Pulsating fronts for Fisher-KPP systems with mutations as models in evolutionary epidemiology - Archive ouverte HAL
Article Dans Une Revue Nonlinear Analysis: Real World Applications Année : 2018

Pulsating fronts for Fisher-KPP systems with mutations as models in evolutionary epidemiology

Résumé

We consider a periodic reaction diffusion system which, because of competition between $u$ and $v$, does not enjoy the comparison principle. It also takes into account mutations, allowing $u$ to switch to $v$ and vice versa. Such a system serves as a model in evolutionary epidemiology where two types of pathogens compete in a heterogeneous environment while mutations can occur, thus allowing coexistence. We first discuss the existence of nontrivial positive steady states, using some bifurcation technics. Then, to sustain the possibility of invasion when nontrivial steady states exist, we construct pulsating fronts. As far as we know, this is the first such construction in a situation where comparison arguments are not available.
Fichier principal
Vignette du fichier
PULSATOIRE-submission.pdf (425.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01341882 , version 1 (05-07-2016)

Identifiants

Citer

Matthieu Alfaro, Quentin Griette. Pulsating fronts for Fisher-KPP systems with mutations as models in evolutionary epidemiology. Nonlinear Analysis: Real World Applications, 2018, 42, pp.255-289. ⟨10.1016/j.nonrwa.2018.01.004⟩. ⟨hal-01341882⟩
137 Consultations
95 Téléchargements

Altmetric

Partager

More