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Abstract. Particulate flows are present in many applications
and the effect of particle size is still not well understood. The
present paper describes three cases of sustained homogeneous tur-
bulence interacting with particles. Simulations correspond to three
particle-fluid density ratios and 3% volume fraction in zero grav-
ity field. Fully resolved particle simulations are based on fictitious
domain and penalty method.

The local dissipation around particles is studied according to
the density ratio. Spatial description of the averaged dissipation
is provided. Collision statistics are also investigated. The inter
collision time and the angle of collision are compared to the kinetic
theory. The effect of the inter particle film drainage is highlighted
by simulating the same configurations with and without lubrication
model.
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1. Introduction

Particle-laden flows can be found in natural environment and many
industrial applications. For example, sediments in rivers, solid particles
in fluidised beds, droplets in clouds or in combustion chambers [51]
could be treated as particles. Depending on the regime, the turbulence
can govern completely the particles’ behaviour (spatial distribution,
collision rate, ...). In the case of moderately concentrated to dense
flows, the presence of particles can also influence the turbulence, [38, 5].

Dimensionless parameters characterising particle laden-flows are:

• the density ratio ρ =
ρp
ρf

, with ρp and ρf the density of the solid

and fluid respectively,
• particle volume fraction,
• the Stokes number, defined as the ratio between the particle

response time τp and a characteristic flow time scale τf . For the
turbulent case, the Kolmogorov time scale is often chosen for
τf . In this case the Stokes number is Stk. Nevertheless, this
scale loses its relevance to predict finite size particle dynamics,
i.e., when the particle size is larger than the Kolmogorov length
scale, [27].
• for finite-size particles, a new dimensionless parameter has to

be considered, i.e. the ratio between the particle radius R and
the Kolmogorov length scale η.
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The motion of finite size particles in turbulent flow has received much
less attention than small particles. Indeed, the size of the particles
induces new coupling phenomena between fluid and particles, for ex-
ample with flow scales larger than the Kolmogorov scales. In this case,
classical Lagrangian pointwise approaches are not able to model these
couplings as scale separation is not satisfied. Due to available CPU
resources the computational cost of finite-size particle simulations was
not affordable until recent years. More recently, with increasing power
of massively parallel computers, the finite-size effect on particle dy-
namics has motivated many studies.

In figure 1, an extensive collection of relevant studies is presented.
Experimental data, pointwise simulations and finite-size simulations
are plotted together according to Stk, ρ and R

η
. Studies are depicted

with filled circles for simulations and open symbols for experiments.
In addition, pointwise simulations have been reported as square sym-
bols. It can be observed that pointwise simulations are focused on
large density ratios, i.e. mostly gas/solid motions, whereas finite-size
particle studies are concerned with Stokes numbers and density ratios
ranging from 1 to 100. In order to contribute to the understanding of
finite-size particle laden flows, fully-resolved turbulent simulations are
considered in the present work for moderate density ratios correspond-
ing to liquid/solid suspensions and Stk ranging from 10 to 100. These
simulations are also reported in figure 1 (purple circles).

The main results obtained in the literature are now summarized:

• Turbulence modulation
The dispersed phase can modify the turbulent characteristics.

This modulation can be split into three contributions. The first
one is due to the force exerted by the particles on the fluid.
For pointwise models, it can be written as the ensemble aver-
aging < u · f > obtained from the scalar product of the fluid
velocity at the position of the particle u and the force f (see
for example [16]). It was concluded that modulation depends
on the Stokes number based on the Kolmogorov time scale. For
different Stokes numbers, it was observed that point particles
could enhance turbulence or dissipate energy. The second term
is a transfer of energy from large to small scales, [16, 5]. Fi-
nally, a third contribution comes from the modification of local
dissipation around the particles. This is typically a finite-size
effect which cannot be accounted for by classical pointwise sim-
ulations.
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Figure 1. Representation of turbulent particulate flows
according to the density ratio, Stokes number based on
Kolmogorov scale and R

η
for finite size configurations.

The square symbols represent the pointwise simulations
(red: [16], green: [2], blue: [39], brown: [13]), the open
symbols hold for experimental data (red: [50], green:
[14], blue: [31], brown: [40], orange: [4], yellow: [49],
dark blue: [30], black: [17]) and the filled circles corre-
spond to the finite size particle simulations (red: [26],
green: [11], blue: [52], brown: [42], orange: [20], yellow:
[9], dark blue: [18] and [37], purple: present paper). The
size of the circle is proportional to the ratio between the
particles radii and the Kolmogorov length scale.

The effect of finite size particles on turbulence modulation
was studied numerically in [52]. It is shown that the rate of
decay of the turbulence is more important for the finite size
case than for single-phase and particulate pointwise simulations.
Actually, it is still necessary to understand and explain this ef-
fect. From the instantaneous dissipation fields obtained in the
simulations of [42], it can be observed that a local dissipation
appears around particles. Later, the study of [26] verifies that
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the averaged dissipation increases around particles. In order to
quantify this effect, the authors computed the averaged dissipa-
tion upstream and downstream of particles. The local increase
of the dissipation is more important on the front and its spatial
extension is about one diameter long. A similar conclusion is
drawn in [9] in which a tentative explanation is given: the wake
generated behind the particles decreases the turbulent dissipa-
tion level. These results are confirmed by the experiments of
[40] concerning the study of dissipation around particles settling
in a turbulent flow. The dissipation is multiplied by 3 on the
front of the particles. The local dissipation will be analysed in
the present paper.

