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A sparsity-based variational approach for the
restoration of SMOS images from L1A data

Javier Preciozzi, Andrés Almansa, Pablo Musé, Sylvain Durand, Ali Khazaal and Bernard Rougé

Abstract—The SMOS mission senses ocean salinity and soil
moisture by measuring Earth’s brightness temperature using in-
terferometry in the L-band. These interferometry measurements
known as visibilities constitute the SMOS L1A data product.
Despite the L-band being reserved for Earth observation, the
presence of illegal emitters cause radio frequency interference
(RFI) that mask the energy radiated from the Earth and strongly
corrupt the acquired images. Therefore, the recovery of bright-
ness temperature from corrupted data by image restoration tech-
niques is of major interest. In this work we propose a variational
model to recover super-resolved, denoised brightness temperature
maps by decomposing the images into two components: an image
T that models the Earth’s brightness temperature and an image
O modeling the RFIs. Experiments with synthetic and real data
support the suitability of the proposed approach.

Index Terms—SMOS, MIRAS, RFI, brightness temperature,
non-differentiable convex optimization, total variation minimiza-
tion.

I. INTRODUCTION

OBserving Earth variables such as surface soil moisture
(SSM) and sea surface salinity (SSS) is crucial to

obtain meteorological and climate predictions [1]. The SMOS
satellite [2] carries an instrument called MIRAS (Microwave
Imaging Radiometer by Aperture Synthesis) [3], [4], that pro-
vides indirect measurements of the corresponding brightness
temperatures of both SSM and SSS in the L-band microwave,
using interferometry.

A. From brightness temperatures to visibilities: The MIRAS
instrument and the forward problem

The interferometry principle used by the MIRAS instru-
ment [3], [4] can be formalized by means of the visibility
function [5], that relates brightness temperatures with visibili-
ties. The antennas configuration chosen for MIRAS instrument
is a Y-shaped array, where each arm is composed by a set of
regularly spaced passive antennas (see Figure 1, left figure).
Let (Ak, Al) be any pair of its antennas; the visibility function
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V (ukl) is defined as the complex cross-correlation between the
received signals at Ak and Al:

V (ukl) =
1√

ΩkΩl∫∫
||ξ||≤1

Uk(ξ)U∗l (ξ)(Tb(ξ)− Tr)r̃kl(t)
e−i2πuTklξdξ√

1− ||ξ||2
. (1)

Here Uk and Ul are the corresponding normalized voltage
patterns of the antennas; Ωk,Ωl their corresponding solid
angles; uk,l = (ukl1 , u

kl
2 ) is the spacing between the two

antennas (Ak, Al) in wavelength. The Cartesian coordinates
ξ = (ξ1, ξ2) are the spatial domain coordinates, which are
restricted to the unit circle. Tr is the physical temperature
of the receivers (assumed the same for all receivers); r̃kl
is the Fringe-Wash function, a function of the spatial delay
t = ukl

T ξ
f0

, where f0 = c
λ0

is the central frequency of
observation. Note that the brightness temperature Tb is a 2D
function defined on the unit circle {ξ : ||ξ|| ≤ 1} [5], [6].

Since the brightness temperature support is the unit circle,
it is well known that the best regular sampling grid is a
hexagonal one [7], leading to the largest alias-free Field Of
View for a given spacing between the antennas [8]. The
antennas configuration chosen for the MIRAS instrument is
a Y-shaped array [8], shown in Figure 1 along with its
corresponding hexagonally sampled, star-shaped domain H .
This star-shaped domain H , known in aperture synthesis as
the experimental frequency coverage [9, Ch. 5], is contained
within the hexagon, hence requiring extrapolation to recover
the missing parts (see Figure 2). Because of other practical

Fig. 1. Diagram of the MIRAS instrument onboard of SMOS satellite
(from [10]) and the star-shaped, hexagonally sampled visibilities domain
derived from it. The number of antennas in the miras instrument is 69: 22
antennas type Light-Weight Cost-Effective Front-End (LICEF) in each arm,
plus three antennas of type Noise Level Injection Radiometers (NIR) located
in-between each arm in the center of the instrument.

issues, the final separation between antennas in the MIRAS
instrument is d := ‖ukl‖ = 0.875 wavelengths, for any
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Fig. 2. The absence of information beyond the experimental frequency
coverage H (in red) makes the recovery of the brightness temperature map
an ill-posed problem.

k 6= l within each arm. This value is larger than the critical
sampling distance on a hexagonal grid (which is d = 1/

√
3

wavelengths), and then, some aliasing is introduced on the
spatial domain. Figure 3 shows the spatial domain and its
six replicas, where the Alias-Free Field of View is the small
central zone in the hexagon delimited by the blue dashed
lines. Because of the tilt of the satellite acquisition system,
most of the aliasing comes from the intersection between the
Earth disk with the known cold sky (whose values are known)
and therefore it is customary to consider the Field of View
delimited by the red plain lines: the Extended Alias-Free Field
of View (E-AF-FOV) [8].

Normalized spatial domain (ξ1, ξ2)

Fig. 3. Alias Free - Field of View (AF-FOV) – zone delimited by the unity
circle contours in blue lines – and the corresponding Extended Alias-Free
Field of View (E-AF-FOV) in red lines. See text for details.

