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A bounded degree SOS hierarchy for large scale polynomial

optimization with sparsity ∗

T. Weisser† Jean B. Lasserre‡ and Kim-Chuan Toh§

July 5, 2016

Abstract

We provide a sparse version of the bounded degree SOS (BSOS) hierarchy for polynomial
optimization problems. The presented version permits to handle large scale problems which
satisfy a structured sparsity pattern. When the sparsity pattern satisfies the running in-
tersection property, this sparse BSOS hierarchy of semidefinite programs (with semidefinite
constraints of fixed size) converges to the global optimum of the original problem. Moreover,
for the class of SOS-convex problems, finite convergence takes place at the first step of the
hierarchy, just as in the dense version.

Keywords: Global Optimization, Semidefinite Programming, Sparsity, Large Scale Problems,
Convex Relaxations, Positivity Certificates
MSC: 90C26, 90C22

1 Introduction

We consider the polynomial optimization problem:

(P ) f∗ := min
x

{f(x) : x ∈ K } (1)

where f ∈ R[x] is a polynomial and K ⊂ R
n is the basic semi-algebraic set

K := {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . , m}, (2)

for some polynomials gj ∈ R[x], j = 1, . . . , m. In [14] we provided a new hierarchy of semidefinite
programs (Qk

d) indexed by d ∈ N and parametrized by k ∈ N (fixed), whose associated (monotone
non decreasing) sequence of optimal values (ρk

d)d∈N, converges to f∗ as d → ∞, i.e., ρk
d → f∗ as

d → ∞.
One important distinguishing feature of the BSOS hierarchy (when compared to the standard

SOS hierarchy defined in [15, 20]) is that for each semidefinite relaxation Qk
d, d ∈ N, the size of

the semidefinite constraint is O(nk), hence fixed and controlled by the parameter k (fixed and
chosen by the user). With k = 0 one retrieves the LP-hierarchy based on a positivity certificate
due to Stengle; see [14] and [16] for more details.
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Another distinguishing feature of the BSOS hierarchy (when compared to the LP-hierarchy
defined in [16]) is finite convergence for an important class of convex problems. That is, when
f, −gj are SOS-convex polynomials of degree bounded by 2k, then the first semidefinite relax-
ation of the hierarchy (Qk

d)d∈N, is exact, i.e., ρk
1 = f∗. (In contrast the LP-hierarchy cannot

converges in finitely many steps for such convex problems).

Contribution

Even though the size O(nk) of the semidefinite constraint of Qk
d is fixed for all d and permits to

handle problems (P ) of size larger than with the standard SOS-hierarchy, it still limits the appli-
cation of the BSOS hierarchy to problems of relatively modest size (say medium size problems).
The present contribution is to provide a sparse version of the BSOS hierarchy which permits
to handle large size problems (P ) that satisfy some (structured) sparsity pattern. The sparse
BSOS hierarchy is the analogue for the BSOS hierarchy of the sparse version for the standard
SOS-hierarchy introduced by Waki et al. [33]. Again as in the dense case, a distinguishing
feature of the former (and in contrast to the latter) is that the size of the resulting semidefinite
constraints is fixed in advance at the user convenience and does not depend on the rank in the
hierarchy. However, such an extension is not straightforward because in contrast to Putinar’s
SOS-based certificate (where the gj’s appear separately), the positivity certificate used in the
dense BSOS algorithm [14] potentially mixes all polynomials gj that define K, that is, if f is
positive on K then

f = σ +
∑

α,β∈Nm

cαβ

m∏

j=1

g
αj

j (1 − gj)βj , (3)

for some SOS polynomial σ and positive scalar weights cαβ . Therefore in principle the sparsity
as defined in [33] may be destroyed in σ and in the products

∏

j g
αj

j (1 − gj)βj . In fact, one
contribution of this paper is to provide a specialized sparse version of (3). In particular, we
prove that if the sparsity pattern satisfies the so-called Running Intersection Property (RIP)
then the sparse-BSOS hierarchy also converges to the global optimum f∗ of (P ). A sufficient
rank-condition also permits to detect finite convergence. At last but not least, we also prove
that the sparse BSOS hierarchy preserves a distinguishing feature of the dense BSOS hierarchy,
namely its finite convergence at the first step of the hierarchy for the class of SOS-convex
problems. (Recall that the standard LP hierarchy cannot converge in finitely many steps for
such problems [16, 21].)

Roughly speaking we say that (P) in (1) satisfies a structured sparsity pattern, if the set
I0 := {1, . . . , n} of all variables is some union ∪p

k=1Ik of smaller blocks of variables Ik such
that each monomial of the objective function only consists of variables in one of the blocks. In
addition, each polynomial gj in the definition (2) of the feasible set, is also a polynomial only in
variables of one of the blocks. Of course the blocks (Ik) may overlap, i.e., variables may appear
in several blocks. Together with the maximum degree appearing in the data of (P), the number
and size of the blocks (Ik) as well as the size of their overlaps, are the characteristics of the
sparsity pattern which have the strongest influence on the performance of our algorithm.

Computational experiments. We have tested the sparse BSOS algorithm on a variety of
small and large scale examples with different degrees in the data. In a comparison to the dense
BSOS version on this sample (when the size of (P) permits), the sparse approach behaves very
well as the global minimum is attained whenever the dense version succeeded. Some medium size
problems with non convex quadratic objective functions randomly generated, illustrate how the
block and overlap sizes influence the behavior of the algorithm. Next, we have tested large-scale
quadratic examples (also randomly generated). Problems with up to 3000 variables can be solved
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in about 200 seconds on a lap-top1. Finally we have tested our sparse BSOS implementation on
some typical problems from the literature in non linear optimization.

From this first set of examples it seems that the sparse version of the BSOS algorithm is able
to solve non convex problems of significant size (n ≈ 1000 for quartic problems and n ≈ 3000
for quadratic problems) provided that the maximum size of the blocks is relatively modest (say
at most 4 for quartic problems, less than 10 for quadratic problems).

