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We experimentally study resonant interactions of oblique surface gravity waves in a large
basin. Our results strongly extend previous experimental results performed mainly for
perpendicular or collinear wave trains. We generate two oblique waves crossing at an
acute angle, while we control their frequency ratio, steepnesses and directions. These
mother waves mutually interact and give birth to a resonant wave whose properties
(growth rate, resonant response curve and phase locking) are fully characterized. All our
experimental results are found in good quantitative agreement with four-wave interaction
theory with no fitting parameter. Off-resonance experiments are also reported and the
relevant theoretical analysis is conducted and validated.

1. Introduction

Resonant interactions between nonlinear waves are an efficient mechanism to transfer
energy between scales. For instance, three-wave interactions appear in various systems
involving quadratic nonlinearity such as for optical waves, hydrodynamic capillary surface
waves, or elastic waves on a thin plate.

For hydrodynamic systems, experimental studies of three-wave interactions have been
investigated for capillary surface waves (McGoldrick 1970; Henderson & Hammack 1987;
Haudin et al. 2016; Aubourg & Mordant 2015), internal waves in stratified fluids (Martin
et al. 1972; Joubaud et al. 2012) and inertial waves in fluids in rotation (Bordes et al.

2012). For wave systems involving concave dispersion relation (i.e. when the wave fre-
quency ω follows ω(k) ∼ kν with k the wavenumber and ν < 1) or cubic nonlinearity,
such as for surface gravity waves in deep-water, three-wave resonance conditions cannot
be fulfilled. Four-wave interactions may then occur if interacting waves fulfill the follow-
ing resonance conditions k1+k2 = k3+k4 and ω1+ω2 = ω3+ω4, the angular frequencies
ωi and wave vectors ki being linked by the linear wave dispersion relation ωi ≡ ω(ki).
Mainly for the sake of simplicity, special attention has been given to the case of two
degenerated mother waves, i.e. k2 = k1. Four-wave resonance conditions thus reduce to

{

2k1 − k3 = k4

2ω1 − ω3 = ω4

, (1.1)

meaning that two interacting large-scale mother waves (1 and 3) can give birth to a
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smaller-scale daughter one (4). Hereafter, we will focus only on surface gravity waves in
deep-water of linear dispersion relation

ω(k) =
√

g|k| . (1.2)

Four-wave interaction studies started in the early theoretical works of Phillips (1960)
and Longuet-Higgins (1962). Surprisingly, there exists only few experiments specifically
devoted to study such resonant wave interactions between water waves. Longuet-Higgins
& Smith (1966) and McGoldrick et al. (1966) were the first to observe the generation a
daughter wave by wave interactions in the degenerated case. They notably evidenced a
linear growth rate of the daughter wave, at short propagation distance, as predicted the-
oretically (Longuet-Higgins 1962). These pioneer works were restricted to perpendicular
mother waves with fixed and strong wave steepness (ka=0.1 with a the wave amplitude)
within a relatively small basin (3 m). In the same perpendicular configuration, Tomita
(1989) confirmed the daughter growth rate to greater distances within a larger basin
(54 m), still for fixed, but lower, mother-wave steepness (ka < 0.05). He also conducted
slightly off-resonance experiments (wavenumber a few % apart from the resonance). More
recently, Waseda et al. (2015) investigated experimentally the case of resonant interac-
tions in the presence of an underwater current. Most of these observations were supported
by a dynamic model for nonlinear wave interactions (Zakharov 1968; Krasitskii 1994).
Note that another type of four-wave interactions involving collinear waves was extensively
studied experimentally in the case of modulational instability (Benjamin-Feir instability)
and focused on the growth of side-band satellites (Tulin & Waseda 1999; Lake & Yuen
1977; Su et al. 1982; Shemer & Chamesse 1999). Such an instability is not observable in
our configuration. Finally, the non-degenerated case was conducted recently to observe
finite amplitude effects on the resonance condition leading to persistent wave patterns
(Hammack et al. 2005; Liu et al. 2015).
Here, we performed experiments to study resonant interactions between two oblique