B. Restoring brightness temperatures from visibilities: An ill-
posed inverse problem

Going back to Equation (1), if we define T = Tb − Tr,
the samples of T in the hexagonal grid can be obtained from
the visibility samples by solving the linear system GT = V ,
where matrix G represents the discrete linear operator given
by (1). Of course, the inversion of this problem is ill-posed
since G is not invertible. The ill-posedness of the problem

can also be interpreted as a lack of information beyond H , as
illustrated in Figure 2. Hence, additional constraints must be
added to the model. In [6], the authors propose to solve it as a
constrained least square minimization problem, imposing that
T has no frequency components outside H . This problem can
be formulated as an unconstrained minimisation:

T̂sol = min
T̂
‖V −GF∗ZHT̂‖22 (2)

where F∗ denotes the matrix corresponding to the hexagonal
Inverse Fourier Transform, ZH the zero padding operator
beyond H and T̂ the Fourier coefficients of T for frequencies
in H . This minimisation problem has a direct solution:
T̂ = J+V where J = GF∗ZH and J+ = (J∗J)−1J∗ is
the pseudo-inverse of J. Finally, T can be obtained from
T̂ very easily applying an inverse Fourier transform. This
approach is the nominal image reconstruction process of the
SMOS pipeline and corresponds exactly to the L1B product.
It is well known that a zero padding on the Fourier domain
may lead to Gibbs effects on the restored image. This can
be partially alleviated (as proposed by [6]) by the use of a
Blackman window B: T = F∗BZΩT̂ .

This approach (that we will refer in what follows as the
zero padding approach), has many advantages: it has a clear
physical interpretation (values outside H are set to zero), it
is very fast (since only a matrix multiplication is needed to
obtain T̂ ), and in general gives good results. Nevertheless,
this is not the case when the visibilities are corrupted by
radio frequency interferences (RFI). Because these RFIs have
frequencies beyond H and their power is far stronger than
Earth radiation, very strong Gibbs effects can be seen on the
final brightness temperature images (see for instance the top
left image in Figure 10 corresponding to western Europe,
obtained by the nominal reconstruction process [6]).

C. Proposed approach and contributions

In this work we propose a novel formulation to solve the
inverse problem presented on (1) using a variational formu-
lation that explicitly models the formation of visibilities as
a superposition of the Earth’s natural brightness temperatures
and the RFIs. As it will be demonstrated later, the proposed
approach automatically removes signal effects generated from
RFIs, while at the same time extrapolates the image spectrum
in order to minimize Gibbs effects, with no a priori knowledge
of the RFIs locations. A preliminary, short version of this work
was presented in IGARSS 2014 [11].

The article is organized as follows. In Section II we present
the model on which our restoration approach is based, and we
explain how this model can be solved using state of the art
optimization techniques. In Section III we describe in detail
numerical issues to make the problem numerically tractable.
The definitive implementation is presented in Section IV,
where we discuss major issues like parameter choices and
numerical optimization. In Section V we present experiments
with synthetic data that validate the proposed approach and
we also apply our method to real L1A SMOS data and we
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compare them with results obtained using the zero padding
and the Blackman approach. For the sake of brevity, a large
set of experiments is presented in the complementary material.
Conclusions and future work are presented in Section VI.

II. MODELIZATION AND VARIATIONAL FORMULATION: A
FIRST APPROXIMATION TO THE PROBLEM

Visibilities and brightness temperatures are related by the
linear operator given by (1). In its discrete form, using matrix
notation1, this is GT = V . As before, the goal is to obtain the
original temperatures image T from the given visibilities V ,
knowing that, as noted before, G is not invertible. We propose
to model the observed brightness temperature image T̃ as

T̃ = T +O, (3)

where T is the non-polluted Earth’s brightness temperature
image and O is the outliers’ image generated by the RFIs that
are assumed to be sparse pointwise sources (delta functions).
Because of the physical acquisition system, the visibilities are
corrupted with noise, that under realistic assumptions can be
considered to be a Gaussian white noise with 0 mean and
standard deviation σ∆VL [12]. The final equation is then:

GT̃ + n = G(T +O) + n = V (4)

where V is the vector of measured visibilities which are
corrupted by the additive Gaussian noise n described before.

A. Variational formulation

We propose to recover T by solving the following con-
strained minimization problem:

(Tsol, Osol) = minT,O {TV(T ) + µS(O)}
such that ‖G(T +O)− V ‖22 ≤ |H|σ2

∆VL
,

(5)

In this formulation, TV (·) denotes the total variation semi-
norm (Appendix A) and S(·) is a norm that promotes sparsity
of the outliers image Osol, for instance the `1 norm or the
`0 counting measure (Appendix A). Parameter µ controls
the trade-off between both terms; its choice can be formally
derived from geometric considerations on the outliers, and
will be discussed in detail in Section IV-A2. The data fit
term is derived directly from the white, Gaussian distributed
data noise model n = G(T + O) − V . The bound |H|σ2

∆VL
represents the area of H times the visibilities variance σ2

∆VL
.