2 Preliminaries

2.1 Notation and definitions

Let R[x] be the ring of polynomials in the variables x = (x1, . . . , xn). Denote by R[x]d ⊂ R[x]
the vector space of polynomials of degree at most d, which has dimension s(d) :=

(n+d
d

)
, with

e.g., the usual canonical basis (xγ)γ∈Nn
d

of monomials, where N
n
d := {γ ∈ N

n : |γ| ≤ d}. Also,
denote by Σ[x] ⊂ R[x] (resp. Σ[x]d ⊂ R[x]2d) the cone of sums of squares (s.o.s.) polynomials
(resp. s.o.s. polynomials of degree at most 2d). If f ∈ R[x]d, we write f(x) =

∑

γ∈Nn
d

fγxγ in the

canonical basis and denote by f = (fγ)γ ∈ R
s(d) its vector of coefficients. Finally, let Sn denote

the space of n × n real symmetric matrices, with inner product 〈A, B〉 = trace AB. We use the
notation A � 0 (resp. A ≻ 0) to denote that A is positive semidefinite (definite). With g0 := 1,
the quadratic module Q(g1, . . . , gm) ⊂ R[x] generated by polynomials g1, . . . , gm, is defined by

Q(g1, . . . , gm) :=







m∑

j=0

σj gj : σj ∈ Σ[x]






.

With a real sequence y = (yγ)γ∈Nn
d
, one may associate the linear functional Ly : R[x]d → R

defined by

f

(

=
∑

γ

fγ xγ

)

7→ Ly(f) :=
∑

γ

fγ yγ ,

which is called the Riesz functional. If d = 2a denote by Ma(y) the moment matrix associated
with y. It is a real symmetric matrix with rows and columns indexed in the basis of monomials
(xγ)γ∈Nn

a
, and with entries

Ma(y)(α, β) := Ly(xα+β) = yα+β, ∀ α, β ∈ N
n
a .

If y = (yγ)γ∈Nn is the sequence of moments of some Borel measure µ on R
n then Ma(y) � 0 for

all a ∈ N. However the converse is not true in general.
A polynomial f ∈ R[x] is said to be SOS-convex if its Hessian matrix x 7→ ∇2f(x) is an

SOS matrix-polynomial, that is, ∇2f = L LT for some real matrix polynomial L ∈ R[x]n×a

(for some integer a). In particular, for SOS-convex polynomials and sequences y with positive
semidefinite moment matrix Ma(y) � 0, a Jensen-type inequality is valid:

Lemma 1. Let f ∈ R[x]2a be SOS-convex and let y = (yγ)γ∈Nn
2a

be such that y0 = 1 and
Ma(y) � 0. Then

Ly(f) ≥ f(Ly(x)), with Ly(x) := (Ly(x1), . . . , Ly(xn)).

For a proof see Theorem 13.21, p. 209 in [21].

1The numerical experiments were run on a standard lap-top from the year 2015. For a more detailed description
see page 9.
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2.2 A sparsity pattern

Given I ⊂ {1, . . . , n} denote by R[x; I] the ring of polynomials in the variables {xi : i ∈ I},
which we understand as a subring of R[x]. Hence, a polynomial g ∈ R[x; I] canonically induces
two polynomial functions g : R#I → R and g : Rn → R.

Assumption 1 (Sparsity pattern). There exists p ∈ N and subsets Iℓ ⊆ {1, . . . , n} and Jℓ ⊆
{1, . . . , m} for all ℓ ∈ {1, . . . , p} such that

• f =
∑p

ℓ=1 f ℓ, with f ℓ ∈ R[x; Iℓ] each,

• gj ∈ R[x; Iℓ] for all j ∈ Jℓ and ℓ ∈ {1, . . . , p},

•
⋃p

ℓ=1 Iℓ = {1, . . . , n},

•
⋃p

ℓ=1 Jℓ = {1, . . . , m};

• for all ℓ = 1, . . . , p − 1 there is an s ≤ ℓ such that
(

Iℓ+1 ∩
⋃ℓ

r=1 Ir

)

⊆ Is (Running

Intersection Property).

From now on, we assume that K is described by polynomials g1, . . . , gm such that

K = {x ∈ R
n : 0 ≤ gj(x) ≤ 1, j = 1, . . . , m }. (4)

Note that this is no restriction to K defined in (1) if K is compact, as the constraint polynomials
can be scaled by a positive factor without adding or losing information.

Let Assumption 1 hold, define nℓ := |Iℓ|, mℓ := |Jℓ|, and let Kℓ ⊂ R
nℓ , ℓ = 1, . . . , p, be the

sets:
Kℓ := {x ∈ R

nℓ : 0 ≤ gj(x) ≤ 1, j ∈ Jℓ }, ℓ = 1, . . . , p. (5)

Define πℓ : Rn → R
nℓ , x 7→ (xi)i∈Iℓ

. Then

K = {x ∈ R
n : πℓ(x) ∈ Kℓ for all ℓ = 1, . . . , p}. (6)

Assumption 2. For each ℓ there exists Mℓ ≥ 0 and j ∈ Jℓ such that gj = Mℓ −
∑

i∈Iℓ
x2

i .2

Furthermore, we assume that the polynomials 1 and (gj)j∈Jℓ
generate R[x; Iℓ] as an R-algebra

for each ℓ = 1, . . . , p.

Note that the first part of Assumption 2 implies, that K is compact. On the other hand,
if K is compact and Assumption 1 holds, Assumption 2 can easily be satisfied by adding the
polynomials Mℓ −

∑

j∈Jℓ
x2

j possibly after scaling.

2.3 A preliminary result

In this section we provide a sparse version of Stengle and Vasilescu Positivstellensatz. Let
N ℓ := {(α, β) ∈ N

2m : αj = βj = 0 if j /∈ Jℓ}.

Theorem 1 (Sparse Stengle Positivstellensatz). Let f, g1, . . . , gm ∈ R[x] satisfy Assumption 1
and 2 . If f is (strictly) positive on K then f =

∑p
ℓ=1 f ℓ for some polynomials f ℓ ∈ R[x; Iℓ],

ℓ = 1, . . . , p, and

f ℓ =
∑

(α,β)∈Nℓ

cℓ
αβ

m∏

j=1

g
αj

j (1 − gj)βj (7)

for finitely many positive weights cℓ
αβ.

2In fact it is enough to assume, that a positive multiple of Mℓ −
∑

i∈Iℓ

x
2
i is contained in the description of

Kℓ for each ℓ. We omit this in the assumption for a better readability.
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Note that for each ℓ the representation (7) only involves gj ∈ R[x; Iℓ] since the corresponding
exponents are 0 if j /∈ Jℓ.

Proof. As f is positive on K there exist ε > 0 such that f −ε > 0 on K. Under the assumptions
of the theorem, by [18, Corollary 3.3 ] (a sparse version of Putinar’s Positivstellensatz),

f − ε =
p
∑

ℓ=1











σℓ
0 +

∑

j∈Jℓ

σℓ
j gj

︸ ︷︷ ︸

∈R[x;Iℓ] and ≥0 on Kℓ











,

for some SOS polynomials σℓ
j . Next, let

f ℓ := ε/p + σℓ
0 +

∑

j∈Jℓ

σℓ
j gj , ℓ = 1, . . . , p.