surface gravity waves in a large basin in the degenerated case. The mother-wave fre-
quency ratio, their interaction angle and steepnesses are control parameters. We fully
characterized the generation of a daughter wave for resonance conditions (growth rate,
resonance response curve with angle, and phase locking between resonant waves), as well
as for out-of-resonance conditions (detuning factor). All our measurements are found
in quantitative agreement with four-wave interaction theory with no fitting parameter,
provided that the mother-wave steepnesses are small enough (ka < 0.1). We also provide
theoretical explanations of the phase-locking mechanism and the off-resonance detuning
factor from the dynamical equations of Zakharov (1968). The article is organized as fol-
lows. We first recall the resonant interaction theory, a perturbative approach only valid
for short times (Phillips 1960; Longuet-Higgins 1962), and then we present the dynamical
equations. Details of the derivation are given in a supplementary material. We introduce
the experimental set up, report the experimental results for resonant conditions, and for
out-of-resonance conditions, before drawing our conclusions.

2. Perturbation approach of the resonant interaction theory

Phillips (1960) and Longuet-Higgins (1962) have investigated four-wave degenerated
resonant solutions of (1.1) for deep-water waves. A 3D representation of the solutions for
a given wave vector k1 is shown in figure 1 (see Aubourg & Mordant (2015) for gravity-
capillary waves). The dashed black line is exactly the classical figure-of-eight given by
Phillips (1960). The angle between a pair k1 and k3 on the figure of eight is noted θ.
The figure of eight is symmetric with respect to the k1 axis and either the frequency
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Figure 1. Solutions for four-wave resonances of surface gravity waves in the degenerated
case of conditions (1.1). The dark-gray surface corresponds to ω(k3), i. e. equation (1.2) with
k3 = (kx, ky) and the red (light-gray) surface to the difference 2ω(k1)−ω(2k1 −k3) for a given
k1. Resonance conditions (1.1) are located on the intersection of both surfaces (white solid line).
Dashed line at the bottom of the axes corresponds to the projection of the white line. Example
vectors are given for f1 = 0.9 Hz, f3 = 0.714 Hz and θ = θm = 25o.

ratio r = ω1/ω3 or the angle θ may serve as a unique parameter to describe the eight. A
typical example quartet is drawn in blue vectors for the mother waves and magenta for
the daughter wave; it corresponds to maximal growth rate for r = rm = 1.258.

Longuet-Higgins (1962) studied theoretically the degenerated resonance in a perturba-
tion approach considering that the mother-wave amplitudes are unaffected by the growth
of the daughter wave. Longuet-Higgins (1962) showed that the daughter-wave amplitude
at resonance ares

4
follows

ares
4

= ε2
1
ε3 dG(r) , (2.1)

where εi are the steepnesses defined by εi = kiai, ai the wave amplitude, d is the distance
from the wavemaker and G a theoretical growth rate depending on the frequency ratio
r = ω1/ω3. Note that the resonance conditions (1.1) in deep water provide for each r a
unique angle θ; G may then be defined as a function of r or θ via r(θ). The resonant
daughter wave is expected to grow linearly with distance and equation (2.1) remains valid
as long as a4 ≪ a1 and a3. The growth rate G is shown in figure 2, left, as a function of
the angle θ. For clarity, we have chosen positive angles for r > 1 and negative ones for
r < 1. The growth rate is maximum for θ = θm = 25o (r = rm = 1.258); we locate our
experimental work around this angle θm to obtain a significant daughter-wave amplitude;
the angle θ ranges from −10o to +40o in our experiments. The black star on the graph of
figure 2 identifies the parameters used for the experiments of Longuet-Higgins & Smith
(1966), McGoldrick et al. (1966) and Tomita (1989) which were all performed at θ = 90o.

In Longuet-Higgins (1962), we can infer from the sine function describing the daughter
wave and the cosine functions describing the mother waves that the phase of the daughter
wave is locked to −π/2 with respect to the mother waves.

For out-of-resonance mother waves, Longuet-Higgins (1962) assumes that the daughter-
wave resonant growth rate is modified by a factor sin(∆kd)/∆kd, which was confirmed
by latter experiments (Longuet-Higgins & Smith 1966; McGoldrick et al. 1966), ∆k being
the wavenumber mismatch in resonance conditions (1.1). The Hamiltonian formulation
given below provides a simple explanation for such a factor.
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Figure 2. Left: theoretical growth-rate G(θ) of the daughter wave for degenerated case (dashed
lines) and experimental tests studied in this paper: set A (blue circle), set B (red solid thick
line) and experiments in litterature (black star). Top right: figure of eight with wave vectors.
Bottom right: location of the experimental tests studied in this paper: resonant experiments:
same convention as in left figure with letters A and B, off-resonance experiments: set C (green
dashed line).

