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1 Introduction

In this supplementary material, we derive the equations that are used in the main article
on degenerated resonance. Hamiltonian theory is presented following Zakharov (1968).
Such a model yields slow-time evolution of complex wave amplitudes and receives con-
tinuous interest, especially in four-wave interactions (see e.g. Stiassnie & Shemer (2005);
Janssen (2009); Leblanc (2009)).

We use this Hamiltonian approach to derive a solution at short-time in degenerated
four-wave interactions in order to explain the sinc detuning (or phase mismatch) factor
first introduced in Longuet-Higgins & Smith (1966) when the waves are off-resonance.
Longuet-Higgins & Smith (1966) based an explanation for this sinc term on the superpo-
sition of the near-resonant daughter wave and a free wave generated by the wavemaker.
Both waves have the same amplitude to ensure a zero-flux boundary condition. Say-
ing this, they neglected the evanescent waves which are known to make an important
contribution to free wave generation (Hudspeth & Sulisz, 1991).

Assuming constant mother-wave amplitudes (see Boyd (2008) in optics), we recover
all the previous results in Longuet-Higgins (1962), including the phase-locking observed
also in our experiments. We show that for resonance or near-resonance, the total phase is
found to be initially locked to π/2 (valid only for short times) and then to slowly evolve
away from this initial value. Concerning the phase mismatch factor, note that Tomita
(1989) already used the same Hamiltonian derivation and found the intermediate sine
solution for the daughter-wave amplitude yet without linking it to the detuning sinc
behavior first described by Longuet-Higgins (1962). In order to improve the accessibility
of this type of results, we present the relevant theory in readable form with full details
in this supplementary material.

∗Email address for correspondence: felicien.bonnefoy@ec-nantes.fr
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2 Approximate Hamiltonian Theory

2.1 General case

The dynamical Hamiltonian theory is presented here to account for phase evolution and
off-resonance solution; we follow the formalism from Janssen (2009) and Zakharov et al.
(1992). The potential flow unknowns are the free surface elevation η(x, t) and the free
surface potential ψ(x, t). The latter is the value of the potential of the flow φ taken at
the free surface, that is ψ(x, t) = φ(x, z = η(x, t), t). The corresponding space Fourier

transforms η̂ and ψ̂ are defined by

η̂(k, t) =
1

2π

∫

dx η(x, t) exp (−ik.x) , (1)

ψ̂(k, t) =
1

2π

∫

dxψ(x, t) exp (−ik.x) . (2)

For each wavevector k, the corresponding frequency ω is given by the considered disper-
sion relation ω(k). These transforms are multiplied by

√

ω/k and
√

k/ω respectively
where k = |k| so that the resulting amplitudes have the same dimension. After this first
canonical transformation1, the complex action variable A(k) is defined as follows by a
second canonical transformation

A(k, t) =
1

21/2

[

(ω

k

)1/2

η̂(k, t) + i

(

k

ω

)1/2

ψ̂(k, t)

]

. (3)

We may use later on the following relations

η̂(k, t) =

(

k

2ω

)1/2

[A(k, t) +A∗(−k, t)] , (4)

ψ̂(k, t) = −i
( ω

2k

)1/2

[A(k, t)−A∗(−k, t)] . (5)

A third canonical transformation from A(k, t) to a new variable â(k, t) eliminates
the non-resonant interactions describing bound waves in the three-wave and four-wave
processes. The reader will refer to Janssen (2009) and Zakharov et al. (1992) for more
details. By acknowledging the linear evolution of the action variable, a new unknown
variable is introduced B(k, t) = â(k, t) exp(iω(k)t) called action amplitude or generalized
amplitude spectrum. Further equations for B assess only the nonlinear part. For small
wave steepness, the nonlinear evolution of waves with non-decay relation dispersion2

(ω ∝ kν with ν < 1) is described by Zakharov’s equation (Zakharov, 1968)

i∂tB1 =

∫∫∫

T1234B
∗

2B3B4δ1+2−3−4 exp (i∆1234t) dk2dk3dk4 , (6)

where the frequencies are ωi = ω(ki), the frequency detuning or mismatch is ∆1234 =
ω1 + ω2 − ω3 − ω4, δ1+2−3−4 = δ(k1 + k2 − k3 − k4) and Bi = B(ki, t) the notation for
the action. The interaction coefficients T1234 = T (k1,k2,k3,k4) are the kernels given in
Krasitskii (1994) or Janssen (2009).