Notice that f =
∑p

ℓ=1 f ℓ and each f ℓ is strictly positive on Kℓ, ℓ = 1, . . . , p. As Assumption 2
holds, by [32, Theorem 1.3.1] (7) holds for each ℓ.

3 Main result

3.1 The Sparse Bounded-SOS-hierarchy (Sparse-BSOS)

Consider problem (P ) in (1) and let Assumption 1 and Assumption 2 hold. For d ∈ N let
N ℓ

d := {(α, β) ∈ N
2m : αj = βj = 0 if j /∈ Jℓ,

∑

j αj + βj ≤ d} and for every ℓ = 1, . . . , p, let

hℓ
αβ :=

m∏

j=1

g
αj

j (1 − gj)βj ∈ R[x; Iℓ], (α, β) ∈ N ℓ
d.

Let k ∈ N be fixed and define dmax := max{deg(f), 2k, d maxj{deg(gj)} consider the family of
optimization problems indexed by d ∈ N:

qk
d := sup { t : f ℓ −

∑

(α,β)∈Nℓ
d

λℓ
αβhℓ

αβ ∈ Σ[x; Iℓ]k, ℓ = 1, . . . , p,

f − t =
p
∑

ℓ=1

f ℓ, λℓ ≥ 0, t ∈ R, f ℓ ∈ R[x; Iℓ]dmax

}

.

(8)

Observe that when k is fixed, then for each d ∈ N, computing qk
d in (8) reduces to solving

a semidefinite program and hence, because qk
d+1 ≥ qk

d for all d ∈ N, (8) defines a hierarchy of
semidefinite programs. To formulate these programs one has at least two possibilities depending
on how the polynomial identities are implemented. To state that two polynomials p, q ∈ R[x]d
are identical one can either equate their coefficients (e.g. in the monomial basis), i.e., pγ = qγ

for all γ ∈ N
n
d , or one can equate their values on

(n+d
d

)
generic points (e.g. randomly generated

on the box [−1, 1]n). In contrast to the dense version [14] we have decided to use the former
implementation. Equating coefficients is reasonable in the present context, since we assume the
number of variables nℓ in each block to be rather small. The drawback of this choice is that
going high in the relaxation order d is very time consuming. This effect becomes worse when
the maximal degree of the gj is high.
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Define Id
ℓ := {γ ∈ N

n : γj = 0 if j /∈ Iℓ, |γ| ≤ d}. Then for k fixed and for each d, we get

qk
d := sup { t s.t. fℓ

γ −
∑

(α,β)∈Nℓ
d

λℓ
αβ (hℓ

αβ)γ − 〈Qℓ,
(

vℓ
k(vℓ

k)T
)

γ
〉 = 0, ∀γ ∈ Idmax

ℓ ,

∑

i: γ∈Idmax
i

fi
γ = fγ − t 1γ=0, ∀γ ∈

p
⋃

j=1

Idmax
j ,

Qℓ ∈ S
s(ℓ,k)
+ , λℓ ≥ 0, f ℓ ∈ R

s(ℓ,dmax), ℓ = 1, . . . , p, t ∈ R

}

,

(9)

where s(ℓ, k) :=
(nℓ+k

k

)
, and vℓ

k is the vector of the canonical (monomial) basis of the vector
space R[x; Iℓ]k. Here we use the convention that the coefficient qγ of a polynomial q is 0 if
|γ| > deg(q). For a matrix polynomial q = (qij)1≤i,j≤s ∈ R[x]s×s the coefficient qγ is the
matrix ((qij)γ)1≤i,j≤s ∈ R

s×s. Note that the semidefinite matrix variables have fixed size s(ℓ, k),
independent of d ∈ N. This is a crucial feature for computational efficiency of the approach.

The dual of the semidefinite program (9) reads:

q̃k
d := inf { Ly(f) s.t. Mk(θℓ) � 0; Lθℓ(hℓ

αβ) ≥ 0, (α, β) ∈ N ℓ
d; ℓ = 1, . . . , p

yγ = θℓ
γ , ∀ℓ : γ ∈ Idmax

ℓ ; γ ∈
p
⋃

i=1

Idmax
i

y0 = 1 } .

(10)

By standard weak duality of convex optimization, q̃k
d ≥ qk

d for all d ∈ N. Moreover (10) is a
relaxation of (P ) in (1) and so f∗ ≥ q̃k

d ≥ qk
d for all d ∈ N. In fact we even have the more precise

and interesting result.

Theorem 2 ([17]). Consider problem (P ) in (1) and let Assumption 1 and Assumption 2 hold.
Let k ∈ N be fixed. Then the sequence (qk

d)d∈N, defined in (8) is monotone non-decreasing and
qk

d → f∗ as d → ∞.

Proof. Monotonicity of the sequence (qk
d)d∈N follows from its definition. Let ε > 0 be fixed

arbitrary. Then the polynomial f −f∗+ε is positive on K. By Theorem 1 there exist polynomials
f ℓ, ℓ = 1, . . . , p, such that (7) holds, i.e.,

f − (f∗ − ε)
︸ ︷︷ ︸

t

=
p
∑

ℓ=1

f ℓ with f ℓ =
∑

(α,β)∈Nℓ

cℓ
αβ
︸︷︷︸

≥0

hℓ
αβ , ℓ = 1, . . . , p,

for finitely many positive weights cℓ
αβ . Hence (f∗ −ε, f ℓ, cℓ

αβ) is a feasible solution for (8) as soon

as d is sufficiently large, and therefore qk
d ≥ f∗ − ε. Combining this with qk

d ≤ f∗ and noting
that ε > 0 was arbitrary, yield the desired result qk

d → f∗ as d → ∞.

We next show that a distinguishing feature of the dense BSOS hierarchy [14] is also valid for
its sparse version.

Theorem 3. Consider problem (P ) in (1) and let Assumption 1 and Assumption 2 hold. Let
k ∈ N be fixed and assume that for every ℓ = 1, . . . , p, the polynomials f ℓ and −gj are all SOS-
convex polynomials of degree at most 2k. (If k > 1 we assume (with no loss of generality) that
for each ℓ = 1, . . . , p, and some sufficiently large κℓ > 0, the redundant (SOS-convex) constraints
κℓ −

∑

i∈Iℓ
x2k

i ≥ 0, ℓ = 1, . . . , p, are present in the description (4) of K.)

