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Optimal Control of Multiple Magnetic Microbeads Navigating in
Microfluidic Channels

Lyès Mellal1, David Folio1, Karim Belharet2, and Antoine Ferreira1

Abstract— This paper presents an optimal control strategy
for navigation of multiple magnetic microbeads for future
drug targeting applications. To transport the drugs, we use
therapeutic magnetic microbeads as navigable agents controlled
by magnetic gradients. The main difficulty is to control in-
dependently each therapeutic agent along a trajectory with
the same magnetic gradient fields. This study proposes an
optimal control methodology to control a group of different
therapeutic agents at desired states. Based on a dynamic
model of group of magnetic microbeads, controllability and
observability conditions are formulated and simulated. Based
on the proposed theoretical analysis a linear quadratic with
integral action control (LQI) has been chosen to be applied to
the microbeads system. Finally, an experimental investigation
is carried out in millimeter-sized fluidic artery vessels to
demonstrate the controllability and stability of two magnetic
microbeads under different velocity and trajectory constraints
with a laminar viscous fluidic environment.

I. INTRODUCTION

To enhance the targeted therapy against the cancer and
avoid the damage in the tissue, closed-loop control is neces-
sary for computerized drug delivery of therapeutic agents.
A promising approach is to use swarms or agglomerates
of untethered magnetic microrobots -coated with therapeu-
tic drugs- controlled by external magnetic gradient fields
provide by a magnetic resonance imaging (MRI)scanner or
electromagnetic systems. These microrobots are commonly
termed therapeutic micro carriers (TMMC) [1]. In such
settings, one of the main obstacles hindering the development
of automated drug delivery TMMCs is the lack of accurate
mathematical models describing the dynamic effects for
robust and stable navigation control of multiple TMMCs in-
teracting mutually [2]. Some previous works have considered
the magnetic control of single magnetic microrobots with
linear [3] and nonlinear [4] formulations of their dynamic
motion, and more recently, preliminary studies have been
conducted on the magnetic control of multiple microrobots
[5], [6]. Theses studies point out the position control problem
since the group of magnetic microrobots are exposed to the
same control input: the magnetic gradient field.

In [6], the authors have investigated the control of geo-
metrically dissimilar Mag-µBots and a group of identically-
fabricated Mag-µBots in a free environment. In [5], the
authors demonstrated theoretically the closed-loop control of
a group of millimeter-scale particles immersed in fluid and
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driven by the MRI scanner. As a result, the authors proved
through simulation results the stability of two millimeter-
sized beads at the desired positions. However, experimen-
tal validation of the proposed controllability and stability
conditions in operating conditions are still undergoing. The
main contribution of this study is to apply optimal control
methodology for the position stabilization of two geometri-
cally similar/dissimilar microbeads at the desired states in
a microfluidic vascular channel mimicking the blood flow
arterial network. A mathematical model of a group of n
magnetic microrobots is proposed taking into account the
main magnetic, hydrodynamic and interaction microforces.
As the multi-robotic system behaves as a underactuated
dynamic system, controllability and observability conditions
are formulated in order to demonstrate the robust stabil-
ity. A linear quadratic with integral action control (LQI)
has been chosen taking into account the simplicity of its
implementation in the position control of multiple robotic
systems. Also, it presents good performance in position
stabilization and robustness. As example, we can cite the
attitude and positioning control of small scale unmanned
helicopter [7], the motion and vibration control of a three
dimensional flexible shaking table [8] or electromagnetic
navigating tunneling robots [9]. Finally, experimental results
demonstrate the optimal stabilization of the 1D positions
of two magnetic microbeads navigating in a microfluidic
channel.

II. MATHEMATICAL MODELING

To enhance the targeted therapy efficiency, this work aims
to control a group of magnetic microbeads. The magnetic
control of such system is challenging since it is underactu-
ated, i.e, all microbeads are subjected to the same input: the
magnetic gradient field ∇b.