1By definition, a canonical transformation preserves the form of the Hamilton’s equations describing

the system.
2All the three-wave interactions are therefore non-resonant.
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The free-surface elevation is related to the generalized amplitude spectrum B(k, t)
by the above canonical transformations. The nonlinear elevation consists of a linear
superposition of free waves and a ensemble of corresponding bound waves. The linear
part of the elevation is build as the superposition of free waves

ηlin(x, t) =

∫

dk

(

k

2ω

)1/2

[B(k, t) exp(−iω(k)t) +B∗(−k, t) exp(iω(k)t)] exp (ik.x) .

(7)
The bound waves can also be computed by means of the canonical transformations (see
Janssen (2009) for the corresponding kernels).

2.2 Degenerated resonance

The degenerated case we study in the paper consists of only three waves, two mother
waves 1 and 3 and a daughter wave 4. The wave action amplitude is noted B(k, t) =
B1(t)δ(k − k1) + B3(t)δ(k − k3) + B4(t)δ(k − k4) with the resonance condition 2k1 −
k3−k4 = 0. In the case of an homogeneous wave field, the equations for the degenerated
case are deduced from equation (6)

i∂tB1 = (Ω1 − ω1)B1 + 2T1134 exp(i∆ωt)B
∗

1B3B4 , (8a)

i∂tB3 = (Ω3 − ω3)B3 + T1134 exp(−i∆ωt)B2
1B

∗

4 , (8b)

i∂tB4 = (Ω4 − ω4)B4 + T1134 exp(−i∆ωt)B2
1B

∗

3 , (8c)

where ∆ω = 2ω1 − ω3 − ω4 is the linear frequency detuning. Nonlinear frequencies Ωi

satisfy the following nonlinear dispersion relations

Ω1 = ω1 + T1111|B1|
2 + 2T1313|B3|

2 + 2T1414|B4|
2 ,

Ω3 = ω3 + 2T1313|B1|
2 + T3333|B3|

2 + 2T3434|B4|
2 ,

Ω4 = ω4 + 2T1414|B1|
2 + 2T3434|B3|

2 + T4444|B4|
2 .







(9)

Here we consider degenerated wave fields where only the two mother waves 1 and 3 are
initially present, i.e. B4(t = 0) = 0. In this case, the resonant daughter wave exhibits
linear growth in the early stage of the four-wave interaction and an energy exchange
happens from mother wave 1 towards mother wave 3 and daughter wave 4. Equations
(8) admit self-similar solutions of the form Bi = Bi0 fi(α

2t, β) for i = 1, 3 with Bi0 the
initial amplitude and fi functions of unit magnitude; index 0 denotes the solutions at
t = 0. The daughter-wave amplitude may also be written as B4 = α f4(α

2t, β) where α
is the scale |B2

10B30|
1/3 and β = |B30/B10|. Such solutions may be obtained analytically

(see Stiassnie & Shemer (2005)) or numerically.
In the following, we define the total detuning ∆Ω = 2Ω1 −Ω3 −Ω4 and the detuning

due to nonlinear effects ∆ωnl = ∆Ω−∆ω.

2.3 Solution at small daughter-wave amplitude

In the early stage of the resonant interaction or for a non-resonant interaction, the
daughter-wave amplitude is assumed to be negligible with respect to the mother-wave
amplitudes. In equations (8a) and (8b), the first term of the right-hand side is dominant
and it follows that the mother waves evolve solely due to the nonlinear dispersion; in
other words, they keep a constant amplitude Bi0 for i = 1 and 3. In equations (9), the
third term of the right-hand side disappear and the mother-wave nonlinear frequency Ωi

as well as the daughter-wave one Ω4 are also constant.
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Reporting this in equations (8a) and (8b), we obtain the mother-wave amplitudes

Bi(t) = Bi0 exp(−i(Ωi − ωi)t) , i = 1and 3 . (10)

Introducing C4 such as B4(t) = C4(t) exp(−i(Ω4 − ω4)t), we obtain from equation (8c)
a new equation for C4

∂tC4 = −iT1134 exp(−i∆ωt)B2
10B

∗

30 exp (−i∆ωnlt) . (11)

We can see that amplitude C4 accounts for energy transfer as well as for all nonlinear
frequency evolution due to the interaction other than the nonlinear dispersion. We have
now after straightforward integration of equation (11)

