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A sparsity-based variational approach for the
restoration of SMOS images from L1A data

Javier Preciozzi, Student Member, IEEE, Andrés Almansa, Member, IEEE, Pablo Musé, Sylvain Durand,
Ali Khazaal and Bernard Rougé

Abstract—The SMOS mission senses ocean salinity and soil
moisture by measuring Earth’s brightness temperature using in-
terferometry in the L-band. These interferometry measurements
known as visibilities constitute the SMOS L1A data product.
Despite the L-band being reserved for Earth observation, the
presence of illegal emitters cause radio frequency interference
(RFI) that mask the energy radiated from the Earth and strongly
corrupt the acquired images. Therefore, the recovery of bright-
ness temperature from corrupted data by image restoration tech-
niques is of major interest. In this work we propose a variational
model to recover super-resolved, denoised brightness temperature
maps by decomposing the images into two components: an image
T that models the Earth’s brightness temperature and an image
O modeling the RFIs. Experiments with synthetic and real data
support the suitability of the proposed approach.

Index Terms—SMOS, MIRAS, RFI, brightness temperature,
non-differentiable convex optimization, total variation minimiza-
tion.

I. INTRODUCTION

OBserving Earth variables such as surface soil moisture
(SSM) and sea surface salinity (SSS) is crucial to

obtain meteorological and climate predictions [1]. The SMOS
satellite [2] carries an instrument called MIRAS (Microwave
Imaging Radiometer by Aperture Synthesis) [3], [4], that pro-
vides indirect measurements of the corresponding brightness
temperatures of both SSM and SSS in the L-band microwave,
using interferometry.

A. From brightness temperatures to visibilities: The MIRAS
instrument and the forward problem

The interferometry principle used by the MIRAS instru-
ment [3], [4] can be formalized by means of the visibility
function [5], that relates brightness temperatures with visibili-
ties. The antennas configuration chosen for MIRAS instrument
is a Y-shaped array, where each arm is composed by a set of
regularly spaced passive antennas (see Figure 1, left figure).
Let (Ak, Al) be any pair of its antennas; the visibility function
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Paris, France (email: sylvain.durand@parisdescartes.fr).
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V (ukl) is defined as the complex cross-correlation between the
received signals at Ak and Al:

V (ukl) =
1√

ΩkΩl∫∫
||ξ||≤1

Uk(ξ)U∗l (ξ)(Tb(ξ)− Tr)r̃kl(t)
e−i2πuTklξdξ√

1− ||ξ||2
. (1)

Here Uk and Ul are the corresponding normalized voltage
patterns of the antennas; Ωk,Ωl their corresponding solid
angles; uk,l = (ukl1 , u

kl
2 ) is the spacing between the two

antennas (Ak, Al) in wavelength. The Cartesian coordinates
ξ = (ξ1, ξ2) are the spatial domain coordinates, which are
restricted to the unit circle. Tr is the physical temperature
of the receivers (assumed the same for all receivers); r̃kl
is the Fringe-Wash function, a function of the spatial delay
t = ukl

T ξ
f0

, where f0 = c
λ0

is the central frequency of
observation. Note that the brightness temperature Tb is a 2D
function defined on the unit circle {ξ : ||ξ|| ≤ 1} [5], [6].

Since the brightness temperature support is the unit circle,
it is well known that the best regular sampling grid is a
hexagonal one [7], leading to the largest alias-free Field Of
View for a given spacing between the antennas [8]. The
antennas configuration chosen for the MIRAS instrument is
a Y-shaped array [8], shown in Figure 1 along with its
corresponding hexagonally sampled, star-shaped domain H .
This star-shaped domain H , known in aperture synthesis as
the experimental frequency coverage [9, Ch. 5], is contained
within the hexagon, hence requiring extrapolation to recover
the missing parts (see Figure 2). Because of other practical

Fig. 1. Diagram of the MIRAS instrument onboard of SMOS satellite
(from [10]) and the star-shaped, hexagonally sampled visibilities domain
derived from it. The number of antennas in the miras instrument is 69: 22
antennas type Light-Weight Cost-Effective Front-End (LICEF) in each arm,
plus three antennas of type Noise Level Injection Radiometers (NIR) located
in-between each arm in the center of the instrument.

issues, the final separation between antennas in the MIRAS
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Fig. 2. The absence of information beyond the experimental frequency
coverage H (in red) makes the recovery of the brightness temperature map
an ill-posed problem.

instrument is d := ‖ukl‖ = 0.875 wavelengths, for any
k 6= l within each arm. This value is larger than the critical
sampling distance on a hexagonal grid (which is d = 1/

√
3

wavelengths), and then, some aliasing is introduced on the
spatial domain. Figure 3 shows the spatial domain and its
six replicas, where the Alias-Free Field of View is the small
central zone in the hexagon delimited by the blue dashed
lines. Because of the tilt of the satellite acquisition system,
most of the aliasing comes from the intersection between the
Earth disk with the known cold sky (whose values are known)
and therefore it is customary to consider the Field of View
delimited by the red plain lines: the Extended Alias-Free Field
of View (E-AF-FOV) [8].