A. Magnetic and Hydrodynamic Forces

Let consider n magnetic microbeads that are injected in
a microfluidic environment, as shown in Fig. 1. The mi-
crobeads are considered as point magnetic dipoles separated
by a distance vector dij . When a magnetic gradient field
∇b is applied, a magnetic force is exerted on the magnetic
spherical volume iV of the microbead i = 1, . . . , n, and is
basically expressed as:

ifm = iV (iM · ∇)b (1)

where b = (bx, by, bz)
T is the magnetic field; and iM the

magnetization of the ith dipole. In this study, hard magnetic
microbeads are addressed (such as neodymium magnet,



NdFeB), and their dipoles are considered magnetized at
the saturation, iM = (iMsat,

iMsat,
iMsat)

T . Secondly,
when the magnetic and gradient fields are generated from
respectively Helmholtz and Maxwell coils, the cartesian
components of the magnetic force (1) can be rewritten as:ifmx

ifmy
ifmz

 = iV iMsat

∂bx
∂x
∂by
∂y
∂bz
∂z

 (2)

When the magnetic microbeads move in a microfluidic
environment, their dynamics are mainly counteracted by a
drag force. Considering the creeping flow of an incompress-
ible Newtonian fluid, the drag force exerted on a spherical
device is estimated from Stoke’s law [10]:

ifd = −6πηf ir iv (3)

with ηf the fluid viscosity; ir and iv respectively the radii
and velocities of the ith microbead.
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Fig. 1. Group of magnetic microbeads in a microfluidic environment.

B. Separation Distance

Commonly, when several magnetic microbeads are in a
closed range, a magnetic interaction occurs [11]. Specifically,
a magnetic microbead located at pi = (xi, yi, zi)

T with its
dipole moment im = iM iV induces a magnetic field in
location p given by [12]:

bpi
(p) =

µ0

4π

(
3
(
im · d0

)
d0 − im

)
(4)

where µ0 = 4π × 10−7 Tm/A is the vacuum permeability;
d0 = (p−pi)

‖p−pi‖ is the separation distance unit vector. Thus, the
force acting on the magnetic microbead 2 (dipole moment
2m) due to the presence of a microbead 1 (dipole moment
1m) is expressed as [13]:

fm,2←1 =
3µ0

4πd412

(
d
(
1m · 2m

)
+ 1m

(
d12 · 2m

)
+ 2m

(
d12 · 1m

)
−5 d

d212

(
d12 · 2m

) (
d12 · 1m

))
(5)

where d12 = d12 d0 is the separation distance vector. Obvi-
ously, the Newton’s third law implies: fm,1←2 = −fm,2←1.
Then, the magnetic force interaction magnitude is expressed
as:

12fmi =
3µ0‖m1m2‖

4πd4

√
1− 2 cos2 θ12 + 5 cos4 θ12 (6)

with θ12 the angle between the dipole moment mj (j = 1
or 2) and the separation distance direction d12 (see Fig. 1).
First, we assumed that all dipole moments of the microbeads
(such as neodymium magnet, NdFeB) are aligned along the
uniform field b0 and are saturated to the maximum value
mj = jMsat

jV . Secondly, for a given separation distance
d12 the above interaction force magnitude is minimal for
θmin = k180°+{63.43°, 116.56°}, and maximal for θmax =
k180°+{0, 180°}, ∀k ∈ Z. Commonly, the magnetic gradient
is limited by the capability of the magnetic coils system.
Hence, the minimal controllable separation distance is given
by:

dmin =

(
6µ0‖mamb‖
4π‖ifmmax‖

)1/4

(7)

with ‖ifmmax‖ the maximum magnetic force induced by
the magnetic coils system. Fig. 2 shows the evolution of
the interaction force (6) as function of the separation dis-
tance d for θmin (red dash-line) and θmax (blue dash-line).
As example, for a magnetic actuation system capable to
generate a magnetic gradient up to ‖∇b‖max = 1.5T/m,
the minimal controllable separation distance is settled to
dmin = 8.86mm. Finally, as the interaction force evolves
in 1/d4, above d > 10mm it becomes negligible.
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Fig. 2. Interaction forces fmi magnitude as function of the separation
distance d.

