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Abstract—In this work, we address the problem of denoising
an image corrupted by an additive white Gaussian noise. This
hypothesis on the noise, despite being very common and justified as
the result of a variance normalization step, is hardly used by classical
denoising methods. Indeed, very few methods directly constrain
the whiteness of the residual (the removed noise). We propose a
new variational approach defining generic fidelity terms to locally
control the residual distribution using the statistical moments and
the correlation on patches. Using different regularizations such
as TV or a nonlocal regularization, our approach achieves better
performances than the L2 fidelity, with better texture and contrast
preservation.

Index Terms—Image denoising, White noise, Cost function, Prob-
ability distribution.

I. INTRODUCTION

Image denoising is a mandatory step in most image processing
chains, potentially useful both for image interpretation and image
enhancement. The most common assumption on the image noise
is that is it additive, white and Gaussian. This assumption,
although false on the raw images because of photonic noise, can
be made realistic by a variance normalization step as shown in
[1]. We note g = f+n with f ∈ RD the noise-free image (D the
number of pixels in the image domain Ω), n a white Gaussian
noise of variance σ2 and g the noisy image. When an estimation
u of the noise-free image is computed, we call residual ε = u−g
the difference between the denoised image and the noisy image.

The maximum a posteriori method consists in finding a
denoised image u that maximizes P (u|g). This term can be
decomposed using the Bayes law into a product of two terms:
P (g|u), the data fidelity term, and P (u) the regularization term.
This is usually expressed as

u = arg min
u∈RD

||g − u||2 + λ Jreg(u) (1)

with Jreg(u) a regularization function adapted to the image. The
data fidelity term is obtained from the negative log-likelihood of
P (g|u) which boils down to ||g − u||2 in the white Gaussian
case. One can note that this is a pixelwise term which does not
explicitely enforce the whiteness of the residual. Of course, the
independance hypothesis is used to obtain the likelihood term
and if the regularization model perfectly fits the image, this term
would be optimal. In practice, the prior model is never globally
optimal on the image. Then, ||g−u||2 gives very few guarantees
about the distribution and the whiteness of the residual. In the
litterature, most of the works try to improve the image model or
locally adapt λ to obtain the best possible regularization term.
In this paper, we introduce generic variational terms that directly
constrain the mean, the variance and the whiteness of the residual.
Those terms can be coupled with any regularization function
Jreg(u). In particular, we will study their performances using
two different regularizations models presented in the following.

The Rudin, Osher and Fatemi model (ROF) [2] is a widely
used method. It relies on a Total Variation (TV) regularization
Jreg(u) = TV (u) =

∑
(i,j)∈Ω ||∇u(i, j)||, where ∇u(i, j) is the

gradient at pixel (i, j). This term smoothes the denoised image
while preserving edges. However, it does not usually preserve
well textures and contrast. This formulation has the advantage to
be convex and a global minimum can be found using different
algorithms such as [3], [4].

First introduced in [5] and extended in [6], the nonlocal meth-
ods rely on the redundancy of the image to achieve denoising.
They find similar patches throughout the image and average
them to obtain a denoised image. Interestingly, those methods,
although being spatial filtering techniques, can be expressed as
regularization terms suited for a variational approach [7], [8].
Weights w are computed on the noisy image in the same manner
as in the Non Local Means method. Then, the regularization term
is obtained as:

NL(u) =
∑
i∈Ω

∑
j∈W (i)

w(i, j)(u(i)− u(j))2 (2)

W being the search window. This term can be understood as a
nonlocal gradient.

Here, we propose to study the data fidelity term and improve
it to obtain some guarantees on the residual distribution and
whiteness. Indeed, the residual obtained by the different methods
mentionned earlier do not always respect the noise model,
especially locally, as shown in [9]. To the best of our knowledge,
only very few works proposed to take advantage of the noise
statistics in this manner [10], [11], [12], [13], [14]. The first
article [10] by Teuber et al. proposes to denoise 1D signals by
cutting them into smaller parts and by controlling the mean and
variance of the residual using L2 distances. It also proposes
to control the correlation of the residual at one particular lag.
Other methods [11], [12], [13] presented by Lanza et al. use
an Alternating Direction Method on features that are computed
globally. In the first two papers, the Fourier transform of the
residual and its autocorrelation are respectively considered
to constrain the whiteness of the noise. In [13], the residual
cumulative histogram is used to control its distribution. Finally,
the work presented by Fehrenbach et al. in [14] proposes to
constrain a tiling of the Fourier transform of the residual. In
this article, we propose to use features computed locally on
patches such as the residual mean, variance and autocorrelation
to constrain ε.