It is well known that the minimization of the `2 norm
corresponds to the Maximum A Posteriori estimator of white
Gaussian noise.
Remark: The total variation is used to super-resolve T
beyond the experimental frequency coverage H while
avoiding Gibbs oscillations: it is a complete substitution
for the zero padding approach, where instead of filling the
coefficients outside H with zero, they are recovered by the
TV minimization [13]. In the other hand, the sparsity operator
is chosen to model the RFIs image O since this image is
zero almost everywhere because RFIs are very sparse. It

1For the sake of simplicity, we use the same notation to refer to an image
and its vectorized form. Disambiguation follows easily from the context.

is well known that `1 or `0 norm promotes sparsity [14]:
image Osol will be a sparse image composed by only the RFIs.

Problem (5) can be reformulated as an unconstrained one:

(Tsol, Osol) = min
T,O
‖G(T +O)−V ‖22 +λ(TV(T ) +µS(O)),

(6)
where the Lagrange multiplier λ must be chosen to ensure
equivalence between both problems. The derivation of λ is
addressed in Section IV-A.

When S(·) is the `1 norm, problem (6) is convex, and
despite not being strictly convex, it has a unique local min-
imum( [15], [16]). However, a careful treatment has to be
taken since the term multiplied by λ is non-differentiable.
Fortunately, there exist optimization methods to solve this
kind of problems. One of them is the Forward-Backward (FB)
splitting algorithm [17], while other splitting approaches such
as the Split-Bregman method could also be used2:

Proposition 1. Let E(x) = E1(x) + E2(x), where E1 and
E2 are convex functions such that E1 is differentiable with
Lipschitz gradient, and E2 is a simple function, in the sense
that its associated proximal operator

proxγE2
(x) = arg inf

y
E2(y) +

1

2γ
‖x− y‖2 (7)

admits a closed form or a simple algorithm to compute it. If
these hypotheses hold, the following generic algorithm can be
derived: for each k ∈ N, the k-th iteration starting from seed
x0 = (T 0, O0) is given by{

xk+1/2 = xk − γ∇E1(xk)
xk+1 = proxγE2

(xk+1/2).

In order to ensure convergence to the minimizer, γ must be
smaller than 2/L, where L is the Lipschitz constant of ∇E1.

In our case, we have E1(T,O) = ‖G(T + O) − V ‖22 and
E2(T,O) = λ(TV(T ) + µS(O)) that yields

∇E1(T,O) =

(
G∗G(T +O)− V
G∗G(T +O)− V

)
,

proxγE2
(T,O) =

(
proxγλTV(T )

proxγλµ‖·‖1(O)

)
.

It is straightforward to show from (7) that the proxγλµ‖·‖1(O)
corresponds to the soft thresholding operator (see Ap-
pendix A):

s∆(t) =

{
sign(t)(|t| −∆) if |t| ≥ ∆,
0 if |t| < ∆.

Although proxγλTV(T ) has not an explicit form, there exist
several algorithms that solve this proximal operator ( [15],
[16]). In Appendix A we explain the one used in this work.
The algorithm described so far converges to the unique global
minimizer that corresponds to the solution of problem (5) with
sparsity operator S(O) = ‖O‖1. We use this solution as an
initialisation for the second step, where the sparsity operator

2We decide to use FB since, while the parameters in FB follow naturally
from the implementation, whereas parameters involved in the SB algorithm
are related to convergence rate and are therefore harder to set.



4

is chosen to be S(O) = ‖O‖0, which is non-convex. For this
problem, the same FB algorithm can be considered and is guar-
anteed to converge to a local minimizer [18]. Now, instead of
the soft thresholding, the proximal operator for S(O) = ‖O‖0
becomes the hard thresholding h√2γλµ(t) = t1{|t|≥

√
2γλµ}

(see appendix A). The reason to run the FB algorithm with
‖O‖0 is to exploit even more the sparsity characteristics of the
problem, since it is known that norm ‖O‖0 leads to a sparser
solution than ‖O‖1 [14].

III. NUMERICAL ISSUES

A. Matrix G∗G

The FB algorithm requieres a multiplication by matrix G∗G
at each iteration. Matrix G is a 4695 × 16384 matrix: 4695
is the number of visibilities and 16834 is the number of
samples of the brightness temperature. It follows that matrix
G∗G is 16384× 16384. Because it is a dense matrix, a great
number of operations are performed at each iteration, which
is computationally not desirable. However, a change of basis
to the Fourier domain yields:

∇E1(T,O) = F∗((GF∗)∗GF∗F(T +O)− (GF∗)∗V ), (8)

where F is the matrix representation of the Fourier transform
(and F∗ its conjugate) . The advantage of this representation
is that matrix ((GF∗)∗GF∗ reveals a highly sparse structure:
to keep the Frobenius norm of ((GF∗)∗GF∗ at 99.99% of
its value, we only need to keep 0.0008 of its entries. From a
computational point of view, solving Equation 8 can be done
even more efficiently using a standard Fast Fourier Transform
implementation:

∇E1(T,O) = F∗((GF∗)∗GF∗F(T +O)−(GF∗)∗V ), (9)

where F denotes the Cooley and Tuckey standard Fast
Fourier Transform, that we use instead of matrix multiplication
by the matrix F.
The property of being sparse on the Fourier domain can
be easily understood from the image formation point of
view: each of the visibilities values corresponds to the cross-
correlation of two signals received at two different antennas.
Clearly, if the antennas are close to each other this correlation
is high, but the farther they get it tends to be negligible.
The use of the standard (rectangular) FFT on a hexagonal
lattice can be made possible by re-projecting the samples in
a rectangular grid (see [8] or [19, Section III]). Consequently,
we can modify the FB algorithm described above to perform
the minimization in the Fourier domain. This implementation
is summarized in Algorithm 1 (where all the variables have
the same meaning as before).