Then the semidefinite program (10) has an optimal solution ((θ∗ℓ), y∗) such that f∗ = q̃k
1 =

Ly∗(f) and x∗ := (Ly∗(x1), . . . , Ly∗(xn)) ∈ K is an optimal solution of (1). Hence finite con-
vergence takes place at the first step of the hierarchy.
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Proof. Let d = 1 (so that dmax = 2k) and consider the semidefinite program (10). Note, that
θℓ = (θℓ

γ)γ∈I2k
ℓ

. Recall that by Assumption 2, for every ℓ = 1, . . . , p, there exists j ∈ Jℓ

such that gj(x) = Mℓ −
∑

i∈Iℓ
x2

i . In addition if k > 1 then there also exists r such that

gr(x) = κℓ −
∑

i∈Iℓ
x2k

i . Hence, feasibility in (10) (with an appropriate choice of (α, β) ∈ N ℓ
d)

implies that Lθ∗ℓ(gj) ≥ 0 and Lθ∗ℓ(gr) ≥ 0, which in turn imply:

Lθ(x2
i ) ≤ Mℓ θℓ

0 (= Mℓ) and Lθ(x2k
i ) ≤ κℓ θℓ

0 (= κℓ) (if k > 1), ∀i ∈ Iℓ, ∀ℓ = 1, . . . , p,

where we have used that θℓ
0 = y0 = 1 for all ℓ = 1, . . . , p.

Combining this with Mk(θℓ) � 0 and invoking Proposition 2.38 in [21] yields that |θℓ
γ | ≤

max[Mℓ, κℓ, 1] for every |γ| ≤ 2k and ℓ = 1, . . . , p. Consequently, the set of feasible solutions
(θℓ, y) of (10) is bounded, hence compact. This implies that (10) has an optimal solution
((θ∗ℓ), y∗). Notice that among the constraints Lθ∗ℓ(hαβ) ≥ 0 are the constraints Lθ∗ℓ(gj) ≥ 0
for all j ∈ Jℓ. As f ℓ and −gj are SOS-convex, invoking Lemma 1 yields

f ℓ(x∗
ℓ ) ≤ Lθ∗ℓ(f ℓ) and 0 ≤ Lθ∗ℓ(gj) ≤ gj(x∗

ℓ ), ∀j ∈ Jℓ, ℓ = 1, . . . , p,

where x∗
ℓ := (Lθ∗ℓ(xi)) ∈ Kℓ, i ∈ Iℓ, ℓ = 1, . . . , p. In addition, the constraint y∗

γ = θ∗ℓ
γ , for

all ℓ such that γ ∈ Idmax

ℓ , implies that (x∗
ℓ )i = (x∗

ℓ′)i whenever i ∈ Iℓ ∩ Iℓ′ . Therefore defining
x∗

i := (x∗
ℓ )i whenever i ∈ Iℓ, one obtains gj(x∗) ≥ 0 for all j, i.e., x∗ ∈ K. Finally,

f∗ ≥ q̃k
1 = Ly∗(f) =

p
∑

ℓ=1

Lθ∗ℓ(f ℓ) ≥
p
∑

ℓ=1

f ℓ(x∗
ℓ ) = f(x∗),

which shows that x∗ ∈ K is an optimal solution of (1). Hence f∗ = f(x∗) = q̃k
1 .

3.2 Sufficient condition for finite convergence

By looking at the dual (10) of the semidefinite program (9) one obtains a sufficient condition for
finite convergence. Choose ω ∈ N minimal such that 2ω ≥ max{deg(f), deg(g1), . . . , deg(gm)}.
We have the following lemma.

Lemma 2. Let ((θ∗1, . . . , θ∗p, y∗) ∈ R
s(1,dmax) × · · · × R

s(p,dmax) × R
s be an optimal solution of

(10). If rank Mω(θℓ) = 1 for every ℓ = 1, . . . , p, then q̃k
d = f∗ and x∗ = (y∗

γ)|γ|=1 is an optimal
solution of problem (P ).

Proof. If rank Mω(θℓ) = 1, then (θℓ
γ)|γ|≤2ω, is the vector of moments (up to order 2ω) of the

Dirac measure δxℓ at the point xℓ := (θℓ
γ)|γ|=1 ∈ R

nℓ. The constraints y∗
γ = θ∗ℓ

γ for all ℓ such

that γ ∈ Idmax

ℓ , γ ∈
⋃p

i=1 Idmax
i , imply that

yℓ1
i = yℓ2

i , ∀i ∈ Iℓ1
∩ Iℓ2

, ℓ1, ℓ2 = 1, . . . , p.

Hence, x∗ := (y∗
γ)|γ|=1 is well defined. Consequently, for all q ∈ R[x; Iℓ]2ω

q(x∗) = q(xℓ) =

∫

q δ
xℓ = Lθ∗ℓ(q) = Ly∗(q) =

∑

γ

qγ yℓ
γ .

Let j ∈ Jℓ. The constraints Lθ∗ℓ(hαβ) ≥ 0 imply in particular Lθ∗ℓ(gj) ≥ 0. Since deg(gj) ≤ 2ω,
0 ≤ Lθ∗ℓ(gj) = gj(xℓ) = gj(x∗), and so as j ∈ Jℓ was arbitrary, x∗ ∈ K. Finally, and again
because deg(f) ≤ 2ω,

f∗ ≥ q̃k
d = Ly∗(f) = f(x∗),

from which we may conclude that x∗ ∈ K is an optimal solution of problem (P ) in (1).
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4 Computational issues

4.1 Comparing coefficients

As already outlined earlier we implemented polynomial equalities by comparison of coefficients.
The resulting constraints in the SDP are sparse and can be treated efficiently by the solver. A
crucial point for the implementation of sparse BSOS hence is how to equate the coefficients. The
bottle neck for such an implementation is that one has to gather all occurrences of the same
monomials.

As in [14], we use the following data format for representing a polynomial f in n variables:

F (i, 1 : n + 1) = [γT , fγ ],

stating that fγ is the ith coefficient of f corresponding to the monomial xγ . Adding two poly-
nomials is done by concatenating their representations. Hence, equating the coefficients of xγ is
basically finding all indices i of a polynomial F , such that F (i, 1 : n) = γT .

Matlab is providing the function ismember(A,B,'rows') to find a row A in a Matrix B. This
however is too slow for our purpose. Instead of using this function, we reduce the problem to
finding all equal entries of a vector, which can be handled much more efficiently. To that end
we multiply F (:, 1 : n) by a random vector. Generically this results in a vector whose entries
are different if and only if the corresponding rows in F (:, 1 : n) are different.