III. CONTROL OF A GROUP OF MAGNETIC MICROBEADS

A. System Dynamics

In this section we assume that i) the gravitational forces
are considered compensated by the buoyancy forces and
the sustentation magnetic force in z-axis; ii) the magnetic
microbeads are not in contact; iii) the separation distance d
is large enough so that the interaction between microbeads
could be neglected, that is fmi ≈ 0 ; and iv) the other
microforces (such as van der Waals, electrostatic or steric
forces) are not significant. Following the Newton’s second
law, the motion of the ith magnetic microbead can be
expressed as:

iρiV iv̇ = ifm + ifd (8)



with iρ the density of the microbead i. For the sake of sim-
plicity in the remainder of this paper, only two-dimensional
(2D) motions in the x−y plane are considered. Thus, the 2D
dynamics of each magnetic microbead is defined as follows:

(Si)


ẋi = vxi
v̇xi = αxivxi + βxi

∂bx
∂x

ẏi = vyi
v̇yi = αyivyi + βyi

∂by
∂x

(9)

with

αxi = −
9

2

ηf
ρir2i

sign(vxi) < 0 (10)

αyi = −
9

2

ηf
ρir2i

sign(vyi) < 0 (11)

βxi = βyi = βi =
iMsat

ρi
(12)

Neglecting the interaction microforces, we assume that each
single magnetic microbead has a dynamics expressed by (Si)
that can be divided into two independent subsystems (Sxi)
and (Syi). In the following, the analysis is reduced to (Sxi)
since (Syi) can be easily deduced from the former.

Let x = (x1, vx1, . . . xi, vxi, . . . xn, vxn, )
T denotes the

state vector of a group of n magnetic microbeads; u = ∂bx
∂x

defines the control input; and y = (x1, . . . xi, . . . xn) is the
measured output. The state-space representation of a group
of n magnetic microbeads is expressed as:{

ẋ = Ax+Bu

y = Cx
(13)

with the following system matrices;

A =



0 1 · · · 0 0 · · · 0 0
0 −α1 · · · 0 0 · · · 0 0
... · · ·

... · · ·
...

...
0 0 · · · 0 1 · · · 0 0
0 0 · · · 0 −αi · · · 0 0
...

... · · ·
... · · ·

...
0 0 · · · 0 0 · · · 0 1
0 0 · · · 0 0 · · · 0 −αn


,B =



0
β1
...
0
βi
...
0
βn



C =


1 0 · · · 0 0 · · · 0 0

...
0 0 · · · 1 0 · · · 0 0

...
0 0 · · · 0 0 · · · 1 0

 (14)

Thus, the system dynamics of a group of n magnetic mi-
crobeads is linear system of order 2n, characterized by one
input and n outputs.

B. System Analysis

As mentioned, the control of a group of magnetic mi-
crobead with a sole magnetic gradient ∇b belongs to the
class of underactuated dynamic systems. Actually, from the
system dynamics (13) one can see that rank{B} < dim(x).

Therefore, before applying a controller on the linear system
(13), it would be necessary to study its controllability and
observability.

Theorem 1 (Controllability): A linear system is fully con-
trollable if and only if the rank of the controllability matrix
is equal to the system order 2n, that is:

rank
{
C ,

[
B AB A2B . . . A2n−1B

]}
= 2n

(15)
Theorem 2 (Observability): A linear system is fully ob-

servable if and only if the rank of the controllability matrix
is equal to the system order 2n, that is:

rank

O ,


C
CA

...
CA2n−1


 = 2n (16)

From the linear system (13) with the matrices (14), it
can be easily established that the state x is fully observable
for any group of magnetic microbeads. In the following
paragraph the controllability issue is addressed.

1) Case 1 (n = 2): Let first consider the simple case of
a group of n = 2 magnetic microbeads. In such case, it is
straightforward to compute the controllability matrix:

C2 =


0 β1 α1 β1 α1

2 β1
β1 α1 β1 α1

2 β1 α1
3 β1

0 β2 α2 β2 α2
2 β2

β2 α2 β2 α2
2 β2 α2

3 β2

 (17)

The maximal rank of the controllability matrix is:
rank {C2} = 3 < 4. Especially, if the two magnetic
microbeads are identical (that is α1 = α2 and β1 = β2)
the rank of the controllability matrix fall to rank {C2} = 2.
Therefore, the system of two magnetic microbeads is not
fully controllable.

2) General Case: In the general case of a group of n
magnetic microbeads the controllability matrix is expressed:

Cn =


0 β1 α1 β1 . . . αn

1β1
β1 α1 β1 α1

2 β1 . . . αn+1
1 β1

...
...

...
. . .