B. Spectral TV

In order to reduce the “staircasing” effect inherent to many
TV minimization methods( [20], [21]), we use an approach
inspired on the Spectral TV method proposed by Moisan [22].
In Moisan’s approach, staircaising reduction is achieved by: (i)
Computing image derivatives not by finite differences but an-
alytically on the Fourier series expansion; (ii) Approximating

Proposed method with Fordward-Backward
implementation

input : A vector of visibilities V
output: A brightness temperature image T , and an RFIs

image O
initialization:
Step 0:
• Set T 0 = 0 and O0 = 0
• Choose γ < 2/L, where L is the Lipschitz constant of
∇(E1)

Step k (k ≥ 0):
T k+1/2 = T k − γF∗(FG∗GF∗F(T k +Ok)− FG∗)V
Ok+1/2 = Ok − γF∗(FG∗GF∗F(T k +Ok)− FG∗)V
T k+1 = proxγλTV(T k+1/2)

Ok+1 = sγλµ(Ok+1/2).

Algorithm 1: Proposed method with Fordward-Backward
implementation in the Fourier domain.

the continuous TV as a Riemann summation over a grid at
least two times finer than the critical sampling rate. In our
case, instead of doubling the sampling rate, we choose to
extend the spectral domain of T to an intermediate cell H, in-
between the experimental frequency coverage H , and the cell
C corresponding to the (largely overcritical) spatial sampling
rate of T (Figure 4).
There is another reason to use the Spectral TV. SMOS data

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

HC

Visibilities domain

Fig. 4. Intermediate, hexagonally shaped cell H used to reduce the staircaising
effect inherent to discrete TV minimisation methods.

is captured on a hexagonal grid, and thus the variables T
and O are modeled on a hexagonal grid as well. Most TV
algorithms are based on the computation of derivatives using
discrete differences, that are not straightforward to adapt to the
hexagonal grid. This problem is avoided if we use the Spectral
TV, because it computes the image derivatives analytically in
the Fourier expansion. In what follows, we denote the Spectral
TV of an image T based on the domain H as TVH(T ).
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IV. FINAL IMPLEMENTATION

A. Parameters choice

1) Visibility noise estimation: In the case of SMOS, the
visibilities are always perturbed by a random radiometric
noise, which is assumed to be uncorrelated (on the visibilities)
and distributed according a Gaussian model with standard
deviation [12]:

σ∆VL =
TA + TR√

2Bτ
, (10)

where TA is the antenna temperature, TR is the reciever
temperature, B is the bandwidth and τ is the integration time.
The bandwidth for MIRAS instrument is B = 19 MHz and
the integration time is τ = 0.663 seconds 3. The other two
variables (TA and TR) depend on the observed scene and
operational conditions. The value of those temperatures was
reported to be TA = 294 K and TR = 200 K, leading to a
noise standard deviation σ∆VL = 0.098 K.

2) Selection of µ: Parameter µ relates TVH(T ) and S(O).
Depending on its value, a visual structure on the scene will
be considered as an outlier (and therefore, assigned to the
outliers image O) or as part of the scene (the Earth brightness
temperature image T ). Its value can be obtained as follows.
Consider a cylinder c of radius r and height h. The involved
norms or semi-norms are

TV (c) = 2πrh, ‖c‖0 = πr2
1[h>0], ‖c‖1 = πr2h.

When the sparsity operator is the `1 norm, c is considered
as an outlier if TV (c) ≥ µ‖c‖1, leading to µ ≤ 2

r . In the
examples, we have selected a value µ ' 2

10 = 0.2, which
amounts to consider that the radii of the outliers are at most
10 pixels wide. However, Earth structures spanning less than
10 pixels, can still be recovered by choosing a larger value for
µ.

In the case of the `0 norm, a cylinder is considered as an
outlier as soon as TV (c) ≥ µ‖c‖0, i.e. µ ≤ 2h

r . Hence, µ
can then be interpreted as the minimal h/r outlier ratio. Here,
contrarily to the `1 case, the height (here expressed in Kelvin
units) plays an important role in distinguishing an outlier from
the data, and larger values for µ may be chosen ( µ ' 100 2

10 =
20).

3) Selection of λ: Parameter λ has to be set carefully in
order to make the unconstrained problem equivalent to the
constrained one. A wrong value may drastically affect the
results. The correct value of λ depends of course on |H|σ2

∆VL
,

which is given. A classical way to set λ programmatically
is to use Uzawa’s algorithm [23], described on Algorithm 2.
Basically, the procedure consists in starting with a fixed λ0,
then solving the original problem with this λ0 and adjusting
λk iteratively, depending on how near or how far the solution
is to the original constraint. The procedure continues with
ensured convergence until the data fit term is close enough
to the expected noise |H|σ2

∆VL
.