3. Hamiltonian formulation of the resonant interaction theory

Here, we use the framework of the approximate Hamiltonian theory of Zakharov (1968)
with the formalism from Janssen (2009) in order to explain the off-resonance mismatch
factor. The details of the derivation are left to the supplementary materials in Bonnefoy
et al. (2015). We apply the Hamiltonian theory to a resonant degenerated interaction
with two mother waves (1 and 3), present initially, and a daughter wave (4) which grows
in time. The frequency mismatch or detuning is ∆ω = 2ω1 − ω3 − ω4 for such a quartet.

At short time when |a4| ≪ |a10|, |a30|, we assume constant mother amplitudes ai(t) =
ai0 where the subindex 0 denotes the initial value. The daughter-wave amplitude is

|a4| = T1134

ω1

2k3
1

√

ω3 k4
ω4 k33

ε2
1
ε3

∣

∣

∣

∣

sin (∆Ωt/2)

∆Ω/2

∣

∣

∣

∣

, (3.1a)

arg a4 = −π

2
+ 2 arg a10 − arg a30 − (Ω4 − ω4 +∆Ω/2)t , (3.1b)

where the steepness is defined by its initial value εi = ki|ai0| and the total detuning
is ∆Ω = 2Ω1 − Ω3 − Ω4, Ωi being the nonlinear frequencies given by the nonlinear
dispersion relations (see (Bonnefoy et al. 2015) for details). The interaction coefficients
T1134 = T (k1,k1,k3,k4) may be found in Krasitskii (1994) or Janssen (2009). Equation
(3.1a) provides the evolution of the daughter-wave amplitude while equation (3.1b) gives
the nonlinear evolution of its phase.

At resonance (∆ω = 0) and at short time (∆Ωt ≪ 1), we have sin (∆Ωt/2) /(∆Ω/2) ≃
t. Equation (3.1a) now becomes |ares

4
| = T1134ω1

√
ω3 k4/(2k

3

1

√

ω4 k33)ε
2

10
ε30t which cor-

responds to the same results as in Longuet-Higgins (1962). Equation (3.1b) shows that
the daughter wave phase is phase-locked to arg a40 = −π/2 + 2 arg a10 − arg a30.
In the case of mechanically generated mother waves, the daughter-wave frequency

follows from exact resonance condition ω4 = 2ω1 − ω3. It is necessary to replace time
t in equations (3.1) by d/cg4 where cg4 is the group velocity of the daughter wave and
d the distance in the daughter-wave direction. All the following results are valid in the
steady regime between the wavemaker and the daughter-wave front. At resonance, the
theoretical amplitude of the resonant wave along the basin is the same as in equation
(2.1) (the link between G and T1134 is given in the suppl. material).

We consider now an off-resonance degenerated quartet with a linear frequency detuning
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Figure 3. Left: Wave basin showing the homogeneous zone (shaded area), the wave probes
(circles) and the wave vectors k1, k3 and k4 for the maximum growth rate case (arrows resp.
in green, red and blue), right: Frequency spectrum of wave height a(t) recorded at d = 21.5 m.
Vertical dashed lines correspond to frequencies: f3, f1, f4, 2f3, f1+f3, and 2f1. Inset: Temporal
evolution of the wave height, a(t), dashed line is 〈a〉t ≃ 0. Wave conditions r = rm, θ = θm and
ε1 = ε3 = 0.05

∆ω 6= 0. At the early stage of the interaction when the daughter amplitude is small com-
pared to the mother ones, expression (3.1a) shows that the daughter amplitude evolves
as a sine function. We may rewrite equation (3.1a) as |a4| = |ares

4
|sinc∆Ωt/2. Note that

this mismatch factor involves the total detuning ∆Ω which consists of both linear and
nonlinear components. At longer time, the phase mismatch will change from its initial
∆ω value due to nonlinear dispersion. For off-resonant mechanically generated mother
waves, the direction θ4 of the daughter wavenumber k4 is yet unknown; the condition
for wavenumbers is not fullfilled and a wavevector mismatch exists, ∆k = 2k1−k3−k4.
Although the direction of the daughter wave is not specified, we assume that the fastest
growing daughter wave is the one with minimal detuning. In other words, the daughter
wave propagates along the direction of 2k1 −k3 and the corresponding mismatch is now
∆k = |2k1 − k3|−k(2ω1−ω3). From equation (3.1a), the off-resonance amplitude of the
daughter wave is given by the same expression as in Longuet-Higgins (1962)

a4 = ε2
1
ε3dG(r, θ)

∣

∣

∣

∣

sin 1

2
∆kd

1

2
∆kd

∣

∣

∣

∣

= ares
4

∣

∣

∣

∣

sinc
∆kd

2

∣

∣

∣

∣

. (3.2)

Note that the nonlinear detuning terms have been omitted here for clarity.