B4 = −iT1134B
2
10B

∗

30

sin (∆Ωt/2)

∆Ω/2
exp(−i(Ω4 − ω4 +∆Ω/2)t) . (12)

This solution (12) is valid as long as |B4| ≪ |B10| and |B30|. This expression of the
complex amplitude provides the daughter-wave real amplitude and phase. First, since
T1134 > 0 (see Janssen (2009)), the daughter-wave amplitude is

|B4| = T1134 |B
2
10B30|

∣

∣

∣

∣

sin (∆Ωt/2)

∆Ω/2

∣

∣

∣

∣

. (13)

The linear free surface elevation consists in the surperposition of three waves

ηlin =
1

2

(

∑

i

ai exp(i(ki.x− ωit+ ϕi(t))) + c.c.

)

,

where i=1, 3 and 4, ai is the wave amplitude and ϕi(t) is the phase due to nonlinear
effects, which evolves slowly in time. Using equation (7) and the previous solution for
Bi(t), we obtain the mother-wave phases ϕi(t) = −(Ωi−ωi) t+ϕi0 for i = 1 and 3 where
index 0 again denotes initial values. They evolve slowly due to the nonlinear correction
in the dispersion relations given in equations (9), whereas the daughter-wave phase taken
from equation (12) evolves due to two terms

ϕ4(t) = −(Ω4 − ω4)t−∆Ωt/2 + 2ϕ10 − ϕ30 −
π

2
. (14)

The first term is the slow evolution due to nonlinear dispersion correction and the second
term comes from the total frequency detuning ∆Ω = ∆ω + ∆ωnl which contains a fast
and a slow terms. The last terms show the phase-locking of the daughter wave. Note
that the phase ϕ4(t) could also be defined by ϕ4(t) = −(Ω4 − ω4)t −∆Ωt/2 + ϕ40. We
now introduce the total phase ϕ as follows

ϕ(t) ≡ 2ϕ1 − ϕ3 − ϕ4 =
π

2
−

∆ω +∆ωnl

2
t . (15)

Both the linear and the nonlinear part of the frequency detuning play a role in the
evolution of the total phase which then vary with a fast term ∆ωt/2 and a slow term
∆ωnlt/2 on a α2t time scale.

The following relation holds between the generalized amplitude spectrum Bi for wave
i and the free surface amplitude ηi

ai =

√

2ki
ωi

Bi . (16)
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It provides us the daughter-wave amplitude a4 as follows

|a4| = T1134
ω1

2k31

√

ω3 k4
ω4 k33

ε21ε3

∣

∣

∣

∣

sin (∆Ωt/2)

∆Ω/2

∣

∣

∣

∣

, (17a)

arg a4 = −
π

2
+ 2 arg a10 − arg a30 − (Ω4 − ω4 +∆Ω/2)t , (17b)

where the steepness is given by εi = ki|ai0|.

2.3.1 Exact linear resonance

At resonance (∆ω = 0) and for the initial stage of the interaction (∆ωnlt≪ 1), equation
(15) gives ϕ = π/2 and equation (13) predicts a linear growth of the daughter wave, with
a maximum growth rate

|B4| = T1134 |B
2
10B30| t . (18)

From equation (14), phase-locking is expected for the daughter wave whose initial phase
is naturally set to ϕ40 = −π/2 + 2ϕ10 − ϕ30. These are the results obtained by means
of perturbation theory in Longuet-Higgins (1962). Although the phase locking was not
explicitly mentionned, it was implicitly accounted for. In Longuet-Higgins (1962), the
mother-wave profile is described by ηi = ai cosψi with ψi = ki.x − ωit for i = 1 and 3.
The evolution of the resonant daughter wave is given by η4 = a4 sin(2ψ1−ψ3). It follows
using the resonance conditions that sin(2ψ1 − ψ3) = cos(ψ4 − π/2) and hence the phase
of the daughter wave is locked to −π/2 by comparison to the mother waves.

The bound waves associated with the quartet are given at frequency 2ω1 − ω3 by

B
(2)
1134B

2
10B

∗

30 (see e.g. Janssen (2009) for an expression of kernel B
(2)
1234). We have

checked numerically (not shown here) that they have negligible amplitudes compared to
the resonant daughter wave at the same frequency.