3Integration time is in fact 1.2 seconds, but it is adjusted by a factor of
1.81 to take into account correlation and sampling effects.

Uzawa

input : L1A SMOS Data - Visibilities: Ṽ
input : Uzawa tolerance step: utol
output: A temperature image T , an outliers image O
initialization:
Step 0: Set T 0 = 0 and O0 = 0. Set λ0 with any suitable
value ( for instance, 1).

while us > utol do
(T k+1, Ok+1) =
minT,O ‖G(T +O)− Ṽ ‖22 + λk(TV(T ) + µS(O));
λk+1 = max{λk + ρ‖G(T k+1 +Ok+1)− Ṽ ‖22, 0} ;
us = |ρ‖G(T k +Ok)− Ṽ ‖22 − σ2

∆VL
| ;

end
Algorithm 2: Uzawa general algorithm applied to find
the correct value λ that is consistent with |H|σ2

∆VL
in the

corresponding constrained minimization problem. Param-
eter ρ is set once for all to control the convergence rate.
See [23] for further details.

B. Numerical optimization

Several methods have been proposed to accelerate the FB
convergence rate. Two related approaches are FISTA [24]
and monotone-FISTA [25]. The main difference between both
methods and the FB algorithm is a clever combination of
the two previous iterations, that increases the convergence
rate. FISTA algorithm does not ensure monotone convergence
(neither do FB) , which is not a desirable property for an opti-
mization algorithm. In [25], the authors introduce a monotone
version of this algorithm known as MFISTA, that does not
change the convergence rate of the original FISTA algorithm,
but guarantees monotonicity. The final and complete algorithm
is presented in Algorithm 3 but can be summarized as follows.
It consists of two loops: an external loop that implements
the Uzawa algorithm, solving the problem of finding the
correct Lagrange multiplier λ. The internal loop implements de
MFISTA algorithm, which is basically the FB algorithm with
additional auxiliary variables to accelerate the convergence
rate.

About computational cost: The number of iterations and
convergence rate depend on each particular input data: if no
RFIs are present in the image, the method converges much
faster than the case of data with RFIs. The general process
is slow: in data with RFIs it takes about 15,000 iterations,
corresponding to several minutes (this is the case for instance
in all the experiments with real data presented in the next
section).

V. EXPERIMENTAL RESULTS

In this section we present results obtained on both simulated
and real data. In both cases, we compare our approach to the
nominal reconstruction process: the zero-padding approach [6]
and the Blackman appodization approach [2].
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FINAL PROPOSED ALGORITHM

input : L1A SMOS Data - Visibilities: Ṽ
input : Uzawa tolerance step: τu
input : MFista tolerance step: τm
output: A brightness temperatures image T , an RFI

image O

initialisation: Set T 0 = 0 and O0 = 0 ;
Initialize Uzawa: Set λ0 = 1 and ρ ∈ (0..1] ;
while eu > τu do

Initialize MFISTA: Set t0 = 1 and em > τm;
while em > τm do

(T kz , O
k
z ) = prox γ

LE2
(T k, Ok)− γ

L∇E1(T k, Ok))

tk+1 =
1+
√

1+4(tk)2

2
(T kx , O

k
x) =

arg min(t,o)={(Tkz ,Okz ),(Tk−1
x ,Ok−1

x )}E(t, o)

(T k+1, Ok+1) =

(T kx + tk−1
tk+1 (T kz −T k−1

x ), Okx+ tk−1
tk+1 (Okz−Ok−1

x ))
;
em = |E(T k+1, Ok+1)− E(T k, Ok)|

end
eu = |‖G(T k +Ok)− Ṽ ‖22 − σ2

∆VL
| ;

λk+1 = max{λk + ρ‖G(T k +Ok)− Ṽ ‖22, 0}
end

Algorithm 3: Final proposed algorithm

A. Simulated Data

In order to have an overall idea of the proposed method’s
performance, we analyze it on different contexts:

• No RFIs are present in the image: only instrumental
noise;

• RFIs with intensities in the same range as the Earth’s
brightness temperature plus instrumental noise;

• RFIs with intensities on a larger range ((0,35000] K)4

plus instrumental noise;
• RFIs located outside the image grid (with sub-pixel ac-

curacy in non-integer positions) plus instrumental noise;
• Only the synthetic Earth’s brightness temperature is con-

sidered (no instrumental noise or RFIs). This scenario
is considered to evaluate the extrapolation power of the
proposed approach.

The process to generate the simulated images is the following:

1) We generate a brightntess temperatures image Tgt, based
on [26], where gt stands for ground truth;

2) We obtain the visibilities associated to image Tgt: Vgt =
GTgt;

3) We generate a visibility noise random vector n, with
independent identically distributed Gaussian entries with
zero mean and covariance matrix σ2

∆VL
Id;

4) We add the noise visibilities to the ground truth visi-
bilities to obtain an outlier-free noisy visibility vector:
V = Vgt + n;

4This range corresponds to the range we have observed on real data

5) We generate a set of RFIs’ images, one for each of the
cases described above (no RFIs, RFIs in the image range,
RFIs between (0,35000] K and RFIs outside the grid
positions). If we note Tδ any of these synthetic RFIs’
images, its corresponding induced visibilities is: Vδ =
GTδ;

6) Finally, we obtain the simulated visibilities adding both
terms: Vf = V + Vδ = Vgt + Vδ + n, which are in full
agreement with the image formation model.