In the first section, we introduce the terms used to control
the first and second order moments of the residual, respectively
controlling its mean and variance. They make sure that the method
removes the right amount of noise and preserves the contrast. The



second section is dedicated to the whiteness term. Its purpose is
to constrain the whiteness of the residual, therefore ensuring that
no information is removed from the image during the denoising
process. Finally, we present some experimental results in the third
section. In particular, experiments show that for both the TV and
the NL regularizations, the proposed terms outperform the usual
L2 data fidelity term.

II. CONTROLLING THE RESIDUAL MOMENTS

Introduced in [10], the idea of replacing the likelihood term
||u − g||2 by terms controlling moments of various orders is
motivated by several reasons. First, methods such as ROF can
obtain residuals that do not match the noise model as it is shown
in the experiments in section IV.

Second, the methods using ||u − g||2 as a data fidelity term
are hard to parametrize globally. This problem is well recognized
and many works try to tackle it [15], [16]. Indeed, ||u − g||2
is minimized when u = g, while the regularization is usually
minimized on a totally different space. The estimation u is
obtained with a trade-off of both functions. Thus, the choice
of the parameter λ is critical to obtain the right amount of
denoising on structures having different scales. The trade-off is
often impossible to achieve globally and the flat areas are too
noisy while the textures are blurred out.

We aim at designing generic fidelity terms which guarantee
that the right amount of noise is removed with a relative stability
regarding the regularization parameter λ. For that task, the sta-
tistical moments of the residual are particularly relevant. Indeed,
controlling the first order moment, the mean, allows to obtain a
centered residual, while the second order moment, the variance,
is useful to remove the right amount of energy.

In order to preserve all the structures and textures in the image,
we need to compute the features locally. Thus, we extract K
overlapping square patches εk of size s2 from the residual image
ε.

The first order moments of the residual computed on each
patch are defined as µεk = 1

s2

∑s2

i=1 εk(i). As a sum of s2

independent Gaussian variables, µεk follows a normal distribution
with variance σ2

s2 . Using the sum of the negative log-likelihoods
of each µεk , we obtain the following term:

Jmean(ε) =
s2

2Kσ2

K∑
k=1

µ2
εk

(3)

This term can be seen as a relaxed version of the term ||u− g||2
over each patch. Indeed, with s2 = 1, Jmean(ε) is proportional
to ||u− g||2.
The second order moment of the residual is defined as σ2

εk
=

1
s2

∑s2

i=1(εk(i))2. This is a sum of s2 squared centered Gaussian
variables and, as such, it follows a χ2 distribution with s2 degrees
of freedom. Once again, using the sum of the negative log-
likelihoods of each σ2

εk
, the following term is obtained:

Jvar(ε) =
1

K

K∑
k=1

(
(
s2

2
− 1) log(s2σ2

εk
)−

s2σ2
εk

2σ2

)
(4)

It guarantees that the right amount of energy is removed locally
over each patch. The residuals that jointly minimize Jmean and
Jvar possess the right characteristics: zero mean and variance σ2.

Let us stress the importance of computing the moments locally.
Indeed, a global approach would result in spatially different

behaviour of the method. Some textured part would be left
untouched (not denoised), while smoother areas would be overly
reguralized. The size of the patches is an important parameter
since the quality of the estimators decreases when the number of
samples is small.

Our experiments showed that Jmean and Jvar present inter-
esting performances in terms of SNR, but they introduce low
frequency artifacts. Indeed, both are too constrained. They are
minimized at the most probable realisation of noise, but are only
estimated on a few samples. In order to fix this issue, we expand
the space of the minimizers of both functions with the following
expressions:

Jmean+(ε) =
s2

Kσ2

K∑
k=1

(µ2
εk
− σ2

s2
)+ (5)

Jvar+(ε) =
1

K

K∑
k=1

(
s2

2σ4
(σ2
εk
− σ2)2 − 1

)+

(6)

with (x)+ = max(0, x), the positive part function. Those relaxed
versions of both terms are minimized on much wider spaces, as
on Figure 1, and produce no artifacts.

Fig. 1: Comparison of Jmean, Jmean+ and Jvar, Jvar+ as
functions of respectively µεk and σεk for the parameters: σ = 0.1
and s = 5.

In this section, we designed new terms that control the mean
and the variance of the residual to match the noise model. The
next section explains how to further control the statistics of
the residual and therefore ensure a better preservation of the
information.