The local dissipation is not the only finite size effect in tur-
bulence modulation. In fact, as shown by [30], finite size par-
ticles can modify the turbulence structures without modifying
the energy content. Finally, [26] shows that the coupling term
< u · f > is positive (energy enhancement), even for inertial
particles. For pointwise particles, this term generally dissipates
energy.
• Collision regime

The study of the collision regime is important form many ap-
plications such as the prediction of coalescence rate of droplets.
The collision rate represents the number of collisions per time
unit. It can be obtained from the relative velocity of the parti-
cles |wr| and the radial distribution at contact g0, as follows,

(1) fc =
1

τc
=

1

2
g0n

2
pπ(2R)2 < |wr| >

where < . > is the ensemble average, τc is the collision time
and np is the particle number density. The particle collision
frequency in turbulent flow is relatively well described for two
cases. In the first case, for particles with small response time
(tracers), the collisions are driven by the local shear in the flow.
The collision rate can be correlated to the dissipation rate of the
flow, [36]. In the second case, where the particles are inertial,
the Tchen-Hinze correlation [41, 19] links the particle kinetic
energy to the turbulent statistics. Thus, the collision rate can
be computed, [1]. For intermediate cases, many models have
been proposed [48, 23, 24].

For finite size particles, only the study of [42] has addressed
collision statistics. This study showed that secondary collisions
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appear. The secondary collisions are consecutive collisions be-
tween pairs that stay correlated during a relatively long time.
These collisions are not predicted by previous models. In the
present paper, the secondary collision frequency will be anal-
ysed.

This article presents a study of a sustained homogeneous turbulent flow
seeded with finite-size particles. First of all, the numerical method is
summarized in section 2. The choice of the turbulent particle laden
flow parameters is discussed in section 3. From this turbulent case, two
major phenomena are studied. The first one is the averaged flow around
particles which is described in section 4. The second phenomenon is the
collisional regime detailed in section 5 where we focus on lubrication
effects on collisional regime. Conclusions and perspectives are finally
drawn in the last section.

2. Simulation of finite size particles

The modelling and simulation of fully resolved finite size particles in
turbulent incompressible and isothermal fluid is investigated by means
of a single fluid model [22] generalized for particulate flows [44]. The
key idea is to use a fictitious domain approach in which an Eulerian
description of the two-phase flow is introduced by a characteristic func-
tion C, also called volume of fluid (VOF). This function is 0 in the fluid
phase and 1 in the solid phase. It allows to locate any point in a given
phase by defining the interface as C = 0.5. The single fluid model
is implemented on fixed structured Cartesian meshes not adapted to
the shape of the fluid/particle interfaces, so that the particles are fic-
titious domains embedded in the calculation grid. The formulation of
the single fluid model is the following (see [44] for more details)

(2) ∇ · u = 0

(3) ρ

(
∂u

∂t
+ (u · ∇) u

)
= −∇p+∇ ·

(
µ
(
∇u +∇tu

))
+ fsi

(4)
dC

dt
=
∂C

∂t
+ u · ∇C = 0

where u and p are the velocity field and the pressure respectively in
both phases, t the time, ρ and µ the density and the viscosity of the
equivalent fluid (fluid and solid phases). The density and the viscosity
of the equivalent fluid are formulated according to the real physical
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properties of the two different media and the VOF function by using
arithmetic or harmonic weighting based on the local value of C. Due
to the Eulerian representation of the two-phase flow, a specific four
way coupling term fsi is added to the momentum equations in order to
model collisions and lubrication. This force distribution results from
a damp and spring collision representation and a lubrication model
depending on the distance between interacting particles [6].

From a numerical point of view, the divergence free and solid con-
straints of the fictitious domain approach are approximated by finite
volumes, an implicit viscous tensorial penalty method [34, 32] and an
augmented Lagrangian minimization algorithm adapted for two-phase
flows [45]. By using penalty methods and augmented Lagrangian tech-
niques, the velocity, pressure and fluid/solid constraint are satisfied
instantaneously and in a coupled manner at each time step. This way,
the CFD code is robust and physically relevant. Concerning the ad-
vection equation (4) of the VOF function C, it is approximated in a
Lagrangian manner in order to avoid deformation of the particle shape
commonly observed in standard VOF methods [33]. In our approach,
the center of mass of the particle is advected in a Lagrangian way with
the velocity obtained thanks to mass and momentum balance equa-
tion equation (2-3). After this advection step, the analytical spherical
shape of the particle is projected onto the Cartesian grid to update the
C function. The final approximation of the global one fluid model for
resolved scale particles converges spatially to second order.

The model and numerical methods have been widely validated on
particle settling, Poiseuille and rotating flows, collisions and also on
liquid/solid fluidized bed simulations in [34, 32, 6, 44].

A collision model is used to reproduce particle-particle interaction
and rebound. During collisions, a force is exerted on the particle vol-
ume, fsi. Two different forces are taken into account in order to model
the effect of lubrication (fluid drainage) and the solid-solid collision
force. These forces depend on the gap between particle surfaces (which
is scaled by the particle radius and will be noted ε) and on the nor-
mal relative velocity un. A detailed presentation of this model and
validation against experiments are given in [6].

In order to compare the effect of lubrication model, each simulation
presented in the following section has been carried out twice. A first
simulation has been done with only the solid-solid collision model. A
second one with both forces, solid-solid collision and lubrication.