...
0 βn αn βn . . . αn

nβn
βn αn βn αn

2 βn . . . αn+1
n βn

 (18)

The maximal rank of the above controllability matrix is:

rank {Cn} =
n

2
− 1 < 2n (19)

Thus, the system is not fully controllable. In particular,
for the degenerate case where all magnetic microbeads are
identical we always obtain rank {Cn} = 2.

3) Uncontrollable System: Basically, when a system is not
completely controllable, it can be decomposed into a fully
controllable subsystem and an uncontrollable subsystem in
the following way

Lemma 1: Let consider an uncontrollable system such
that rank {C} = k < 2n. For such system, there exists
a state transformation such that χ = T−1x = (χc, χnc)

T

(where χc is controllable, and χnc uncontrollable states), that



decomposes the system (13) in the Kalman controllability
staircase form:[

χ̇c

χ̇nc

]
=

[
Ac A∗
0 Anc

] [
χc

χnc

]
+

[
Bc

0

]
u

= AT χ+BT u (20)

y =
[
Cc Cnc

] [ χc

χnc

]
= CT χ (21)

with AT = T−1AT, BT = T−1B, and CT = CT.
Especially, dim(Ac) = k × k and the pair (Ac,Bc) is
completely controllable.
This decomposition allows to distinguish which states χc

are controllable or not. The similarity transformation matrix
T is designed from any k-linearly independent columns of
the controllability matrix C, from which it is appended any
(2n − k) other columns such that the resulting 2n × 2n
matrix is nonsingular. Especially, it can be shown that such
decomposition is not unique.

Applying this transformation to a group of n = 2 magnetic
microbeads the tuple (x1, x2, vx1)

T or (x1, x2, vx2)T are the
controllable subspace. By extension to the general case, the
controllable subspace is (x1, . . . , xi, . . . , xn, vxj)

T , ∀j =
1..n. More precisely, the position of each microbead is
controllable, and only one velocity vxj could be controlled.
For the degenerate case, the controllable states defined by
(xj , vxj)

T , ∀j = 1..n shows that only one microbead can be
controlled. Finally, the uncontrollable state χnc equilibrium
is at stability limit, as Anc have null eigenvalues. Fig. 3
shows an example of phase portrait of the dynamic system
(Si) designed with parameters given in Table I. This result
illustrates that for any initial values vxi(t0), the velocity
vanish when no input control u is applied. In other words,
the uncontrollable states vxj are able to decay to origin ”by
themselves”. Thus, each dynamic system (Si) is stabilizable.
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Fig. 3. Phase portrait of (xi, vxi).

C. Optimal Control

The literature proposes different control schemes to actu-
ate magnetic microbeads in a microfluidic environment, such

as simple proportional-integral-derivative (PID) controller
[14], predictive controller [3], [5] or adaptive backstepping
controller [4]. In particular, in [5] a nonlinear model pre-
dictive controller (NMPC) is designed to control multiple
millimeter-sized magnetic capsules. Commonly, predictive
controller use the optimal control problem to compute the
optimal trajectory over a finite-horizon. This study, propose
to use the linear quadratic integral (LQI) controller. LQI
control scheme is simple to implement, and has been applied
in a wide range of robotic applications. Basically, LQI
computes an optimal state-feedback control law, like linear-
quadratic regulator (LQR), with an additional integral-action
on the state-feedback.

Let consider the linear system (13), to which is added the
”integral state”:

w(t) =

∫ t

0

(y?(τ)− y(τ)) dτ (22)

and the following new dynamics:

ẇ = y? − y = y? −Cx (23)

where y? is the reference input. Thus, the LQI control design
address the augmented state X = (x,w)T , that is the new
system:

Ẋ = ÃX + B̃u (24)

y = C̃X (25)

with the matrices:

Ã =

[
A 0

C 0

]
, B̃ =

[
B
0

]
, and C̃ =

[
C 0

]
, (26)

Thus, the objective is to determine an optimal control law
minimizing the cost functional:

J(u) =

∫ ∞
0

{
X TQX + uTRu+ 2X TNu

}
dt (27)

where Q, R and N are are symmetric, positive (semi-) def-
inite weighting matrices, that is the LQI design parameters.
This is the LQI problem, and, considering a stabilizable and
detectable system, its solution yields the linear state-feedback
control law:

u = −(R−1B̃P+NT )X (28)

where (R−1B̃P +NT ) is the optimal gain matrix, with P
the solution of the well known continuous time algebraic
Riccati equation (CARE):