III. IMPOSING WHITENESS CONSTRAINTS

In this section, we explain how to constrain the whiteness of
the residual, that is how to enforce its decorrelation. Although
the decorrelation of the noise is often assumed, it is very rarely
enforced. Some articles show that evaluating this hypothesis on
the residual could be used as a way to estimate the quality
of the denoising [17]. But, only a few [10], [11], [12], [13],
proposed to use it directly to perform denoising. Lanza in [11],
[12], [13] proposed different possible features to enforce the
residual decorrelation such as the periodogram, the histogram
or the autocorrelation matrix. The performances are not showing
great differences between methods.
Here, we propose to use the most direct tool: the autocorrelation
estimation matrices rk computed on each patch. More precisely,
in order to simplify the calculation, speed up the computation
process and improve the higher lag estimation, we used the
circular convolution to compute those matrices. This decision



should be harmless for our method given the noise model. The
rk are defined for all possible lags (l,m) ∈ {− s2 , ...,

s
2}:

rk(l,m) =
1

s2

∑
(i,j)

εk(i, j)εk(i+ l, j +m) (7)

rk is a classical estimator of the autocorrelation. As we have
previously defined Jvar+ to control the variance, we discard
rk(0, 0) in the following. In practice, there is no known analytic
expression for the distribution of rk. Using the central limit
theorem, it is possible to approximate it with a Gaussian and
use its negative log-likelihood as our cost function. However,
once again, the resulting expression is too constrained, since it
penalizes too much the matrices that are not zero everywhere,
and induce wave-like artifacts. Thus, the L2-norm of rk is used
to design our fidelity term: ||rk||2 =

√∑
(l,m)6=(0,0) rk(l,m)2.

Fig. 2: Empirical distribution of ||rk||2 (red) and its Gaussian
approximation (blue) with the parameters: σ = 0.1 and s = 5.

The term ||rk||2 follows the distribution shown in figure 2
obtained empirically on white Gaussian noise samples using the
Kernel Density Estimation (KDE) algorithm from [18]. Supposing
that all the r(l,m) are independent, we get a variance equal to
(s2 − 1)σ4 and a mean equal to σ2

√
(s2 − 1)s. However, the

independence hypothesis is obviously not true and the variance is
under-estimated. To correct this effect, we established empirically
that a multiplicative factor of 3 should be applied. The same
factor has been found for different noise levels and parameters.
Finally, we approximate this distribution using a Gaussian with
mean σ2

√
(s2 − 1)s and variance 3(s2−1)σ4. Then, we compute

its log-likelihood to obtain:

Jwhite(ε) =
1

K

K∑
k=1

1

6(s2 − 1)σ4

(
||rk||2 − σ2

√
(s2 − 1)s

)2

(8)

This term prevents the method from removing correlated content
such as textures, contrast or edges. By constraining a weakly
correlated residual, the method preserves this information. Once
again, the choice of the patch size s is critical to obtain a good
estimator. Also, the choice of the circular convolution allows for
a better estimation of the lower frequencies (higher lags).

One could note that our expressions for Jvar+ and Jwhite
are not centered (we did not remove the mean to estimate both
the variance and the autocorrelation). This choice was motivated
by our experiments which showed slightly better performances.
However, the differences were not visually significant.

Fig. 3: Noise-free image and noisy image with σ = 0.1.

IV. EXPERIMENTAL RESULTS

A. Experimental settings

In this section, we will show experimental results obtained for
a mosaic image using the L2 data fidelity term, and the proposed
method. More complete experiments are shown on the web-
page http://perso.telecom-paristech.fr/~riot/EUSIPCO2016. Both
approaches are expressed with the following cost functions:

u = arg min
u∈RD

Jmean+(u) + Jvar+(u) + Jwhite(u) + λ Jreg(u) (9)

u = arg min
u∈RD

||u− g||2 + λ Jreg(u) (10)

with Jreg(u) being a regularizer. The two regularizers TV (u) and
NL(u) introduced in section I will be studied in this work.

One of the main drawback of our method is that its cost
function is not convex and not smooth. Thus, the optimization
process is much more difficult than using the L2-norm which is
convex and smooth. To obtain differentiable cost functions in all
the considered cases, we used a smooth approximation of TV. In
the same manner, a smooth approximation of the positive part
was used, with a a large number:

(x)+ =
log(1 + exp(−ax))

a
+ x (11)

Still, since the cost function of the proposed method is not convex,
the result depends on the initialization and can only be expected to
be a local minimum. For our experiments, we used the L-BFGS
method [19]. This approach performs a Quasi-Newton method
using a low-rank Hessian. This allows the algorithm to run using
a reasonnable amount of memory on large images. The method
is initialized using the noisy image.
Our method requires one more parameter than the L2 fidelity:
the patch size s. The experiments show that s = 15 gives the
best performance on the considered images. It is large enough to
obtain a good estimator of the moments and of the autocorrelation
matrix, and small enough to constrain locally the residual to match
the noise model. It is interesting to note that as we are working
directly on the residual and not on the image itself, the choice of
this parameter should not depend on the image. We also observed
that extracting only a quarter of all the patches very marginally
affects the performances and greatly reduces the computational
time.
In order to compare performance on a fair basis, all the shown
results use an oracle estimation of λ that maximizes the SNR:

SNR(û) = 10 log10(
||û||2

||f − û||2
) (12)
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Fig. 4: Denoised, error and residual images for the L2 fidelity and the proposed method using TV regularization.