The solid-solid collision is modelled by a spring and dash-pot force
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(5) Fs = −
me

(
π2 + [Ln ed]

2)
[Nc∆t]

2 Rε− 2me [Ln ed]

[Nc∆t]
un

where me =
(
m−1
a +m−1

b

)−1
is the reduced mass, ed is the dry resti-

tution coefficient, defined as the ratio between the velocity after and
before the collision, and Nc∆t is the numerical collision time. In all
simulations ed = 0.97, thus the solid collisions are quasi-elastic. The
number of fluid time steps for the solid numerical collision time Nc is
fixed to 8. This force is activated at a distance εss. This threshold
is fixed to 0 for the simulations in which the lubrication force is acti-
vated and to 0.1 when this force is not taken into account. In order
to compare similar collision with or without lubrication, εss without
lubrication has to be equal the threshold distance εal for lubrication.

The second force is a model of hydrodynamic interaction during the
drainage of the liquid film between the particles. This hydrodynamic
interaction is not captured directly by the numerical solution of the
Navier-Stokes equations because the grid size is larger than the film
thickness close to contact. The force is computed from the analytical
expressions [7, 10].

(6) Fl(ε, un) = −6πµfRun [λ (ε)− λ (εal)]

(7) λ =
1

2ε
− 9

20
Ln (ε)− 3

56
εLn (ε) + 1.346 +O (ε)

The lubrication force is activated for ε = εal = 0.1. When the parti-
cles are near overlapping the force is kept constant. It has been shown
that the addition of these two forces ensures the expected lubricated
rebound in a viscous fluid [6].

3. Macroscopic properties

3.1. Energy distribution. Based on fully resolved simulations we
aim at getting more insight on the collisional regime of finite size parti-
cles in a turbulent flow. In order to obtain converged collision statistics
over long times, it is necessary to simulated sustained turbulence. To
do so, turbulence is sustained by using the linear forcing proposed by
[35]. In our implementation the velocity field u is rescaled to u+ at each
time step as to keep a constant kinetic energy u2

0 within the simulation
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domain:

(8) u+ =

√∫
Ω

u2
0dv∫

Ω
u2dv

u

A 2563 mesh is used for direct numerical simulations enforcing ade-
quate resolution of the Kolmogorov scale η (with η/∆x = 0.56). Sim-
ulating one large eddy turn-over time takes 10 h CPU on 512 cores of
an SGI Altix Ice supercomputer.

In order to obtain the initial turbulent flow, a single-phase turbu-
lence is initialized with a predefined homogeneous isotropic turbulence
spectrum [28, 43]. Then, single-phase simulations with sustained tur-
bulence are achieved with the previous forcing scheme until reaching
steady state spectrum. The Taylor micro-scale Reynolds number of
the turbulent flow computed from this spectrum is Reλ = 73. This
moderate Reynolds number corresponds to a moderate length scale
separation: the ratio of Taylor micro-scale over Kolmogorov scale is
λ/η = 17. First, the flow is forced from its initial condition (analytic
spectrum) to reach statistical steady state. Then, 512 particles are
seeded and a transient time is considered before starting averages for
two-phase flows. The particle radius is R = 0.59λ = 10η. The particle
volume fraction is 3%. To obtain converged particle statistics, simula-
tions are carried out over 12 large eddy turn-over times. In the present
paper three different simulations are presented for solid to fluid density
ratio ρ equal to 1, 2 and 4. No gravity effect is considered.

A study of the spatial spectrum has been carried out to verify that
the presence of particles has only a minor influence on the turbulence
statistics. In figure 2, the single phase flow spectrum of energy is com-
pared to two-phase flow simulations for the three density ratios. Only
slight modifications are observed at wavenumbers higher than the in-
verse of the particle radius. The energy spectrum is formed over the
entire domain (accounting for the solid body motion of the particles).
As shown by [26], the inclusion of the solid domain creates some os-
cillations on the wavenumbers larger than the inverse of the particle
radius. As shown in figure 2, our simulations stand in a very dilute
regime yielding these oscillations to be negligible. Only a weak in-
crease of energy at high wavenumbers is observed. It can be explained
by the linear forcing applied in the entire domain.

In order to confirm the weak effect of the particles on the carrying
fluid turbulence (the local effect will be discussed later) and overtake
the problem of the computation of the spatial spectrum including grid
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Figure 2. Energy spectra with and without particles.
Solid line for single phase flow DNS. Dotted, dash-dotted
and light dashed lines stand for density ratio equal to 1, 2
and 4 respectively. The vertical dash line represents the
wavenumber corresponding to the particle diameter. In-
set is a close-up for high wavenumbers content of spectra.

points inside the particles, the temporal Lagrangian spectrum has been
computed.

This spectrum is computed from 200000 Lagrangian fluid elements
(point particles following the flow) which are randomly seeded in the
fluid domain. Their trajectories are integrated while the turbulent sus-
pension is simulated. Then, the Lagrangian velocity auto-correlation

function, Rf
L = <Vi(t0)·Vi(t0−t)>

<Vi(t)2>
, is computed from those trajectories

to evaluate the energy temporal spectrum E(ω) = 1
2
F(Rf

L)F∗(Rf
L).

Where, F and F∗ are the Fourier transform and its conjugate. The
Lagrangian spectrum is given in figure 3. This statistical quantity is
really a measure of the turbulence of the carrying flow and is not flawed
by accounting simultaneously the fluid and solid in statistics. Based
on figure 3, we can conclude that the carrying flow statistics remain
constant for the three considered density ratios.