The RFIs positions and intensity values are generated
randomly, and the number of outliers varies from 2 to 105.

Error measurement: In order to obtain a quantitative
analysis the results, we need to define an error measure.
Following [6], we consider the computation of the RMS error
between the original image T and the recovered image Tr,
over the entire Extended Alias-Free Field of View (E-AF-
FOV). Because of the bandlimited property of the MIRAS
instrument, even in an ideal case with no instrumental noise,
we could not restore the original image T : only a smoothed
version of T can be recovered. In [6], results are compared
against a smoothed version of T , obtained by an inverse fourier
Transformation considering only the coefficients inside the the
experimental frequency coverage, denoted by Tw. Because we
want to analyze the extrapolation properties of the presented
method, we report the RMS error using both Tw and T :
the RMS error computed against Tw describes the recovering
capabilities of our method without considering the spectral
extrapolation contribution, while the RMS error computed
against T provides also this information.

Figure 5 shows the result of our method when applied to an
image with no RFIs, but with instrumental noise. We recall that
no modification to the functional is needed: we still consider
the sparsity operator on an image O, whose values at the
end of the minimization are all zero. Although the RMSE
against the bandlimited image Tw is more or less the same
for all methods, it is clear the improvement of the presented
method when we look at the RMSE error computed against
the original image T. This is a clear improvement, due mainly
to the spectral extrapolation, that can also be seen on the
edges of the difference images. This experiment confirms that
the proposed method is generic, in the sense that it can be
applied to images without RFIs. It is important to note one
of the major drawbacks of the present method: small zones
are removed. For instance Ibiza and Formentera islands are
completely removed and Menorca is smoothed. This is also
observed if we look the maximum error associated to each
method: our method has the biggest value, which indicates that
some structure was lost during restoration. This is expected by
the value we set for µ: any structure whose size is bigger than
10 pixels is considered an outlier. This value can be adjusted
to obtain results that preserves smaller structures. Localization
accuracy of RFIs can also be further improved by increasing
the spatial resolution of our algorithm or by switching to a
continuous outlier model as discussed in Section VI.

5This is not a limitation: it is based on the observation that rarely a real
image has more than 10 outliers.
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RMSE(Tgt) Max Error(Tgt) RMSE(Tw) Max Error(Tw)
TZP 13.160 108.523 8.936 37.513
TZPB 13.612 143.147 9.933 70.018
TL1A 9.2245 145.523 6.661 44.366

Fig. 5. Comparison with previous approaches when no outliers are present in the image. Error measures are expressed in Kelvin units and the error range on
the images is set between [-10,10] K. For this experiment, parameter µ was set to 2.0 (corresponding to RFIs of at least 1 pixel radius). TZP , TZPB and
TL1A denotes the results obtained by the Zero Padding method, the Blackman appodization method, and the method proposed in this work respectively.



8

Figures 6 and 7 show the results obtained when RFIs are
present in the scene. In the first case, the RFIs intensities
fall within the Earth’s brightness temperature range; in the
second case, the RFIs intensities range from 0 to 35000 K.
Here again, the proposed method is consistently better than the
zero padding approach and even in the presence of very large
outliers (35000 K) the maximum error is 200 times smaller,
leaving an error of near 150 K, which is in the order of the
ground truth image values. In these examples the loss of small
structures becomes more evident: all Baleares islands were
removed.

In Figure 8 we present the results obtained when the outliers
are not located on the sampling grid points. It can be observed
that the performance of the proposed method continues to be
consistent with the case where the outliers were located on the
grid.

Table I summarizes the quantitative measures corresponding
to the results obtained with the proposed method in all
the simulated scenarios. It is clear that the method behaves
consistently in all of them. We can conclude that the method
is well adapted for several contexts that may occur on real
data, and that no context-dependent strategies are needed in
order to apply it. In other words, the method and its parameters
can be set once for all, independently on the observed data.

We end this set of experiments on synthetic data with an
analysis of the spectral extrapolation capability of the proposed
method. In this test, we only analyse the results of the bandpass
effect of the MIRAS instrument. No instrumental noise or
outliers are added to the input ground truth image. For this
experiment, the outliers’ support in the proposed model was set
to 1 pixel, following the strategy described in Section IV-A2.
Results are displayed on Figure 9. In the first row, we show
the result of computing TL1B = J+GTgt. The error reported
on the corresponding table is only related to the bandpass
matrix G and zero padding solution with its corresponding
matrix J+. It is clear from this example that our method truly
performs a spectral extrapolation, whose effects can be easily
observed both on the image edges and on the reduction of
Gibbs oscillations in the hole image. These two aspects can
also be observed in the associated table, on the reported values
of RMSE against the original image T and the bandlimited
version Tw. It is clear that the zero-padding approach is better
to obtain the bandlimited version of the image: the RMSE is
only 0.55, against 5.10 for the proposed method. Nevertheless,
when we compare against the original T image, the result
obtained using the proposed method is consistently better: the
RMSE is 7.86 (against 9.67 for the zero-padding method),
the maximum error is much lower and also the difference
image presents much less scructure than on the zero-padding
approach. One final remark: note that in this case, when
parameter µ is set considering an outlier of 1 pixel radius, the
small structures are kept (observe the presence of all Baleares
islands). This suggests that, when no RFIs are present in the
image, we can set much larger value for µ, leading to better
results.