PÃ+ ÃTP− (PB̃+N)R−1(B̃TP+NT )+Q = 0 (29)

D. Applications
To apply the LQI control scheme to a group of n magnetic

microbeads, the first issue is to tune suitably the LQI
weighting matrix {Q,R,N}. Different strategies can be
considered in their choice. Commonly, the LQI parameters
have to satisfy the following conditions:

R > 0

Q ∝ (C′C)(
Q−NR−1NT

)
≥ 0 (30)



From these rules of thumb, suitable weighting matrices for
the dynamic system (13) could be obtained according the
following methodology:

R = γ, ∀γ ∈ R+

Q = diag(q), with q = (q1γ, 0, · · · , qiγ, 0 · · · , qnγ, 0),
N� √γq (31)

where ∀qi > 0, i = 1..n could be designed from the ratio
between αi (10).

As example, Fig. 4 illustrates the optimal stabilization of
three magnetic microbeads of radii r1 = 500 µm, r2 =
750 µm and r3 = 1000 µm. Starting from the initial state
x(t0) = (1mm, 0, 2.5mm, 0, 4mm, 0)T they reach the de-
sired output y? = (2mm, 5mm, 8mm)T in a time duration
of 1 s. Different LQI parameters are used considering the
above methodology (31) with:

R = γ = 1

q =

(
γ

q0
, 0,

1.5γ

q0
, 0,

2γ

q0

)
, ∀q0 > 0

N = 0 (32)

The choice of the tuning parameters significantly influence
the system’s response and positioning performances y?. As
it can be seen, the value of q0 = 20 leads to an optimum
LQI parameterization with small overshot and faster settling
time.
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Fig. 4. Optimal stabilization of the three microbeads positions (x10 =
1mm, x20 = 2.5mm and x10 = 4mm) to the desired state y? =
(2mm, 5mm, 8mm)T with different LQI parameters:: (a) the state posi-
tion and (b) the control input u.

Similarly, Fig.5(a) shows the 2D stabilization of two
magnetic microbeads of radii r1 = 500 µm and r2 =
1000 µm. Once again, the dynamic behavior of the magnetic
microbeads is impacted by the choice of the LQI parame-
ters. These results exhibit the feasibility to control several
magnetic microbeads using a sole magnetic gradient ∇b.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

To validate experimentally the findings of model simula-
tions, an experimental setup has been specifically developed
by Aeon Scientific. The system consists of three nested sets
of Maxwell coils and one nested set of Helmholtz coils
[15], and is illustrated in Fig.6(a). Such arrangement allows
generating a constant-gradient magnetic field pointing in x,
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Fig. 5. Optimal stabilization of the 2D positions (p10 = (1, 3)mm and
p20 = (5, 1)mm) of two magnetic microbeads to the desired state: (a)
y? = (2, 6.5, 7, 8)Tmm with different LQI parameters and (b) y? =
(3, 6, 8, 6.5)Tmm with different LQI parameters.

y, and z-axis directions. The generated magnetic gradient
is saturated to ∇bmax = 40mT/m to be compatible with
clinical MRI scanner. Magnetic gradient forces will thus be
exerted on the different magnetic microbeads that are placed
inside a microfluidic environment Fig.6(b). This microfluidic
environment is filled with an aqueous solution of 50% water–
50% glycerol that is closed to the blood viscosity. The Table I
summarizes the relevant experimental parameters set used for
two case study: position control of two microbeads along
identical and opposite directions.

(a)

R1=1250 µm

R3=450 µm

R2=750 µm

Input
flow

Input
injection

(b)

Fig. 6. Experimental setup: (a) 3D Maxwell-Helmholtz coils and (b) a
W-shaped microfluidic arterial bifurcation chip.