To characterize the particle response to fluid flow fluctuations, two
different Stokes numbers are determined, based on the Kolmogorov
time scale and the large eddy turnover time. The Stokes number based
on the Kolmogorov time scale is relatively large Stk = {26, 52, 104},
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spectra were computed from tracer particle trajectories.
Solid line for single phase flow DNS. Dotted, dash-dotted
and light dashed lines stand for density ratio equal to 1,
2 and 4 respectively.

as a consequence, the particles are inertial relative to the Kolmogorov
scales. The preferential concentration of inertial particles in low vor-
ticity regions has been commonly observed and quantified for small
particles (pointwise or particles smaller than the Kolmogorov length
scale). Particles whose Stokes number based on the Kolmogorov time
scale are near unity are experiencing strong preferential concentration.
For larger particles (finite size), it is expected that preferential con-
centration may occur but on a different length scale where particle
response time and fluid flow time scale match. For our simulations,
the Stokes number based on the large eddy turnover time is less than
10 (StE = {1.5, 3.0, 6.0}) and it can be expected that it is for this
scale that preferential concentration could appear. During the simula-
tions no clusters formation was observed. Statistics on the radial pair
distribution function did not show evidences of preferential concentra-
tion. Different explanations can be proposed. The first one is that the
simulation time (12 eddy turn-over times) is not long enough for the
particles to migrate in accumulation zones. The second explanation is
that the physical life-time of the low vorticity regions at large scales is
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too short to give enough time for the particles to cluster. The segre-
gation and clustering of finite size particles is still an open subject to
study.

3.2. Particle statistics. The dynamics of particles smaller than the
Kolmogorov scale has been studied extensively. Characterizing the re-
lation between the particle statistics (kinetic energy and the velocity
autocorrelation time) and the turbulence properties has been estab-
lished in [41, 19, 12, 24, 15]. In table 1 statistics are reported for finite-
size particles and scaled by the fluid tracer statistics. As expected the
particle kinetic energy, averaged over the Np particles during Nt time

steps q2
p = 1

2

∑
j

∑
iV

2
i (tj)

NtNp
, is reduced when the density ratio increases

while the velocity autocorrelation time increases. This reduction is
predicted by Tchen-Hinze theory [41, 19]:

(9)

(
q2
p

q2
f

)
T.−H.

=

T fL
τp

+ b2

T fL
τp

+ 1

where, b =
3ρf

2ρp+ρf
= 3

2ρ+1
.

However, the particle kinetic energy is less important than the pre-

diction of the Tchen-Hinze theory,
(
q2p
q2f

)
T.−H.

. Indeed, Tchen-Hinze

theory is based on an estimate of the fluid kinetic energy at the po-
sition of particles assuming that their size is much smaller than the
Kolmogorov length scale. In our case, the particles are significantly
larger than the Kolmogorov length scale therefore they are not experi-
encing of the full fluid fluctuations (large particles behave like a spatial
low pass filter of the flow kinetic energy).

The Lagrangian velocity autocorrelation time TL =
∫∞

0
RL(t)dt =∫∞

0
<Vi(t0)·Vi(t0−t)>

<Vi(t)2>
dt is presented in table 1. This autocorrelation time

TL is normalized by the autocorrelation time of the fluid particles T fL
obtained thanks to the autocorrelation function Rf

L (see section 3.1).
It characterizes the typical time a particle takes to change its velocity
direction. The present simulations show that TL increases as density
ratio rises. Similar trend is observed for inertial point-particles simu-
lations. As can be seen in table 1, whatever the density ratio is, even
for neutrally buoyant particles, the normalized autocorrelation time is
greater than 1, clearly showing finite size effect.

Analysing the acceleration statistics provides insights on the dynamic
response of particles to the turbulence forcing. It has been shown in
literature [46, 31, 8] that the probability density function of finite size
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ρ
q2p
q2f

(
q2p
q2f

)
T.−H.

TL
T fL

1 0.85 1 1.31
2 0.79 0.5 1.45
4 0.74 0.2 1.65

Table 1. Particle statistics.

solid particles acceleration P (a) can be approximated by an exponential

law exp−|a|
β

where β ≤ 1. As showed by [3] the constant β approaches
unity for inertial particles (here for high density ratio ρ). In figure 4
a) and b) two p.d.f. of particle accelerations normalized by their r.m.s.
values have been reported for the different simulations. In figure 4
a) the p.d.f. has been obtained without considering the acceleration
occurring during collisions. For this case, the p.d.f. closely follows an
exponential law with β = 1 whatever the density ratio. Therefore, this
is a measure of acceleration statistics strictly related to the interaction
with turbulence in the very dilute regime (no collision).

Concerning, the case where acceleration during collision is taken into
account for the p.d.f. acceleration (figure 4 b), the same exponential
behaviour is observed for low acceleration values. This is no longer
the case for larger values. Indeed the tails of the p.d.f. in figure 4 b)
are shifted towards higher values. This is related to rare but strong
collision events on the acceleration.

In [31] an experimental study has been conducted on the interaction
between finite size soap bubbles and turbulent air channel flow. It was
shown that the r.m.s. acceleration scaled by the fluid dissipation rate

(A0 = a2
r.m.s./ε

−3/2
t ν1/2) decreases as ρ increases. In order to compare

to this result the dissipation of the turbulent flow εf is estimated in
the present simulations from the spectrum: 2ν

∫∞
0
κ2E(κ)dκ. In [31]

an exponential decrease has been observed from ρ = 1 to ρ = 10 as
A0 = 2.8ρ−0.6. From our simulations the same trend can be observed
as 15ρ−0.94 (figure 5).

