 62, pp. 781-788. 

[14] Z. W. Birnbaum, "On the importance of different components in a multicomponent system," 
Multivariable analysis 2, New York: Academic Press, pp. 581-592, 1969. 

[15] W. Kuo and X. Zhu, "Relations and generalizations of importance measures in reliability," 
Reliability, IEEE Transactions on, vol. 61, pp. 659-674, 2012. 

[16] R. E. Barlow and F. Proschan, "Importance of system components and fault tree events," 
Stochastic Processes and their Applications, vol. 3, pp. 153-173, 1975. 

[17] D. Vasseur and M. Llory, "International survey on PSA figures of merit," Reliability 
Engineering & System Safety, vol. 66, pp. 261-274, 1999. 

[18] W. Kuo and X. Zhu, Importance measures in reliability, risk, and optimization: principles and 
applications: John Wiley & Sons, 2012. 

[19] M. J. Armstrong, "Reliability-importance and dual failure-mode components," Reliability, IEEE 
Transactions on, vol. 46, pp. 212-221, 1997. 

[20] W. S. Griffith, "Multistate reliability models," Journal of Applied Probability, pp. 735-744, 
1980. 

[21] S. Wu and L.-Y. Chan, "Performance utility-analysis of multi-state systems," Reliability, IEEE 
Transactions on, vol. 52, pp. 14-21, 2003. 

[22] S. Si, H. Dui, X. Zhao, S. Zhang, and S. Sun, "Integrated importance measure of component 
states based on loss of system performance," Reliability, IEEE Transactions on, vol. 61, pp. 
192-202, 2012. 

[23] S. Si, G. Levitin, H. Dui, and S. Sun, "Component state-based integrated importance measure 
for multi-state systems," Reliability Engineering & System Safety, vol. 116, pp. 75-83, 2013. 

[24] H. Dui, S. Si, L. Cui, Z. Cai, and S. Sun, "Component Importance for Multi-State System 
Lifetimes With Renewal Functions," Reliability, IEEE Transactions on, vol. 63, pp. 105-117, 
2014. 

[25] E. Zio and L. Podofillini, "Monte Carlo simulation analysis of the effects of different system 
performance levels on the importance of multi-state components," Reliability Engineering & 
System Safety, vol. 82, pp. 63-73, 2003. 

[26] G. Levitin, L. Podofillini, and E. Zio, "Generalised importance measures for multi-state 
elements based on performance level restrictions," Reliability Engineering & System Safety, 
vol. 82, pp. 287-298, 2003. 

[27] J. E. Ramirez-Marquez and D. W. Coit, "Composite importance measures for multi-state 
systems with multi-state components," Reliability, IEEE Transactions on, vol. 54, pp. 517-529, 
2005. 

[28] N. Gebraeel, "Prognostics-Based Identification of the Top-Units in a Fleet," Automation 
Science and Engineering, IEEE Transactions on, vol. 7, pp. 37-48, 2010. 

[29] X. Liu, K. N. Al-Khalifa, E. A. Elsayed, D. W. Coit, and A. S. Hamouda, "Criticality measures for 
components with multi-dimensional degradation," IIE Transactions, 2013. 

[30] S. Song, D. W. Coit, Q. Feng, and H. Peng, "Reliability Analysis for Multi-Component Systems 
Subject to Multiple Dependent Competing Failure Processes," 2014. 

[31] S. Iyer, "The Barlow–Proschan importance and its generalizations with dependent 
components," Stochastic processes and their applications, vol. 42, pp. 353-359, 1992. 

[32] B. Natvig, "Measures of component importance in nonrepairable and repairable multistate 
strongly coherent systems," Methodology and Computing in Applied Probability, vol. 13, pp. 
523-547, 2011. 



 
27 

 

[33] C. Cocozza-Thivent, "Processus de renouvellement markovien, Processus de Markov 
déterministes par morceaux," Online book available on the webpage: http://perso-math. 
univ-mlv. fr/users/cocozza. christiane/recherche-pageperso/PresentationRMetPDMP. html, 
2011. 

[34] C. Cocozza-Thivent, R. Eymard, and S. Mercier, "A finite-volume scheme for dynamic 
reliability models," IMA journal of numerical analysis, vol. 26, pp. 446-471, 2006. 

[35] R. Coudray and J. Mattei, "System reliability: An example of nuclear reactor system analysis," 
Reliability Engineering, vol. 7, pp. 89-121, 1984. 

[36] M. Marseguerra and E. Zio, "Monte Carlo approach to PSA for dynamic process systems," 
Reliability Engineering & System Safety, vol. 52, pp. 227-241, 1996. 

[37] R. Eymard and S. Mercier, "Comparison of numerical methods for the assessment of 
production availability of a hybrid system," Reliability Engineering & System Safety, vol. 93, 
pp. 168-177, 2008. 

[38] M. H. Davis, Markov models and optimization vol. 49: CRC Press, 1993. 
[39] S. Zhang, M. Hodkiewicz, L. Ma, and J. Mathew, "Machinery condition prognosis using 

multivariate analysis," in Engineering Asset Management: Springer, 2006, pp. 847-854. 
[40] P. Moussou, S. Cambier, D. Lachene, S. Longarini, L. Paulhiac, and V. Villouvier, "Vibration 

investigation of a French PWR power plant piping system caused by cavitating butterfly 
valves," ASME-PUBLICATIONS-PVP, vol. 420, pp. 99-106, 2001. 

[41] M. Daigle and K. Goebel, "A model-based prognostics approach applied to pneumatic 
valves," International journal of prognostics and health management, vol. 2, p. 008, 2011. 

 

 

 

Yan-Hui Linhas been a doctoral student at Chair System Science and the Energy Challenge, 

FondationElectricité de France (EDF), CentraleSupélec, Université Paris-Saclay, France since 

August 2012. He received the B.Sc. degree in Applied Mathematics from Beihang University, 

China, the M.Sc. degree in Applied Mathematics from Ecole Centrale Paris, France and the 

M.Sc. degree in Aircraft Design from Beihang University, China, in 2010, 2012 and 2013, 

respectively. His research interests are in reliability, degradation and maintenance modeling, 

Monte Carlo simulation, and optimization under uncertainty. 

Yan-Fu Li is an Assistant Professor at Chair System Science and the Energy Challenge, 

FondationElectricité de France (EDF), CentraleSupélec, Université Paris-Saclay, France. Dr. 

Li completed his PhD research in 2009 at National University of Singapore, and went to the 

University of Tennessee as a research associate. His current research interests include 

reliability modeling, uncertainty analysis, evolutionary computing, and Monte Carlo 

simulation. He is the author of more than 30 publications, all in refereed international journals, 

conferences, and books. 

http://perso-math/


 
28 

 

Enrico Zioreceived the Ph.D. degree in nuclear engineering from Politecnico di Milano and 

MIT in 1995 and 1998, respectively. He is currently Director of the Chair System Science and 

the Energy Challenge, FondationElectricité de France (EDF), CentraleSupélec, Université 

Paris-Saclay, France, and full professor at Politecnico di Milano, Italy. His research focuses 

on the characterization and modeling of the failure/repair/maintenance behavior of 

components, complex systems and their reliability, maintainability, prognostics, safety, 

vulnerability and security, Monte Carlo simulation methods, soft computing techniques, and 

optimization heuristics. 

 
 