4. Experimental setup

The experiments presented here are designed to test the resonance theory for wave
directions different from the perpendicular case studied in the 60s and by Tomita (1989).
We mechanically generate bichromatic waves (mother waves 1 and 3) in a rectangular
wave basin and observe the birth of the daughter wave of frequency 2ω1 − ω3 due to
resonant interaction (see the supplementary movie available online at doi: 10.1017/jfm..).
The wave basin at Ecole Centrale de Nantes has dimensions 50 m × 30 m × 5 m and its
wavemaker consists of independant 48 flaps that are hinged 2.8 m below the free surface.
Figure 3, left, shows a top view of the setup. In order to avoid spurious reflections on
the side-walls, the motion of the segmented wavemaker is controlled by means of the
Dalrymple method (Dalrymple 1989). The Dalrymple method aims at generating the
target wave field at a distance Xd = 10 m from the wavemaker and yields a quasi-
uniform wave field from the wavemaker up to 25 m (see the grey zone of figure 3); this
is crucial for these interaction experiments.
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Figure 4. Amplitude of the resonant wave a4 for ε3 = 0.05 and r = rm. Left: amplitude a4

versus distance, d, for different ε1 × 103 = 10, 17, 28, 41, 56, 68 (from bottom to top). Right:
rescaled amplitude of the resonant wave a4/[dε3G(θm)] as a function of ε21 for different distances
d = 9.9 (�), 14.9 (�), 19.9 (∗), and 24.9 (•) m. The dashed line of unity slope is expected from
equation (2.1).

The input parameters to the wavemaker are mother-wave frequency (f1 and f3), steep-
ness (or amplitude a1 or a3) and direction (θ1 and θ3 with respect to the basin main
axis). The daughter wave direction is defined as θ4 in the wave basin. Frequencies for the
mother waves are chosen to fit the basin capacities: fixed f1 = 0.9 Hz (wavelength λ1 ≃ 2
m) and varied f3 = f1/r with r = 0.8 to 1.6. The corresponding wavelengths λ3 ranged
from 1.3 to 4 m. The angle θ = θ3−θ1 between mother waves 1 and 3 was varied between
-10 and 40o with a focus at θm =25o where the maximum growth rate of the daughter
wave occurs (rm = 1.258, see figure 2). In this case, we have θ4 = θ4m = −23.1o.
Three sets of experiments are presented in the following, two at resonance and one out-

of-resonance. In the first set of experiments, (set A correspond to the point A in figure 2
right), the scaling of the daughter-wave steepness ε4 is tested by varying ε1 ∈ [0.01; 0.1]
at the resonance condition with maximum growth rate (that is r = rm) and for fixed
ε3 = 0.05. In set B, the figure-of-eight is tested in the range θ ∈ [−10o; 40o], for fixed
steepnesses ε1 = ε3 = 0.07. This corresponds to the red line on the figure of eight in
figure 2, right. Finally, in set C, we study out-of-resonance conditions by fixing f1 = 0.9
Hz and θ = θm but changing k3 by varying r ∈ [1.1; 1.6] around rm, again with fixed
steepnesses ε1 = ε3 = 0.05. This corresponds to the dashed green line in figure 2, right.
For cases A and C, wave directions in the basin are made symmetrical θ1 = −θm/2

and θ3 = θm/2 to maximize the uniformity of the wave field. In all experiments, the
linear array of wave probes was thus aligned along the direction of the daughter wave
θ4m = −23.1o which corresponds to the case of maximum growth rate when θ = θm.
For case B, directions of the mother waves θ1 and θ3 were chosen in such a way that the
target angle θ is obtained and that the daughter wave is aligned with the probe array.