4. Dissipation distribution around particles

4.1. Moving frame around particles. To evaluate the average flow
around moving particles a specific post-processing has been applied to
instantaneous DNS flow fields. A local framework is attached to each
particle center and it is translated with the particle velocity. An unit
vector is aligned with the instantaneous particle velocity eVp = Vp

‖Vp‖ .

As the average flow is axi-symmetric, this flow field is described in the
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Figure 4. Probability density function of particle ac-
celeration. Exponential p.d.f. is given as a reference,
exp−|a|

β
, β = 1. a) without collision events. b) with

collision events.

moving particle framework in a {r, θ} plane, with r the distance to
the particle center and θ the angle with the unit vector. A staggered
polar grid is attach to the particle framework. The radial distribution
{ri} is refined near the particle surface to provide a better description of
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boundary layers. The angle increment is also not uniform to keep rather
constant the volume of each cell for a given radii ri. This choice is made
in order to converge smoothly the statistics for each cell. The surface of

the cell between θj and θj+1 is approximated by 2πri sin
(
θj+θj+1

2

)
dθj.

In our case 180 angles are used in the [0..180] interval.
The different steps of the post-processing are the following:

(1) The DNS flow field is known on the staggered fixed Cartesian
grid.

(2) For each radius ri a spherical shell around the particle is de-
fined. The values of the physical quantities (velocity, dissipa-
tion...) are linearly interpolated at the intersection between the
spherical shell and the Cartesian grid using the surrounding
Cartesian grid values.

(3) For each interpolation location, the angle between eVp and the
radius connecting this location with the particle center is com-
puted. Then, the value is added to the average of the cell which
node is referenced by θ ∈ [θj, θj+1].

This algorithm is applied for each particle and for many time steps
chosen arbitrarily to obtain converged statistics.
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In figure 6 the streamlines resulting from the average velocity flow
around particles are presented for different density ratios ρ = 1, 2 and 4.

As shown by [9] the absence of fore-and-aft symmetry is related to
the conditional averaging of the flow in a framework moving with the
particle. This has been observed also for flow around a tracer particle
in [9].

4.2. Dissipation rate in a moving frame around particles. An
important feature of two-phase turbulence is that the presence of par-
ticles generates modulation of turbulence. Depending on the particle
properties and the flow configuration, particles can enhance or damp
fluid flow turbulence (this fundamental question is still open). Fully
resolved simulations of finite size particles provide information which
cannot be obtained with point-wise two-way coupling simulations. The
dissipation of energy is a local effect occurring near the particle surface
and in its wake.

The dissipation ε = 2ν
(
∂ui
∂xj

+
∂uj
∂xi

)2

is computed on the Cartesian

grid and averaged as presented in the previous paragraph. Figure 7
shows the spatial distribution of dissipation scaled by ε∞ which is the
overall turbulent dissipation of the flow. A peak of dissipation is lo-
cated on the front of the particle. In the present simulations this peak
reach 2.5 the average fluid dissipation. The magnitude of this dissipa-
tion increases with density ratio. This is the result of the progressive
decorrelation of the particle velocity and the local flow which increases
for large particle density. The dissipation increases around particles
over a distance smaller than one radius in agreement with different
authors.

In the experiments of [40] the dissipation around a sedimenting par-
ticle in a turbulent flow is given. The particles fall in a turbulence
chamber. The particles are much heavier than the surrounding gas
and their radii are similar to the Kolmogorov length scale. The tur-
bulence around the particles are measured by a PIV system. In this
experiment the dissipation observed around the particles has increased
to 3.5 times the turbulence dissipation.

Numerically, several studies have been conducted. In the simulations
of a turbulent particle laden flow presented by [42] instantaneous dissi-
pation fields are presented. It could be seen that the local dissipation
increases around the particles. In this paper, no average dissipation is
provided. In [29] a fixed particle with radius 4 times the Kolmogorov
scale is simulated in a fully turbulent flow. The averaged dissipation
for a given distance is computed showing an increase of the dissipation
around 4 times the averaged dissipation at a distance of one radius.
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<V−u>Np
<|Vp|>

Figure 6. Intensity of the average relative velocity and
streamlines around a reference particle for each two-
phase flow configuration.
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ρ = 1

ρ = 2

ρ = 4

<ε>
ε∞

Figure 7. Spatial distribution of average dissipation for
each two-phase flow configuration (left column). Close-
up around the particle surface (right column).
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The averaged dissipation for a given distance is also provided by [47]
for simulations with free particles in a turbulent flow for the same par-
ticle size (R = 4η) and for a density ratio ρ = 4. The method used is
based on the Lattice-Boltzmann method. In this case the dissipation
is 6 times larger around the particles than the averaged dissipation in
the fluid.

In [26] simulations of finite size particles are carried out with the
IBM method for different radii R ∈ [8.2..17.7] and density ratios ρ ∈
[2.53..10]. They computed the averaged dissipation for a given distance
for two regions of the flow: the front of the particles (equivalent to
θ ∈ [0..90] in the present notation) and the back of the particle (θ ∈
[90..180]). As in the present paper, the dissipation in the front of the
particle is larger and the influence is observed over one radius distance.