TABLE I
MODEL PARAMETERS

Parameters Values
Msat 1.23× 106 (A/m)
ρ 7500 (kg/m3)
r0 300 (µm)
ηf 4 (mPa s)

B. Control of two magnetic microbeads in the same direction

We evaluated experimentally the controllability and sta-
bility of two microbeads motion along a similar direction
(x-axis) in the mother branch of the W-shaped microfluidic
arterial bifurcation phantom. As shown in Fig. 7(a), the initial
distance separating the microbeads is settled to S = 7 mm
in order to counteract the attractive forces. Each microbead
faces the drag force of the constant flow v=21 mm.s−1 and
experiences the same magnetic force Fm1x=Fm2x since both



microbeads are subjected to the same input: the magnetic
gradient field ∇b. For this reason, the linear quadratic
integral control is applied to control the position of one
microbead while the other one follows its motion in order
to reach the desired state and stay there. In the first trial,
two similar magnetic microbeads (R1=R2=250 µm) were
chosen. As shown in the Fig. 7(b), the initial positions of the
microbeads 1, 2 are 9.2mm, 2.2mm respectively. They move
with a maximum velocity motion of 0.01 mm/s against the
flow from their initial positions until to be stabilized on final
positions at P1=5.7 mm, P2=-1.6 mm (Fig. 7(c)). The final
position errors εpos1 and εpos2 are respectively 50 µm and
250 µm as seen in Fig. 8(a). In the second trial, two different
magnetic microbeads (R1=250 µm and R2 = 500 µm) were
chosen. The experimental results are shown in in Fig. 8(b).
As we can see similar stability and positioning performances
are obtained.
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Fig. 7. Motion control of two microbeads along the same x-axis. (a):
Experimental conditions, (b): microbeads at their initial positions, and (c):
microbeads at the desired positions in the mother branch of the microfluidic
arterial phantom.
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Fig. 8. Experimentally stabilization of the two microbeads positions at the
desired state: (a) the microbeads sizes ratio is equal 1 (b) the microbeads
sizes ratio is equal 2.

C. Control of two magnetic microbeads in opposite direction

We evaluated experimentally the controllability and stabil-
ity of two microbeads moving along an opposite direction
(x-axis) in the mother branch of the W-shaped microflu-
idic arterial bifurcation phantom. Two different magnetic
microbeads (R1=250 µm and R2 = 500 µm) were chosen
for the experience. As shown in Fig. 9(a), the initial distance
separating the microbeads is settled to S = 6 mm in order
to counteract the attractive forces. Each microbead faces
different drag force Fd1x 6= Fd2x and magnetic force Fm1x

6= Fm2x at constant velocity flow v=10 mm.s−1. As shown

in the Fig. 9(b), the initial positions of the microbeads 1, 2
are 3.2mm,−2.8mm respectively and final positions of the
microbeads 1, 2 are P1=5.8 mm, P2=-5.8 mm (Fig. 9(c)),
respectively. Compared to previous results, we noticed that
the optimal LQI controller ensures good performances in
terms of tracking and positioning errors even if different
positive and negative drag forces are experienced by the
microbeads (εpos1=25 µm and εpos2=18 µm as seen in
Fig. 10).
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Fig. 9. Motion control of two microbeads in opposite direction along the x-
axis. (a): Experimental conditions,(b): microbeads at their initial positions,
and (c): microbeads at the desired positions in the mother branch of the
microfluidic arterial phantom.

11 12 13 14 15 16 17 18 19 20
-6

-4

-2

0

2

4

6

Time(sec)

P
os

(m
m

)

 

 

Pos 1
Pos 2
Ref 1
Ref 2

Fig. 10. Experimentally stabilization of the two microbeads positions at
the desired state, the microbeads sizes ratio is equal 2.

V. CONCLUSION

This paper described the theoretical formulation of an
optimal control strategy for navigation of multiple magnetic
microbeads for future drug targeting applications. From the
developed dynamic model and state representation of a
group of magnetic microbeads, controllability and observ-
ability conditions are formulated. Simulations demonstrated
necessary stability conditions to control independently each
magnetic microbead with the same magnetic gradient field
in order to reach the desired positions. A linear quadratic
with integral action control (LQI) has been synthesized and
implemented experimentally in a electromagnetic system.
The preliminary experiments carried out in microfluidic
artery vessels demonstrated successfully that it was possible
to stabilize at the desired positions two geometrically similar



and/or dissimilar different magnetic microbeads in a mi-
crofluidic phantom. Further developments will be carried out
in order to take into account the magnetic interaction between
the microbeads, and then, to extend it to an aggregate of
magnetic microbeads navigating in multiple bifurcations.
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