A linear frame aligned in the direction of the expected daughter wave supports an
array of twelve resistive wave probes at distance d to the wavemaker ranging from d =2.5
to 25 m. The sampling frequency is 100 Hz. Wave heights were recorded during about 100
s which corresponds to steady regime of more than 50 wave periods. Typical amplitudes
are a1,3 ≃ few cm for mother waves and a4 ≃ few mm for daughter waves.

5. Resonant wave conditions

We report here our results for resonant degenerated quartets near maximum amplifica-
tion (case A). A typical example of a temporal evolution of wave elevation a(t) recorded
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Figure 5. Left: Temporal evolution of individual phase ϕi(t) ≡ ki.xp − ωit+ ϕi0 of each wave
i = 1 (−), 3 (.−), and 4 (−−). Right: Temporal evolution of the sine of the interaction phase
ϕ(t) = 2ϕ1 − ϕ3 − ϕ4. At resonance, the latter reduces to 2ϕ10 − ϕ30 − ϕ40 which is constant
(phase-locking) equal to π/2 during the experiment. Conditions r = rm, ε1 = ε3 = 0.05 at
distance d =21.5 m.

by a probe is shown in the inset of figure 3, right. From the time-series measured at
the wave probes, we select a steady-state window after the wave front passed the probe
(time window is more than 50 periods long). A Discrete Fourier Transform is applied to
the windowed signal with a standard FFT algorithm (frequency resolution is below 20
mHz). The main figure 3, right, shows the corresponding amplitude spectrum for case
A. The two mother waves were visible at frequency f1 and f3. The peak at frequency
f4 = 2f1 − f3 confirms the existence of the daugther wave, but, as expected, its ampli-
tude is smaller than the mother-wave ones. This is a first evidence of a daughter wave
generated by resonant interaction. Note that harmonics at frequency 2f3, f1+f3 and 2f1
are also visible, with amplitudes yet lower than that of the daughter wave. They are the
signature of second order bound waves accompanying the mother waves. The harmonics
at 3f3 and 2f3 − f1 corresponding to the third order bound waves are barely visible.

Figure 4 left shows the daughter-wave amplitude a4 as a function of distance d for
different steepnesses. This amplitude is found to grow linearly with distance d as expected
from equation (2.1) and to increase with the mother-wave steepness ε1. Note that the
experiments when ε1 is fixed and ε3 is varied (not shown here) show that the daughter
amplitude a4 grow linearly with ε3 as predicted. The rescaled daughter-wave amplitude
a4/(ε3dG(θm)) is then shown in figure 4 (right) as a function of ε2

1
at different distances

d. A good quantitative agreement with the theoretical predictions of equation (2.1) is
observed, with no fitting parameter.

For a given probe at the far end of the homogeneous zone, we separate the two mother
waves and the daughter wave with appropriate bandpass filters around each component
f1, f3 and 2f1−f3. To wit, we compute the Hilbert transform of each component and we
obtain the wave envelope ai(t) and instantaneous wave phase ϕi(t) ≡ ki.xp − ωit+ ϕi0,
where xp is the probe position. The phase of each wave ϕi(t) is shown in the left of
figure 5 and obviously changes with time. On the contrary, the interaction phase defined
by ϕ(t) = 2ϕ1(t) − ϕ3(t) − ϕ4(t) is constant with time, as shown in figure 5, right.
After the wave front has passed the probes, the interaction phase ϕ is locked at π/2.
This phase-locking demonstrated by our experiments is in very good agreement with the
phase-locking predicted by equation (3.1b) for short distance (i. e. a4 ≪ a1 and a3). The
steepness is small during this experiment so the phase-locking is visible even on the most
distant probes. This phase-locking is a second evidence of the generation of the daughter
wave by resonant interactions.
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The figure-of-eight is now investigated in the vicinity of maximum growth rate (see
figure 2, left). In the dedicated experiments B, the mother-wave angle θ is varied in the
range from -10o to 0o in the case r < 1 (or f3 > f1) and from 0o to +40o in the case
r > 1. For each angle θ, the frequency f3 is chosen so that k3 is located on the figure-
of-eight (see figure 2, right) in order to fulfill the resonance conditions. Note that the
correct choice of the directions θ1 and θ3 of the individual mother waves in the basin
is a key point in obtaining significant results. The successful strategy is to ensure the
direction of daughter wave 4 follows the line of the probes. Figure 6 shows the rescaled
daughter-wave amplitude a4/(ε

2

1
ε3d) as a function of the angle θ for different distances

d at fixed steepnesses ε1 and ε3. This rescaling allows to measure experimentally the
resonance response curve G(θ) predicted by Longuet-Higgins (1962). For all values of
θ, a good quantitative agreement with the theoretical G(θ) is observed with no fitting
parameter. This strongly extends previous experiments (Longuet-Higgins & Smith 1966;
McGoldrick et al. 1966; Tomita 1989), which were carried out only for perpendicular
conditions (θ = 90o).