Finally, [9] provides a detailed study of slipping velocity and local
dissipation around buoyant particles in a turbulent flow. This numeri-
cal study is based on a pseudo-spectral Navier-Stokes solution and an
IBM method to account for fully-resolved particles. Different radius
are considered (R ∈ [8.5..33.5]η) that have permit to study the influ-
ence of the particles size. In this case the average of the dissipation is
split in three regions: upstream (θ ∈ [0..45]), transverse (θ ∈ [45..135])
and downstream (θ ∈ [135..180]). Again, the dissipation in the front
of the particles is larger than at the rear. On the three regions the
increase of dissipation is limited to one radius.

The magnitude of dissipation (front and rear of particles) has been
compared in figure 8 with the results of [26] and [9]. The profiles of
dissipation at the front and at the rear of the particles are reported.

The orders of magnitude of dissipation found in the literature from
the surface of the particle to 3 times the particles radius are similar to
our computations. In addition, for all the cases we observe that the
dissipation increase is less important at the particle rear. As in [26]
the dissipation peak increases with the density ratio.

Even if there are major differences between the way the computations
are carried out, the numerical approach and the simulation parameters,
the magnitude of the dissipation increase agrees. Nevertheless, dissi-
pation seems to be greater for the buoyant case of [9] than for our
simulations. We explain this difference because the particles are larger
than in our simulations, R = 17η instead of R = 10η, and thus, they
are more inertial. Another explanation could be that the turbulence is
stronger than in the present simulations, Reλ = 160.

As a conclusion, the present simulations confirm the results obtained
by several authors [27, 9, 29, 40]: the particles modify locally the tur-
bulence. This modification is always an increase of the local dissipation
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Figure 8. Dissipation on the front and at the rear of
the particle. Present simulations compared to [26] and
[9].

of the turbulence. This dissipation is larger in the front of the particles
and its spatial extension is less than one radius. The magnitude of this
dissipation increases with particle inertia.
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5. Collision statistics

5.1. Collisions with solid contact only. Understanding the colli-
sion dynamics is a key point for modelling suspension flows and pre-
dicting coalescence events for drops. In this section, only the solid-solid
model has been activated without lubrication (eq. (5)).

We have followed the present procedure to form statistics. If we
call ∆tcoll the time between two collisions for a given particle, and
∆tcoll,i the averaged of all the ∆tcoll concerning the ith particle, the
inter-collision time τc for Np particles is defined as τc =< ∆tcoll,i >Np=
1
Np

∑Np
i=1 ∆tcoll,i. Another way to compute τc is to count the number

of collision Ncoll during the total time of analysis ∆T , and for the Np

particles to obtain τc = Np
2Ncoll

∆T .

This characteristic time can be estimated theoretically (eq. 10) from
the average relative velocity of particles < |wr| > as proposed in [36].

(10)
1

τc
=

1

2
g0n

2
pπ(2R)2 < |wr| >

When the motion of particles is fully uncorrelated, the relative ve-
locity of particles < |wr| > can be evaluated from the particle kinetic
energy q2

p, [1] :

(11)
1

τ thc
=

1

2
g0n

2
pπ(2R)2

√
16

π

2

3
q2
p

In table 2 the inter collision time is reported for different density
ratios. Two different inter collision times have been considered. The
first one τ thc is obtained thanks to equation 11, by extracting the par-
ticle kinetic energy q2

p from simulations with the assumption that g0 is
equal to 1 (particle dilute flow) and using the effective collision radius
(1.1R because the collision is activated for ε = 0.1) and np = 512

(2π)3
the

particles number density. The second inter collision time τnc is directly
obtained by estimating the time between two collisions in simulations.
This estimate has been achieved with two methods:

τn,1c We average all the times between the end of a collision and
the beginning of the next collision for all the particles. In this
estimate the solid contact, which is not instantaneous with our
soft sphere model, is not taken into account.

τn,2c Is the ratio between the total number of collisions occurring
during the simulation and the simulation time.

The first method gives a lower bound of τc while the second one provides
an upper bound.
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ρ [ τ
n,1
c

τk
.. τn,2c

τk
] τth

c

τk
based on computations theory eq. (11)

1 [22.6 .. 24.5] 21.5
2 [19.3 .. 20.8] 22.4
4 [16.2 .. 17.1] 23.1

Table 2. Comparison of inter collision times for various
density ratios. The reference Kolmogorov time is τk =
0.0635 s

The orders of magnitude of inter collision times are comparable what-
ever method used. The gap between τ thc , τn,1c , τn,2c is always less than
15%. As expected form equation (11), τ thc is increasing with the density
ratio as qp is decreasing. In contrast, the collision time measured is de-
creasing with increasing density ratio. One can explain this behaviour
by considering that the evaluation of τ thc is done under the assumption
of g0 = 1.

In order to understand those discrepancies the probability density
function of inter-collision times is now considered. In simulations, the
p.d.f. is obtained by counting the number of occurrences of each inter
collision time ∆tcoll for all the particles. The p.d.f. is divided by the
total number of occurrences. From the kinetic theory of granular flows
(uncorrelated motion of particles) the p.d.f. follows

(12) P (∆tcoll) =
1

τ thc
exp

(
−∆tcoll

τ thc

)
In figure 9, the probability density function is reported for three den-

sity ratios. A comparison is provided between simulations and kinetic
theory.

The p.d.f. obtained with simulations follows the kinetic theory for
∆tcoll < 4τc. For larger values of ∆tcoll, the measured p.d.f. has a large
dispersion due to the small number of occurrences that are counted. For
this reason, the comparison to the kinetic theory is not representative
for ∆tcoll > 4τc.