4.2 Reducing problem size

By looking at (9) more closely one may reduce the number of free variables and the number of
constraints. It is likely that there are some indices i ∈ {1, . . . , n}, that only appear in one of
the Iℓ, say i ∈ Iℓi

. Hence, for all γ ∈
⋃p

j=1 Idmax

j such that γi 6= 0 the second equality constraint

in (9) reduces to fℓi
γ = fγ . Consequently, there is a number of variables that are or can be

fixed from the beginning. We do this in our implementation. However, in order to be able
to certify optimality by Lemma 2, one needs to trace back these substitutions, to recover the
moment sequences yℓ from the solution of the dual problem. Removing these fixed variables
occasionally leads to equality constraints 0 = 0 in the SDP. We remove those constraints for
better conditioning.

5 Numerical experiments

In the following section we provide some examples to illustrate the performance of our approach.
The examples are chosen to show weaknesses and strengths of the sparse BSOS (SBSOS) hierar-
chy in comparison to the dense version (BSOS), to demonstrate the effects of different sparsity
patterns, and to present the performance on sparse non linear test functions from the literature
[25].

Of course to compare the dense and sparse versions we either do it on examples with a
relatively small number of variables (in which case k can be larger than 2 for the dense version)
or on examples with a larger number of variables (e.g. with n = 90 variables) but then with
k = 1 because for k > 1 the size of the semidefinite constraints in the dense version is too large.
When we compare both versions we are interested in several issues:

• the influence of the block sizes (depending on the sparsity pattern) when the size of overlaps
between blocks of variables is fixed.

• the influence of various block and overlap sizes for a fixed number of variables (e.g. n = 45).
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• does the finite convergence of the dense version occur systematically earlier than for the
sparse version? (As it cannot occur later.)

Of course those observations are biased by the (limited) sample of examples that we have
considered. Therefore they should be understood as partial indications rather than definite con-
clusions. The latter would require much more computational experiments beyond the scope of
the present paper.

All experiments were performed on an Intel Core i7-5600U CPU @ 2.60GHz × 4 with 16GB
RAM. Scripts are executed in Matlab 8.5 (R2015a) 64bit on Ubuntu 14.04 LTS operating system.
The SDP solver used for BSOS and SBSOS is SDPT3-4.0.

The results are presented in tables below. They provide the following informations:

• A pattern or problem code to identify the example.

• The relaxation order d and the chosen parameter k for the SDP constraints.

• The maximal degree dmax, appearing in the certificate.

• The result, i. e. the primal solution of the SDP.

• The time in seconds, including the times to generate and solve the SDP as well as com-
puting the optimality condition.

• The abbreviation rk stands for the rank of the moment matrix according to Section 3.2.
In the case of SBSOS, rk is the average rank of all moment matrices.

• For the examples marked with * the solver stopped because steps were too short, the
maximum number of iterations was achieved, or lack of progress. In these cases one has
to consider the result carefully.

5.1 Comparison to the dense version on non sparse examples

As already pointed out in Section 3.1 there is a difference between the BSOS and SBSOS
implementation in how equality constraints are handled. While the implementation of BSOS in
[14] uses point evaluation, the present implementation of SBSOS uses comparison of coefficients.
As a consequence, we expect the sparse version to perform very well on problems of low degree,
while we expect it to run into difficulties when the degree of the involved polynomials is high.
In particular, if the degree of the constraints is high then dmax grows rapidly with the relaxation
order d.

All problems presented in Table 1 are taken from [14]. The first number in the name of each
example refers to the number of variables, the second number to the degree of the objective
functions and to the maximum degree appearing in the constraints.

Like the dense version, the sparse version is able to find and verify the optimum numerically
in all quadratic examples and in some quartic examples. While the sparse verions outperforms
the dense on if the degree is low, for higher relaxation orders d it is slower than the dense one.
This is due to comparison of coefficients which is fast for low degree and small blocks of variables,
but slow if dmax is high. In Table 1, we observe this effect when dmax ≥ 18.

Recall that the dense version considers a wider class of certificates than the sparse version.
Hence, though both hierarchies converges, it might be possible, that BSOS is able to find and
verify the optimal value in an earlier relaxation step than SBSOS. In the examples considered
here, this does not happen. The sparse version was always (up to numerical errors) able to find
the optimum in the same relaxation as the dense version.
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BSOS SBSOS
Problem (d,k) dmax Result rk Time(s) Result rk Time(s)

P4 2 (1,1) 2 -5.7491e-01 1 0.9 -5.7491e-01 1 0.6

P4 4 (1,2) 4 -6.5919e-01 7 0.6 -6.5919e-01 7 0.5
(2,2) 8 -4.3603e-01 1 1.0 -4.3603e-01 1 0.8

P4 6 (1,3) 6 -6.2500e-02 26 1.0 -6.2500e-02 15 0.7
(2,3) 12 -6.0937e-02 7 1.0 -6.0938e-02 7 0.9
(3,3) 18 -6.0693e-02 4 2.9 -6.0693e-02 4 5.7

P4 8 (1,4) 8 -9.4257e-02* 46 13.8 -9.3355e-02 20 2.7
(2,4) 16 -8.5813e-02 9 3.3 -8.5813e-02 9 1.8
(3,4) 24 -8.5813e-02 4 5.3 -8.5817e-02* 5 9.7

P6 2 (1,1) 2 -5.7491e-01 1 0.4 -5.7491e-01 1 0.4

P6 4 (1,2) 4 -5.7716e-01 13 1.0 -5.7716e-01 13 0.6
(2,2) 8 -5.7696e-01 4 4.8 -5.7696e-01 4 4.8
(3,2) 12 -5.7696e-01 3 23.6 -5.7709e-01* 4 32.7

P6 6 (1,3) 6 -6.5972e-01 36 8.7 -6.5972e-01 35 4.1
(2,3) 12 -6.5972e-01 32 22.9 -6.5972e-01 32 7.4
(3,3) 18 -4.1288e-01 1 40.7 -4.1288e-01 1 144.8

P8 2 (1,1) 2 -5.7491e-01 1 0.5 -5.7491e-01 1 0.4

P8 4 (1,2) 4 -6.5946e-01 21 2.2 -6.5946e-01 21 1.2
(2,2) 8 -4.3603e-01 1 19.5 -4.3603e-01 1 3.4

P10 2 (1,1) 2 -5.7491e-01 1 0.5 -5.7491e-01 1 0.4

P10 4 (1,2) 4 -6.5951e-01 31 8.5 -6.5951e-01 31 3.0
(2,2) 8 -4.3603e-01 1 28.0 -4.3604e-01* 1 12.4