B. TV regularization

The results are shown on Figure 4. The overall impression from
the result of the proposed method is more satisfying than with
the L2 fidelity term. Indeed, the whole image cannot be well
handled by the ROF model as it would require different values λ
for each texture. Furthermore, the residual in the top left texture
is highly correlated. A large amount of texture information was
removed. Overall, the image does not seem sufficiently denoised
although the parameter λ was chosen to obtain the best possible
SNR. Increasing λ would remove more energy from the texture
than from the noise.

On the other hand, the proposed algorithm presents a smoother
denoised image. Jmean+ also limits the losses of contrast which
are still visible on the top right texture. Using the Jmean term
instead, it is possible to completely solve this problem. But, as
said earlier, it induces artifacts and was discarded. Jvar+ is a
guarantee that the same amount of noise is removed from all parts
of the image although λ was chosen globally. This can be verified
on the residual image which is more homogeneous spatially and
with the right energy when using the proposed method. Finally,
Jwhite enforces the whiteness hypothesis and makes sure that a
decorrelated residual is obtained. This is particularly visible for
the top left textures. The residual appears much less correlated
than using the ROF model where we can see the vertical stripes
in the residual. Still, the napkin texture on the bottom left is
damaged by both methods as it is particularly hard to retrieve.
One could design a more constrained version of Jwhite, however
our experiments showed that it leads to wave-like artifacts when
the noise realisation is locally correlated.

C. NL regularization

Experiments shown on figure 5 were run using the NL regu-
larizer proposed by [7], [8]. In the literature, several propositions

were made to compute the weights w(i, j). Here, we chose the
most basic one presented in [5] with the following formula:

w(i, j) = exp
−||Pg(i)− Pg(j)||2

s2
NLh

2
NL

(13)

with Pg(i) the patches from the noisy image centered on i, sNL
the patch size, hNL the bandwidth parameter. As stated in [5], and
verified by our testing, it is better to only compute the weights and
gradient over a search window WNL rather than over the whole
image domain to avoid the accumulation of wrong information.
We chose WNL = 10, sNL = 5 and hNL = 0.8σ.

Once again, the proposed method performs better than the
classical one with respect to several criteria. First, it achieves
a satisfying level of denoising throughout the whole image. This
is allowed because each term is local. Using the L2 fidelity, the
algorithm performs almost no denoising on the top left texture
where the regularization finds very few similar patches. Second,
the contrast losses are way less severe than using the L2 fidelity.
Still visible on the top right texture, they are much lower in
amplitude. Observe also that the residual contains less structure
with our approach. In particular, the face is very visible on the
L2 fidelity residual but hardly with the proposed method. This is
also visible on the napkin on the bottom left image where less
information is removed.

Several SNR results are available on table I. Overall, the
proposed method improves the performances on heterogeneous
images with different structure sizes and possibly different tex-
tures. On the other hand, on homogeneous and weakly textured
images such as Pepper or Flinstones, where a single value for λ
can be globally optimal using the L2 fidelity, it does not improve
the SNR. However, one must remain careful with the SNR as
it does not always carry all the needed information such as the
presence of artifacts, or texture preservation.
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Fig. 5: Denoised, error and residual images for the L2 fidelity and the proposed method using NL regularization.

method L2-TV Proposed-TV L2-NL Proposed-NL
Composite image 19.12 20.98 19.85 21.58

Lena 22.01 22.12 21.36 22.08
Barbara 19.45 21.05 20.65 21.59
Pepper 24.79 24.69 23.60 24.56

Flinstones 21.68 21.31 21.78 21.95

TABLE I: SNR performances (in dB) of the different algorithms
on 5 images. Composite image is the image shown in this paper,
the other results are shown on the webpage.

CONCLUSION

In this work, we presented new terms to be used in a variational
denoising framework. Those terms are shown to be more suited
than the L2 fidelity term and to enforce the statistical hypothesis
on the residual. The results appear smoother, with less contrast
losses and better texture preservation. They also show significant
improvements in terms of SNR. Multiple points could be im-
proved such as the autocorrelation modelization or using a better
initialization.
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