If we focus on the small inter collision times, the comparison between
kinetic theory and measured p.d.f. shows a larger difference for ρ = 1
than for ρ = 4. This is the consequence of the particle motion that
follows more easily the flow and comes into contact with slightly more
correlated trajectories when ρ = 1. This discrepancies for ρ = 1 could
be inferred to the effect of secondary collisions that will be affected by
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Figure 9. Inter-collision time probability density func-
tion. Solid line corresponds to equation (12), (τc = τ thc
for kinetic theory and τc = τn,1c for the measured p.d.f.).

the lubrication model. A discussion on the secondary collisions is given
in section 5.2.

In order to describe more precisely the collision regime, statistics
of the velocity orientations when collision occurs are analysed. For
uncorrelated motion of particles, the p.d.f. of the angle between two
particle velocities at contact is predicted by [24]:

(13)

f(θcoll) =

∫∞
0

∫∞
0

8πsin(θcoll)V
2
a V

2
b

√
V 2
a + V 2

b − 2VaVbcos(θcoll)fv(Va)fv(Vb)dVadVb∫ π
0

∫∞
0

∫∞
0

8πsin(θ)V 2
a V

2
b

√
V 2
a + V 2

b − 2VaVbcos(θ)fv(Va)fv(Vb)dVadVbdθ

where fv is the velocity p.d.f..
In figure 10 the kinetic theory corresponding to equation 13 for the

collision angle p.d.f. is compared to simulation results. A Gaussian
profile has been used for fv corresponding to the behaviour observed
in our simulations.

Whatever the density ratio is, the maximum of the measured p.d.f.
is obtained for 20◦ < θcoll < 40◦, whereas the kinetic theory provides
a peak at 108◦. This is characterized by a shift of the p.d.f. from
large to low angles indicating that particles come into contact with
nearly parallel velocities, evidencing a particle to particle trajectory
correlation. This shift decreases for higher density ratio showing that
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Figure 10. Probability density function of the angle
between particle velocity at contact. Theory for un-
correlated motion is given by equation (13) (solid line).
A sketch of particle velocity at contact is provided for
θcoll = {0, 90, 180} degrees.

particle inertia yields larger decorrelation between the particles and
the carrying fluid flow. From this result, it is obvious that the relative
velocity at contact should be lower than the one obtained with the
kinetic theory discussed below.

We now compute the relative velocity at contact wr = 2Vr,coll =(
Va
p −Vb

p

)
· n, where n is the unit vector connecting the centers of

the two particles. For uncorrelated velocity particles with a Gaussian
velocity distribution, the p.d.f. of wr is given by

(14) fcoll(|wr|) =
2(

8/3q2
p

)2 |wr|exp

(
− |wr|

8/3q2
p

)

In figure 11, we compare the p.d.f. of the relative velocity at contact
obtained with the kinetic theory and simulation results. In equation
(14), the kinetic energy q2

p is obtained from the simulations.
As already observed for p.d.f. of the angle, a clear shift of the p.d.f. of

velocity is also reported in simulations compared to the kinetic theory.
As expected, the relative velocity at contact is lower in the simulations
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Figure 11. Probability density function of the relative
velocity at contact (theory and simulations).

than in an uncorrelated motion. Particle inertia increases decorrela-
tion of particle motion and fluid flow yielding a better agreement with
kinetic theory for the largest density ratio.

The relative velocity at contact characterizes the energy involved in
collisions. When collisions occur in a viscous fluid, part of this energy
is dissipated by viscous effect during the fluid drainage. As a result,
the velocity after the collision is reduced. It has been shown that the

impact Stokes number defined as Stcoll =
2

9

RVr,collρp
µ

is a dimensionless

parameter which can determine the collision regime (from dry contact
to viscous rebound). In order to estimate the energy dissipated during
the collision the restitution coefficient e is defined as the ratio between
the velocity after the collision and before the collision. Based on ex-

periments, the correlation proposed by [25], e
ed

= exp
(
− 35
Stcoll

)
, gives

the relation between the restitution coefficient and the Stokes number
(the restitution coefficient is scaled by its value for a dry contact ed).
In figure 12 the p.d.f. of impact Stokes numbers is presented as well
as the distribution of the effective restitution coefficients based on the
p.d.f. of the relative velocity, figure 11.

It can be seen that for the case ρ = 1 most of collisions are in
the Stokes range corresponding to no rebound (e ' 0). Rebound will
not occur and particles will stay stuck together. For the case ρ = 4
the values of the Stokes numbers cover a wide range corresponding to
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Figure 12. Probability density function of the impact
Stokes number obtained from the relative velocity. Inset
plot represents the p.d.f. of the restitution coefficient
obtained with the correlation given by [25].

restitution coefficients lower than 0.5. This means that for the range
of physical parameters we simulated, lubrication effects during particle
encounters are important and must be accounted for.

5.2. The effect of lubrication on collision statistics. The effect
of lubrication on collisions will be studied for cases ρ = 1 and ρ = 4.
The lubrication model corresponding to equation (7) is now activated
at distance 1.1 R similarly to the solid-solid model in the previous
section. The solid-solid collision model is not modified and is activated
only for the particles that overlap.