Concerning the phase evolution, the above solutions for ϕi show that all waves phases
will evolve with slow nonlinear time (as long as the daughter-wave amplitude is small).
From equation (15), we see that the total phase ϕ = π/2 + ∆ωnlt/2 will evolve from
its initial π/2 value on the long time scale α2t. In other words, the concept of linear
resonance (∆ω = 0) is valid in the early stage but it does not make sense at longer time
since the total phase follow a slow nonlinear evolution.

2.3.2 Off-resonance

We consider now an off-resonance degenerated quartet with a linear frequency detun-
ing ∆ω 6= 0. Equation (13) gives the expression of the off-resonance daughter-wave
amplitude, valid when |B4| ≪ |B10| and |B30|. For interpretation and following Longuet-
Higgins (1962), we rewrite equation (13) as

|B4|

α
= T1134α

2t

∣

∣

∣

∣

sin 1
2∆Ωt

1
2∆Ωt

∣

∣

∣

∣

= T1134α
2t

∣

∣

∣

∣

sinc

(

1

2
∆Ωt

)∣

∣

∣

∣

. (19)

In this equation (19) we have emphasized on

• the scaling α =
∣

∣B2
10B30

∣

∣

1/3
of the daughter-wave amplitude,

• the resonant growth T1134α
2t, linear in the slow time scale α2t,

• the off-resonance correction factor sinc 1
2∆Ωt (known as phase mismatch factor in

optics).
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This last amplitude modulation should not shadow the real evolution observed in equation
(13) which is a sine function.

3 Discussion

Here the Zakharov equation is applied in the context of degenerated resonant interaction
of four waves. The strong approximation we made is to restrict the wave spectrum
to three interacting waves only, namely two mother waves present at the start and a
daughter wave growing in time. The theoretical developments are not limited to surface
gravity waves, and should apply to any nonlinear wave system having forbidden three-
wave interactions.

The solution is found for both resonant and non-resonant cases when the daughter-
wave amplitude is small and the solution agrees well with the ones in Longuet-Higgins
(1962) in terms of linear growth rate and in Longuet-Higgins & Smith (1966) in terms of
sinc behavior. Note that Longuet-Higgins & Smith (1966) used a different explanation
for the sinc term, based on wavemaker free wave emission, which now seems uncorrect in
the light of the dynamical theory used here. In their use of zero-flux boundary condition
on the wavemaker they neglected evanescent waves which are known to contribute to
an important part of the free wave emission (Hudspeth & Sulisz, 1991). Tomita (1989)
found also the sine solution for |B4| contained in equation (13) without linking it however
to the detuning sinc behavior first observed experimentally by Longuet-Higgins & Smith
(1966) and McGoldrick et al. (1966).

3.1 Waves in basins

In the case of mechanically generated waves, the experiments show that the growing
daughter wave has a frequency in exact resonance condition ω4 = 2ω1−ω3. The direction
θ4 of the daughter-wave wavenumber k4 is still unknown ; the condition for wavenumbers
may be not fullfilled and a mismatch or detuning can exist ∆k = 2k1−k3−k4. Although
the direction of the daughter wave is not specified, we assume that the fastest growing
daughter wave is the one with minimal detuning. In other words, the daughter wave
propagates along the direction of 2k1 − k3 and the corresponding detuning is now ∆k =
|2k1 − k3| − k(2ω1 − ω3).

Using equation (16) to convert from generalized to wave amplitudes, we obtain the
relation between the interaction kernel T1134 and the space amplification factor G in
Longuet-Higgins (1962)

G =
T1134
k31

(

k4
k1

)3/4(
k3
k1

)

−5/4

.

3.2 Large amplitude

At or near resonance and after a long enough time the daughter wave may reach large
amplitude and our assumption |B4| ≪ |B1| and |B3| becomes invalid. In that case the
exact analytical solution is expressed by means of Jacobian elliptic functions (see Stiassnie
& Shemer (2005) for instance). The idea or concept of exact resonance must be limited
to only the initial stage. Furthermore, no exact nonlinear resonance conditions can exist
since the total phase evolves nonlinearly in time; the detuning ∆Ω cannot stay null if a
resonant transfer occurs as the amplitudes will evolve and then modify the detuning. In
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other words, all the four-wave interactions are off-resonance ones. The concept of exact
resonance is meaningfull only at the initial stage. It corresponds to a linear growth of
the daughter wave with maximum growth rate.
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