B. Experiments on real data

The second set of experiments was performed on real
data. Experiments were performed on several snapshots and
datasets. Here, for the sake of brevity, we illustrate typical
results presenting two snapshots taken on march 2010. We
have set σn equal to 0.1, which is the measurement error
reported by the SMOS mission. Figures 10 and 11 show the
results obtained for snapshots 996 and 1050, that correspond
to central Europe (Italy) and Northern Europe (Denmark and
England) respectively.

Note that the acquired images are corrupted by several
outliers that considerably degrade the data. It is clear that
the proposed approach outperforms both the Zero Padding ap-
proach and the corresponding Blackman apodization method.
An effect that can be seen, in particular in the L1A-based
restored brightness temperature image of central Europe, is
the correlation between land humidity and topography. Note,
for instance, the consistency of the humidity flow coming from
the Adriatic Sea and entering inlands in northern Italy, stopped
the by the barrier imposed by the Alpes.

VI. CONCLUSIONS AND FUTURE WORK

In this work we propose a novel approach for the restoration
of images acquired by the SMOS mission. Two fundamental
contributions are presented: First, a variational approach that
seeks to restore the image of the Earth’s brightness temperature
on one side, and the image of outliers or RFIs on the other
side. The second contribution is the use of the visibilities
or L1A data product directly for the restoration of corrupted
images with RFIs, when most of the previous work use the
temperatures obtained by zero padding regularisation as input
(L1B data product).

The parameters in the model are fixed once for all or
automatically adjusted by the optimization procedure, since
they are either derived from physical modeling or obtained
by formal procedures. Experiments on synthetic data show
the ability of our method to recover the Earth’s brightness
temperature with high precision.

In summary, experiments both on synthetic and real data
confirm the suitability of the proposed method, and show
that results are of very high quality, outperforming previous
approaches proposed for SMOS images restoration. On the
other hand, the drawback of the proposed method is the time
it requires to restore each snapshots (several minutes). How-
ever, this could be dramatically reduced using parallelization
strategies.

APPENDIX
PROXIMAL OPERATORS

For the sake of completeness, we include the derivation of
each of the proximal operators involved in this work. We first
recall the proximal operator definition of a functional E:

proxγE(x) = arg inf
y

E(y) +
1

2γ
‖x− y‖2.
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Original image (Tgt) Bandlimited image Tw
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RMSE(Tgt) Max Error(Tgt) RMSE(Tw) Max Error(Tw)
TZP 13.733980 101.325733 9.787204 63.695435
TZPB 13.726109 140.964082 10.078270 69.381071
TL1A 10.416675 147.356192 9.454039 112.115255

Fig. 6. Analysis of the different methods when the outliers intensities fall within the range of the Earth’s brightness temperatures. Error measures are expressed
in Kelvin. TZP , TZPB and TL1A denotes the results obtained by the Zero Padding method, the Blackman appodization method, and the method proposed
in this work respectively.

RMSE(Tgt) Max Error(Tgt) RMSE(Tw) Max Error(Tw)
No outliers present in the image 10.743735 142.671738 7.644904 75.479853
Outliers with values on the image range 10.416675 147.356192 7.266313 57.133400
Outliers in the range [0,35000] K 13.082794 170.410338 10.678159 149.955697
Outliers outside grid position (25000 K) 11.945941 166.184179 9.403918 133.394016

TABLE I
QUANTITATIVE RESULTS OBTAINED WITH THE PROPOSED METHOD FROM SIMULATED DATA, IN DIFFERENT SCENARIOS: WITHOUT OUTLIERS, WITH

OUTLIERS INTENSITIES WITHIN THE RANGE OF THE IMAGE, WITH OUTLIERS LOCATED ON THE SAMPLING GRID POSITIONS AND OUTSIDE OF IT.
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Original image (Tgt) Bandlimited image Tw
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RMSE(Tgt) Max Error(Tgt) RMSE(Tw) Max Error(Tw)
TZP 248.437399 5985.546374 248.253076 5988.876063
TZPB 112.882746 2132.461092 112.498513 2135.790782
TL1A 13.082794 170.410338 10.678159 149.955697

Fig. 7. Results obtained with simulated data when several outliers with different intensities are present on the image. In this example, outliers are generated
on the following grid positions with its corresponding values: (-0.0357,-0.3093), 35.000 K; (-0.1429,0.0619), 10000 K; (-0.3929,-0.0928), 25000 K; (0.5714,
-0.1753), 800 K; (0.3304,-0.1289), 8000 K; (0.2589, 0.2629), 35000 K; (0.2589,-0.4897), 30000 K; (0.0357,-0.0515), 2000 K (Recall that this information
is not used during the restoration process: it is only provided for a better understanding of the Figure.). Error measures are expressed in Kelvin units and
the error range on the images is set between [-10,10] K. TZP , TZPB and TL1A denotes the results obtained by the Zero Padding method, the Blackman
appodization method, and the method proposed in this work respectively.
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RMSE(Tgt) Max Error(Tgt) RMSE(Tw) Max Error(Tw)
TZP 87.283054 3335.698589 86.752718 3336.383413
TZPB 41.005901 1185.824560 39.933994 1186.509384
TL1A 11.945941 166.184179 9.403918 133.394016