6. Out-of-resonance experiments

Let us now turn to experiments with out-of-resonance conditions for mechanically
generated mother waves. They latter correspond to 2ω1−ω3−ω4 = 0 and 2k1−k3−k4 ≡
∆k 6= 0. Although the direction of the daughter wave is not specified, we assume that
the fastest growing daughter wave is the one with minimal detuning. In other words, the
daughter wave propagates along the direction of 2k1−k3 and the corresponding detuning
is now ∆k ≡ |2k1 − k3| − k(2ω1 − ω3). We investigate experimentally this case (set C)
near the location of the maximum growth rate at r = rm. To wit, we kept the same angle
θ = θm and varied the frequency f3 so that k3 can deviate from the figure of eight (see the
green dashed line in Figure 2, right). Figure 7, left, shows the normalized daughter-wave
amplitude defined by a4/(ε

2

1
ε3dG(rm)) as a function of the detuning ∆k for different

distances d . We observe a decrease of the resonance bandwidth with increasing distance
as expected from the sinc term in equation (3.2). We rescaled all these curves on a single
curve as shown on the right in Fig. 7 by scaling the detuning with half the distance. We
observe that all our measurements collapse on the sinc curve showing a good agreement
with estimation from Longuet-Higgins (1962) or from equation (3.2) rigorously derived.
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Figure 7. Rescaled amplitude a4/(ε
2

1ε3dG(rm)) measured at different distances d for out-of-res-
onance conditions (ε1 = ε3 = 0.07 and f1 = 0.9 Hz.). Left: rescaled a4 vs detuning ∆k. Symbols
corresponds to different d = 7 up to 27 m (see arrows). Right: rescaled a4 vs normalized detuning
∆kd/2. Solid line: absolute sinc function |sinc∆kd/2| from Longuet-Higgins (1962) estimation
or from equation (3.2).

7. Conclusion

We have presented experiments on resonant interactions of surface gravity waves within
the Ecole Centrale de Nantes wave basin (50 m long by 30 m large by 5 m deep) in a
degenerated case. Bichromatic mother waves were generated mechanically by means of
specific control of oblique wave generation (Dalrymple method). The linear spatial growth
of a resonant daughter wave was observed. The theoretical and experimental results
presented here extend the pioneering work done in the 60s. Four-wave interaction theory
is expressed in the framework of Hamiltonian dynamic theory to demonstrate a phase-
locking mechanism for resonant quartets and estimate the daughter-wave amplitude in
nearly-resonant quartets. All these theoretical results are supported by experimental
observations of generated oblique mother waves: the observed linear spatial growth-rate
of daughter wave scaling with mother-wave steepness; the phase-locking between resonant
waves; the growth rate G satisfying the law historically found by Longuet-Higgins (1962);
as well as the off-resonance response following the expected sinc curve.
The experiments presented in this article correspond to the early stage of resonance,

that is when k4ε
2d < 1. Indeed, for longer distance or greater steepness, we observed other

common features of nonlinear interactions at resonance (not reported in this paper) such
as the pumping of the mother wave by the resonant wave and the decrease of resonant
wave growth. For off-resonance conditions and stronger wave steepness (ka > 0.1), depar-
tures from the approximate off-resonance equation (3.2) are observed: distortion of the
response curve (sinc) by a nonlinear detuning. These nonlinear effects will be the subject
of a further publication. The Hamiltonian theory may serve as an extension of the theory
in Longuet-Higgins (1962) to higher steepness, either by analytical solutions (see e.g.
Stiassnie & Shemer (2005)) or numerical solutions (Leblanc 2009). Finally, experiments
with much greater steepness should allow quantification of the departure from weakly
nonlinear theory (Zakharov equation). It would also provide a better understanding of
wave turbulence experiments in strongly nonlinear regimes.
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