P20 2 (1,1) 4 -5.7492e-01* 1 1.1 -5.7491e-01 1 0.7

Table 1: Comparison to the dense version on non sparse examples
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5.2 Randomly generated sparse functions

The strength of SBSOS is to handle polynomials efficiently when some structured sparsity pat-
tern is present in the data. As a consequence of comparing coefficients for the equality con-
straints, SBSOS is most powerful for objective functions of degree 2. Hence, given a chosen
sparsity pattern, we randomly create quadratic test functions and let the feasible set K be the
product of simplices (with possible overlaps) or intersections of the unit sphere with the positive
orthant, respectively3. More formally, for a sparsity pattern I = {I1, . . . , Ip} we consider the
problem

min
{

xT Ax + bT x : 0 ≤ 1 −
∑

i∈Iℓ

xi ≤ 1,



0 ≤ 1 −
∑

i∈Iℓ

x2
i ≤ 1



 , ℓ = 1, . . . , p,

0 ≤ xi ≤ 1, i = 1, . . . , n, }

(11)

where b is a random vector and the symmetric matrix A is randomly generate according to I.
Depending on the example we either choose the constraint polynomials 1−

∑

i∈Iℓ
xi, ℓ = 1, . . . , p

or the constraint polynomials 1 −
∑

i∈Iℓ
x2

i , ℓ = 1, . . . , p.
In this section the sparsity pattern is generated by two vectors n ∈ N

p and o ∈ N
p−1. The

vector n determinates the size of the blocks Iℓ whereas the vector o defines the number of
overlapping variables between two consecutive blocks. Defining c1 := n1 and cℓ := cℓ−1 + nℓ −
oℓ−1) we construct

Iℓ := {cℓ − nℓ + 1, . . . , cℓ}.

Note that the total number of variables in pattern I is cp. The matrix A ∈ R
cp×cp is a randomly

generated symmetric matrix whose entries are zero outside the submatrices (Aij)i,j∈Iℓ
, ℓ =

1, . . . , p. After generating the matrix randomly, we make sure that A has some positive and
some negative eigenvalues. Hence, the resulting objective function is not convex.

5.2.1 Comparison to dense version on random sparse examples

Problem I: The problems presented in Table 2 and 3 were chosen to demonstrate the influence
of a known sparsity pattern. In particular we are interested in the behaviour of SBSOS for
different block sizes in the pattern. To that end for the Problems I we choose a constant number
of variables and a constant size of the overlap of to consecutive blocks. Starting with the patterns
generated by

n := (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5) o := (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

for QPIa (n = 45, overlap 1) and

n := (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10) o := (2, 2, 2, 2, 2, 2, 2, 2, 2, 2)

for QPIb (n = 90, overlap 2), we deduce more general patterns of larger block sizes, that are
still valid for QPIa and QPIb, respectively. In the tables we only provide the vector n since the
overlap in these problems is fixed. We use an intuitive notation to refer to the vectors n. For
example we write (11x5) for (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5) and (2x17,13) for (17, 17, 13).

3Note that Assumption 2 is fulfilled only in the latter case. In the case of simplices one could satisfy the
assumption by adding the redundant constraints Mℓ −

∑

i∈Iℓ

x
2
i . However, with same arguments as in the first

part of the proof of Theorem 3, one can show that in the specific case of simplex constraints and d ≥ 2, the
feasible set of (10) is compact and an optimal solution is attained. Furthermore, since a simplex is a polyhedron,
the quadratic modules associated to the Kℓ are archimedean. One can adapt the proofs of Theorem 1 and 2 so
that the convergence result is still true in this case.
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BSOS SBSOS SBSOS SBSOS SBSOS SBSOS SBSOS

n 45 45 (25,21) (2x17,13) (3x13,9) (5x9,5) (11x5)
Time(s) 37.82 5.77 2.24 1.65 1.24 1.07 0.73

Table 2: QPIa, n = 45, overlap 1, linear constraints, (d, k) = (2, 1), dmax = 2, optimality verified
in all cases by rank one condition

BSOS SBSOS SBSOS SBSOS SBSOS SBSOS

n 90 90 (50,5x10) (50,42) (50,26,18) (50,2x18,10)
Time(s) 1208.9 73.39 24.50 20.73 19.42 20.28

SBSOS SBSOS SBSOS SBSOS SBSOS SBSOS

n (2x34,26) (34,3x18,10) (3x26,18) (2x26,2x18,10) (5x18,10) (11x10)
Time(s) 9.76 7.52 7.19 6.28 4.59 1.58

Table 3: QPIb, n = 90, overlap 2, linear constraints, (d, k) = (2, 1), dmax = 2, optimality verified
in all cases by rank one condition

Both QPI we constrain to the product of intersecting simplices. Hence, all constraints are
linear. We choose parameter k = 1. According to the footnote in Section 5.2, we have to choose
d ≥ 2 to guarantee the existence of a dual solution. In our experiments, d = 2 already led to
the optimal solution. In both examples, QPIa and QPIb, for all sparsity patterns, the optimal
value was certified by the rank one condition. Hence, we only display the timings.

Looking at QPIa in Table 2, one observes that SBSOS is able to handle this sparse problem
much more efficiently then BSOS, even if no information on the sparsity pattern is given (see
column n = 45). Apart from the reasons already given in Section 5.1, here we observe the effect
of removing fixed variables from the SDP before solving it (see Section 4.2).

As a smaller block size in the sparsity pattern directly results in a smaller size of the SDP
blocks in the relaxation, the solving time decreases when the sparsity pattern of the problem is
given more accurately, which is illustrated nicely in the table.

While the sparsity patterns in QPIa were chosen to get blocks of the same size (plus one
block for the remaining variables), in QPIb we are interested in the influence of the biggest block
of variables. In Table 3 one may observe, that significant improvements in the timing are only
achieved, when the size of the biggest block of the pattern is reduced.

Problem II: With the problems in Table 4 we intend to demonstrate the influence of different
overlaps. To that end, the vector n = (50, 50) is fixed and we vary the vector o, which in this
example consist of one number determinating the overlap of the two blocks. Consequently, the
number of variables in the different examples changes. Since n is fixed for all examples the
problems are determinated by the number of overlapping variables o, which is displayed in the
table. In these problems we constrain the feasible set to be the product of intersections of the
unit circle with the positive orthant. Again we choose the parameter k = 1. In the presented
experiments the first relaxation d = 1 reaches the optimal value of the polynomial optimization
problems, certified by the rank one condition. Hence, we only present the overlap o, the number
n of variables, and the timings to compare the examples.