Fig. 8. Analysis of the different methods when the the outliers are not located on the sampling grid. Note that the method performs well, with a performance
similar to the one obtained when outliers are present on grid positions. In this experiment, the outlier introduced in the image has an intensity of 20000
K. Error measures are expressed in Kelvin units and the error range on the images is set between [-10,10] K. TZP , TZPB and TL1A denotes the results
obtained by the Zero Padding method, the Blackman appodization method, and the method proposed in this work respectively.
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RMSE(Tgt) Max Error(Tgt) RMSE(Tw) Max Error(Tw)
TZP 9.671122 110.410052 0.557796 2.717416
TZPB 13.071849 144.637200 9.179310 63.214112
TL1A 7.858867 89.453253 5.101420 54.833780

Fig. 9. Comparison of extrapolation results. Error measures are expressed in Kelvin units and the error range on the images is set between [-10,10] K.
TZP , TZPB and TL1A denotes the results obtained by the Zero Padding method, the Blackman appodization method, and the method proposed in this work
respectively. See text for details.



13

Zero Padding Blackman The proposed L1A method

ZP+Blackman Blackman, E-AF-FOV The proposed L1A method, E-AF-FOV
Fig. 10. Comparison between previous works and our method. This snapshot corresponds to Central Europe, with Italy clearly visible, and was acquired on
march 2010. Color scale ranges from 0 to 300 Kelvin.

Zero Padding Blackman The proposed L1A method

Zero Padding Blackman, E-AF-FOV The proposed L1A method, E-AF-FOV
Fig. 11. Comparison between previous works and our method. This snapshot corresponds to Northern Europe and was acquired on march 2010. Color scale
ranges from 0 to 350 Kelvin.
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Proposition 2 (Proximal operators of `0 and `1 norms).
proxγ‖·‖1(o))[i] = τγ(o[i]), proxγ‖·‖0(o))[i] = sγ(o[i]),
where

τγ(t) =

{
sign(t) (|t| − γ) if |t| ≥ γ
0 if |t| < γ

sγ(t) =

{
|t| if |t| ≥ γ
0 if |t| < γ

are the hard and soft thresholding operators, respectively.

A. Derivation of the proximal operator of TVH

We recall first the definition of the total variation semi-norm
of an image u : Ω ⊂ R2 → R:

TV (T ) = sup
ψ∈C1(Ω,R2), ‖ψ‖L∞(Ω)≤1

{∫
Ω

u(x) divψ(x)dx

}
,

where C1(Ω,R2) denotes the space of continuously differen-
tiable functions of compact support contained in Ω. With this
notation, proxγTV can be expressed:

proxγTV(u) = arg inf
y

TV (y) +
1

2γ
‖u− y‖2.

Chambolle [15] proves that the solution to this minimization
problem can be expressed as the projection into a suitable
convex set:

Proposition 3. The unique solution for proxγTV(u) is given by
y = u−PγG(y), where PγG(y) is the projection of y into the
set γG, and G = {v ∈ X; ∃ p ∈ X, |p| ≤ 1 s.t. v = div p}.
The set X = RN2

is the set of all discrete images of size N2.

The projection PγG(y), defined by

arg min
p∈X×X,|pi,j |≤1∀i,j=1,..,N

{
|γ div p− u|2X×X

}
,

can be computed iteratively as

pn+1
i,j =

pni,j + τ(∇(div pn − u/γ))i,j

1 + τ |∇(div pn − u/γ))i,j |
.

Chambolle [15] has proven that, if 0 < τ ≤ 1
8 then γ div pn

converges to PγG(y) as n→∞. Finally,

proxγTV(u) = u− lim
n→∞

γ div pn.

In our case, the spectral TV minimization consists in
restricting the frequency domain to the cell H, i.e.

min
u∈BL(H)

TV (u) + DataFit(u),

where BL(H) denotes the space of band limited functions
with spectral support within H. This constraint can be inte-
grated into the TV operator by means of the indicator function:

ιA(x) =

{
0 if x ∈ A
+∞ if x /∈ A

Then the proximal operator for the spectral TV becomes

proxγ TVH(u) := proxγTV+ιBL(H)
(u).

Since the sub differential of the indicator function ιA is the
projection operator PA, we can easily show from the previous

expression that a slight modification in Chambolle’s algorithm
yields the proximal operator for the spectral TV:

Proposition 4. Let u ∈ BL(H), and 0 < τ ≤ 1
8 . Then the fol-

lowing algorithm with un = −γvn converges to proxγ TVH(u)

1) p0 = 0, v0 = −u/γ, n = 0

2) pn+1 = PBL(H)

(
pn+τ∇vn
1+τ‖∇vn‖

)
3) vn+1 = div pn + v0

4) If not converged go to step 2

Note that the only modification with respect to Chambolle’s
algorithm is the spectral projection PBL(H) at each iteration
pn.
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