Several physical quantities and statistics will be compared in order
to highlight the effect of film drainage on collisions. The kinetic energy
of particle agitation, the autocorrelation time, the velocity and acceler-
ation distributions are not drastically modified by including the effect
of lubrication. A first difference between simulations with and without
lubrication model appears on the averaged distance between particles.
For example, the mean distance to the nearest neighbour is decreased
by about 5%, [21]. The same result can be observed in the radial
distribution function: for small distances the probability to observe a
particle increases, meaning that particles tends to stay closer to each
other. The activation of lubrication between two particles decreases the
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relative velocity between them during the encounter yielding a longer
time of nearby interaction.

Here we focus on the modification of the collisional regime. In order
to analyse this collisional regime it is necessary to make the difference
between two different interactions: the encounter, defined as the acti-
vation of lubrication model, and the solid-solid collision, defined as the
activation of solid-solid model.

The inter-encounter time obtained as the average time between two
activations of the lubrication model is {21.6, 16.1} τk for ρ = {1, 4}
respectively. The elapsed time between two successive interactions is
close to the results obtained for the simulations without lubrication
model: τn,1c = {22.6, 16.2} τk. It shows that the encounters between
particles do not depend on the lubrication model but only on the flow
dynamics which carries the particles towards contact. In figure 13 the
p.d.f. of the inter-encounter and inter-collision times are presented for
the simulations with and without lubrication model.

In all cases an exponential decay is observed for large inter collision
or inter encounter times. This is resulting from the uncorrelated motion
in agreement with the kinetic theory.

When the lubrication is considered, the ratio of collisions occurring
at small times increases. As a consequence, the level of the exponential
law decreases. For the small inter collision times the exponential law
is no more valid. This effect is enhanced for ρ = 1, but also present
for ρ = 4. Because of the increase of small ∆tcoll occurrences, the
inter collision time τn,1c is reduced from 22.6 τk to 2.5 τk for neutrally
buoyant particles. This is explained by the occurrence of many body
solid-solid collisions during the activation of the lubrication model. The
lubrication slows down the particles during separation after a collision,
increasing solid-solid collision events. These phenomena have been also
reported in [42], so-called secondary collisions.

As proposed by [42] the p.d.f. can be split into two contributions.
The first one, relative to primary collisions has an exponential tail

corresponding to long time collisions: P (∆t) = α
τc

exp
(
−∆tcoll

τc

)
. The

second one, relative to secondary collisions is obtained as the difference
between the overall p.d.f. and the first contribution. α is a parameter
representing the gap between the real p.d.f. and the kinetic theory.
It is obtained by fitting the p.d.f. for long inter-collision times. The
exponential law of the kinetic theory is recovered when α = 1.

From our simulations we obtain α for the solid-solid collisions with
the lubrication model:
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• For ρ = 1, α = 7%: only 7 paths over 100 are reproduced by the
kinetic theory, the other 93 are free paths between secondary
collision. In the simulations of [42], α was ranging between 8%
and 11% which agrees with our results.
• For ρ = 4: the occurrence of consecutive collisions is less pro-

nounced. The inter-collision time is reduced only from 16.2 τk
to 14.6 τk. The parameter α is equal to 77%. Here, particle in-
ertia drives the particles towards more energetic collisions and
rebounds. The effect of lubrication is weaker and cannot keep
the particles together after collision.

6. Conclusion

The present paper provides an analysis of a sustained turbulent flow
seeded with finite-size particles based on fully resolved simulations.
Based on a numerical method previously developed for this kind of
simulation [44, 6], specific characteristics of the particle flow have been
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investigated such as the local dissipation around particles and the col-
lision dynamics. These phenomena were under interest as only few
works were devoted to them in the literature. Three configurations
were simulated with different density ratios.

From a macroscopic point of view simulations have provided the
following results: First of all, Eulerian as well as Lagrangian turbulent
energy spectra are reported. It has to be noticed that the later has
never been achieved with resolved scale simulations. The conclusion
is that whatever the density ratio the energy spectra are almost the
same, with only small differences at the largest and smallest scales.
Otherwise, the acceleration of the particles are modify by the inertia
and the collisions. This second effect is observed on the acceleration
p.d.f. and was not reported in previous works.

A specific point of interest in the present work was the averaged
dissipation around particles. Simulations confirm that dissipation in-
creases near the particle. On one hand, dissipation is concentrated on
the front of the particle and is extended over one radius. On the other
hand, dissipation increases with the particles inertia, almost 2 times
the fluid turbulent dissipation.

The collision regime was also analysed in this paper. First of all,
it is shown that when particle inertia increases the collisions can be
described by kinetic theory. This is verified for the p.d.f. of the inter
collision time, the angle of the collision and the relative velocity at
contact. These two last statistics were not often studied and provide
interesting physical information. The divergence between measured
p.d.f. and the kinetic theoretical p.d.f. for the less inertial particles are
here explained: the particle pair velocities are correlated when they
are near each other. This is an effect of their correlation with the
surrounding fluid velocity. The particle to particle correlations have a
strong influence on the energy of the collisions which decreases, spe-
cially for neutrally buoyant particles. For this last configuration, the
measured impact Stokes number is near the sticking particle configu-
ration. The sticking effect can be interpreted as a lack of rebound that
is produced by energy dissipation due to lubrication. This is confirmed
by a comparison of the simulation with and without lubrication model.
This study shows that for neutrally buoyant particles the lubrication
force prevents particles to separate after the solid collision. Thus, sev-
eral solid collision appears after the final separation. That could have
many effects on physical applications, for example on the creation of
aggregates.
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