The results show that the increasing number of variables makes the problems more difficult
for BSOS, since the size of the SDP variables in BSOS depend on the total number of variables.
In contrast to that, the SDP variables in SBSOS have constant size in all experiments. SBSOS
even profits from the higher number of variables, as there is less correlation between the two
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Overlap BSOS SBSOS
o n Result rk Time(s) Result rk Time(s)

40 60 -3.7633 1 17.74 -3.7633 1 24.13
30 70 -4.1162 1 31.76 -4.1162 1 17.75
20 80 -4.4683 1 57.85 -4.4683 1 15.11
10 90 -4.7746 1 90.23 -4.7746 1 11.86
5 95 -5.0743 1 122.04 -5.0743 1 11.00
1 99 -5.2489 1 144.71 -5.2489 1 10.40

Table 4: QPII, n = (50, 50), quadratic constraints, (d, k) = (1, 1), dmax = 2, optimality verified
in all cases by rank one condition

n. of block- over- SBSOS n. of block- over- SBSOS
blocks size lap n rk Time(s) blocks size lap n rk Time(s)

500 3 1 1001 1 13.8 1000 3 1 2001 1 40.5
4 2 1002 1 20.9 4 2 2002 ≈ 1 67.1
5 3 1003 1 31.0 5 3 2003 1 100.0
6 4 1004 1 44.3 6 4 2004 1 154.5

1500 3 1 3001 1 79.4 500 8 2 3002 1 127.5
4 2 3002 1 135.5 9 3 3003 1 205.4

Table 5: QPLS, linear constraints, (d, k) = (2, 1), dmax = 2,

blocks of variables. This explains, why BSOS is slowing down with decreasing overlap, while
SBSOS fastens up.

5.2.2 Performance on a large scale problem

We employ the quadratic problem in (11) to show the range of SBSOS for large scale problems.
To this end, we fix an overlap of 1 and consider instances of the quadratic problem for a large
number of blocks with a rather small blocksize. This results in problems with total number
of variables between 1001 and 3003. We constrain each block of variables to the unit simplex.
Choosing parameter k = 1, the second relaxation d = 2 is sufficient to reach the optimal solution
verified by the rank one condition in almost all cases.

In Table 5 we show that SBSOS is able to solve quadratic non convex problems with 3000
variables in reasonable time.4

5.3 Test problems from the literature

In this section we present experiments on some test problems considered to be challenging in
non linear optimization. All test functions are sums of squares and share the global minimum 0.
Hence, it would be possible to compute the minimum in the unconstraint case. However, if not
using constraints, the SBSOS approach reduces to searching for sums of squares and does not

4Actually we are able to solve problems with even more variables. However, due to problems with the memory
management between MATLAB and Linux, we have to proceed in two steps. First we generate the SDP problem,
which requires a lot of memory. Once the SDP has been generated, we save it and clear the whole workspace.
A “clear all” command does only delete all variables inside Matlab. However for some technical reason this
newly available memory space cannot be used. So we have to restart Matlab and then load and solve the SDP.
In doing this two-step process we can solve QPLS problems with up to 5001 variables in less than 500 seconds.
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differ from other sparse hierarchies such as presented in [33]. Hence, we restrict the problems
to a convex or non convex compact feasible set K defined by the Kℓ according to (6) and for
which the global minimizer x∗ belongs to K.

Consider the following test functions, all of degree 4:

• The Chained Singular Function:

f :=
∑

j∈J

(

(xj + 10xj+1)2 + 5(xj+2 − xj+3)2 + (xj+1 − 2xj+2)4 + 10(xj − xj+3)4
)

where J := {2i − 1 : i = 1, . . . , n/2 − 1} and n ≡ 0 mod 4. To fulfil the sparsity
assumptions we choose the sparsity pattern I := {{1, 2, 3, 4} , {3, 4, 5, 6} , . . .}. We consider
the convex feasible set given by

Kℓ :=






x ∈ R

nℓ : 0 ≤
2

3
xi ≤ 1, i ∈ Iℓ, 0 ≤ 1 −

1

4

∑

i∈Iℓ

x2
i ≤ 1






.

• The Chained Wood Function:

f :=
∑

j∈J

(

100(xj+1 − x2
j)2 + (1 − xj)2 + 90(xj+3 − x2

j+2)2

+(1 − xj+2)2 + 10(xj+1 + xj+3 − 2)2 + 0.1(xj+1 − xj+3)2
)

where J := {2i − 1 : i = 1, . . . , n/2 − 1} and n ≡ 0 mod 4. The sparsity pattern is the
same as for the Chained Singular Function. We consider the non convex feasible set given
by

Kℓ :=






x ∈ R

nℓ : 0 ≤ xi ≤ 1, i ∈ Iℓ, 0 ≤ 4 −
∑

i∈Iℓ

x2
i ≤ 1






.

• The Generalized Rosenbrock Function:

f :=
n∑

i=2

(

100(xi − x2
i−1)2 + (1 − xi)

2
)

.

The sparsity pattern is I := {{1, 2} , {2, 3} , . . .}. We consider the non convex feasible set
given by

Kℓ :=






x ∈ R

nℓ : 0 ≤ xi ≤ 1, i ∈ Iℓ, 0 ≤ 2 −
∑

i∈Iℓ

x2
i ≤ 1






.

In Table 6 we show the results of SBSOS for the Chained Singular and the Chained Wood
Function of size n from 500 to 1000. For both examples we reach the optimality condition in
the second step of the relaxation. Note, that dmax does not increase from the first to the second
relaxation step, since the parameter k = 2 dominates the total degree of the certificate for small
degree in the constraints and low relaxation orders d. Notice also, that the accuracy for the
Chained Singular Function is very good, while the results for the Chained Wood Function are
fair for a large scale problem.

In Table 7 we provide results for the Generalized Rosenbrock Function for n from 100 to 700
variables. Again we choose the parameter k = 2. As for the Chained Wood Function SBSOS
reaches the minimum in the first relaxation step. However, for the Rosenbrock Function we need
to go to relaxation order d = 3 to certify optimality by the rank one condition.

Next we consider the following test functions of degree 6:
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Chained Singular Chained Wood
n (d,k) dmax Result rk Time(s) Result rk Time(s)

500 (1,2) 4 -2.30e-02* ≈4 41.1 -3.05e-05 4 23.25
(2,2) 4 -3.34e-09 1 33.8 -6.23e-05 1 26.28

600 (1,2) 4 -6.68e-03* ≈4 141.4 -3.73e-05 4 28.87
(2,2) 4 -3.55e-09 1 43.4 -1.02e-04 1 31.91

700 (1,2) 4 -1.91e-03* ≈2 150.1 -7.83e-05 4 32.46
(2,2) 4 -1.89e-09 1 51.0 -1.11e-04 1 38.92

800 (1,2) 4 -1.37e-02* ≈4 161.8 -9.35e-05 4 38.47
(2,2) 4 -2.16e-09 1 62.9 -1.29e-04 1 45.69

900 (1,2) 4 -1.11e-02* ≈4 184.3 -1.07e-04 4 44.67
(2,2) 4 -2.21e-09 1 71.9 -1.22e-04 1 54.56

1000 (1,2) 4 -2.26e-02* ≈4 206.4 -1.37e-04 4 49.92
(2,2) 4 -2.81e-09 1 80.0 -1.39e-04 1 62.03

Table 6: Chained Singular and Chained Wood Function (block size: 4)

Generalized Rosenbrock
n (d,k) dmax Result rk Time(s)

100 (1,2) 4 -1.68e-06 ≈1 2.66
(2,2) 4 -3.12e-06 ≈1 2.85
(3,2) 6 -3.30e-06 1 5.65

200 (1,2) 4 -3.96e-06 ≈1 4.00
(2,2) 4 -4.78e-06 ≈1 5.09
(3,2) 6 -6.38e-06 1 11.96

300 (1,2) 4 -5.52e-06 ≈1 6.27
(2,2) 4 -6.71e-06 ≈1 7.90
(3,2) 6 -1.44e-05 1 19.82

400 (1,2) 4 -6.71e-06 ≈1 8.89
(2,2) 4 -1.19e-05 ≈1 10.76
(3,2) 6 -1.46e-05 1 29.78

500 (1,2) 4 -9.34e-06 ≈1 10.11
(2,2) 4 -1.12e-05 ≈1 14.12
(3,2) 6 -2.37e-05 1 39.19

600 (1,2) 4 -1.02e-05 ≈1 13.06
(2,2) 4 -1.18e-05 ≈1 17.45
(3,2) 6 -2.32e-05 1 53.18

700 (1,2) 4 -1.25e-05 ≈1 15.63
(2,2) 4 -2.69e-05 ≈1 21.66
(3,2) 6 -2.71e-05 1 68.36

Table 7: Generalized Rosenbrock Function (block size: 2)
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Broyden Banded Discrete Boundary
n (d,k) Result rk Time Result rk Time

7 (1,2) -9.68e-09 1 13.2 -1.85e-10 1 1.60

9 (1,2) 7.99e-09 1 110.0 -7.15e-10 1 1.16

11 (1,2) 2.61e-08 1 232.1 -1.36e-09 1 1.56

13 (1,2) -6.38e-06 1 416.4 -8.54e-10 1 1.44

15 (1,2) -6.92e-07 1 589.1 -9.48e-10 1 1.42

Table 8: Broyden Banded (block size: 7) and Discrete Boundary Value Function (block size: 3)

• The Discrete Boundary Value Function:

f :=
n∑

i=1

(2xi − xi−1 − xi+1 +
1

2
h2(xi + ih + 1)3)2,

where h := 1
n+1 ,x0 := 9 =: xn+1. To fulfil the sparsity assumptions we choose the sparsity

pattern I := {{1, 2, 3} , {2, 3, 4} , . . .}. The feasible set is given by

Kℓ :=






x ∈ R

nℓ : 0 ≤
1

2
(1 − xi) ≤ 1, i ∈ Iℓ, 0 ≤ 1 −

∑

i∈Iℓ

x2
i ≤ 1






.

• The Broyden Banded Function:

f :=
n∑

i=1



xi(2 + 10x2
i ) + 1 −

∑

j∈Ji

(1 + xj)xj





2

,

where Ji := {j : j 6= i, max(1, i−5) ≤ j ≤ min(n, i+1)}. To fulfil the sparsity assumptions
we choose the sparsity pattern I := {{i − 5, . . . , min(n, i + 1)} , i = 6, . . . , n}. The feasible
set is given by

Kℓ :=






x ∈ R

nℓ : 0 ≤
1

2
(1 − xi) ≤ 1, i ∈ Iℓ, 0 ≤ 1 −

1

2

∑

i∈Iℓ

x2
i ≤ 1






.

The Broyden Banded Function is not considered to be a test function for large scale examples
[33, 25]. The Discrete Boundary Value Function serves as a reference. In Table 6 we show the
results of SBSOS for both test functions of size n from 9 to 15. For both sextic test functions
SBSOS could reach the optimality condition at the first relaxation step with a high accuracy.
Note that for the Broyden Banded Function the block size is 7 and the maximal degree is 6.
In Table 1 we already saw, that SBSOS slows down when block size and maximum degree are
both high (see e.g. P6 6). Indeed, already for n = 15 it takes more than 500 seconds to solve
the example.

Note the remarkable difference in the timings between both functions. Whereas the solving
time increases a lot for the Broyden Banded Function, it remains nearly constant for the Discrete
Boundary Value Function. This can be explained by the larger size of the SDP variables in
the Broyden Banded Function combined with a larger overlap of the blocks. For the Discrete
Boundary Value Function a single variable appears in up to three blocks of variables, causing
dependencies for the corresponding SDP variables. For the Broyden Banded Function there are
variables connecting up to 7 blocks in the sparsity pattern. This causes a stronger coupling of
the SDP variables resulting in a more difficult task for the solver.
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6 Conclusion

We have provided a sparse version of the BSOS hierarchy [14] so as to handle large scale polyno-
mial optimization problems that satisfy a structured sparsity pattern. The positivity certificates
used in the sparse BSOS hierarchy are coming from a sparse version of Stengle Positivstellensatz,
also proved in this paper.

We have tested the algorithm on a sample of non convex problems randomly generated as
well as on some typical examples from the literature. The results show that the hierarchy is able
to solve small scale dense and large scale sparse polynomial optimization problems in reasonable
computational time. In all our experiments where the problem size allowed to compare the
dense and sparse versions, finite convergence in the latter took place whenever it took place for
the former, and moreover at the same relaxation order. This is remarkable, since in principle
convergence of the dense version is at least faster than convergence for the sparse version.

Crucial in our implementation is the comparison of coefficients to state that two polynomials
are identical (instead of checking their values on a sample of generic points). This limits the
application to problems with polynomials of small degree (say less than 4). In particular if some
degree in the problem data is at least 6 and the block size is not small, the resulting SDP can
become ill conditioned when the relaxation order increases. Depending on the context in which
one wants to use the sparse hierarchy, an alternative may be to implement polynomial identities
by sampling.
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