Normalized spatial domain (ξ1, ξ2)

Fig. 3. Alias Free - Field of View (AF-FOV) – zone delimited by the unity
circle contours in blue lines – and the corresponding Extended Alias-Free
Field of View (E-AF-FOV) in red lines. See text for details.

Remark: As one can readily see from Equation (1), bright-
ness temperatures T are originally defined on the unit circle.
However things are quite different in the discrete setting
GT = V . In this setting, as already mentioned, the visibil-
ities V (u) can only be measured for discrete values of the
frequencies u = ukl which are given by the discrete spacings
between available antennas. Hence, in the discrete setting the
matrix G is a discretization of the linear operator V = G(T )
defined by Equation (1).
Each row of the matrix G is associated to Equation (1) for
one particular value of the frequency ukl.
Each column of the matrix G is associated to a particular
value of the spatial variable ξ.
The row discretization is dictated by the arrangement of the
antennas that allow to measure the visibilities only for discrete
values of ukl.
The column discretization is dictated by the sampling scheme
used for T in the spatial domain, and can in principle be
chosen at will. In our work we made the standard choice of

defining T on a regular (hexagonal) spatial grid that is based
on the dual grid of the hexagonal grid where the ukls are
defined. This way we can use the standard FFT algorithm to
compute discrete Fourier transforms between the two grids.

(Inevitable) row discretization leads to spatial aliasing:
The ukls however are defined on a hexagonal sampling grid,
supported on a star-shaped domain (the so called experimental
frequency coverage) resulting from the Y-shaped antennas
array.
As explained above the spacing between antennas is not fine
enough to ensure a larger-that-critical frequency sampling. The
result is spatial aliasing that we do not pretend to be able
to remove by our method. Instead we only keep as reliable
information the so-called Extended Alias Free Field of View
(EAF-FOV) area which is not affected by spatial aliasing
artifacts (see Figure 3). However computations are performed
on a full hexagon which is larger than the EAF-FOV. The full
visible circular spatial domain is larger than this hexagon (see
Figure 3), but extending the computations to the full circle
would be useless because it would contain periodic copies
of the hexagonal tile. In fact, since acquisition happens at a
discrete grid in the frequency domain, the recovered image is
periodic in the spatial domain.

Finer column discretization and TV minimization improve
resolution of T . The sampling rate in the spatial domain
can be chosen at will. A finer sampling rate means more
columns in matrix Gkl, and a more accurate Riemann sum
approximation of the integral in Equation (1). The spatial
sampling resolution we used corresponds to the hexagonal
reciprocal cell shown in Figure 1. The standard L1B product
only produces Fourier coefficients restricted to the red star
shaped domain in Figure 1. The output of our Algorithm pro-
duces a brightness temperature map whose Fourier transform
is larger than the star-shaped domain. The additional Fourier
coefficients are inferred from a reasonable piece-wise regular
prior for brightness temperatures. This prior (implemented by
total variation minimization under sensing constraints) allows
to better resolve the sharp boundaries between land and sea
temperatures for instance.

B. Restoring brightness temperatures from visibilities: An ill-
posed inverse problem

Going back to Equation (1), after subtracting the contri-
bution of Tr using the flat target response, the samples of
T in the hexagonal grid can be obtained from the visibility
samples by solving the linear system GT = V , where matrix
G represents the discrete linear operator given by (1). Of
course, the inversion of this problem is ill-posed since G is
not invertible. The ill-posedness of the problem can also be
interpreted as a lack of information beyond H , as illustrated
in Figure 2. Hence, additional constraints must be added
to the model. In [6], the authors propose to solve it as a
constrained least square minimization problem, imposing that
T has no frequency components outside H . This problem can
be formulated as an unconstrained minimisation:

T̂sol = min
T̂
‖V −GF∗ZHT̂‖22 (2)
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where F∗ denotes the matrix corresponding to the hexagonal
Inverse Fourier Transform, ZH the zero padding operator
beyond H and T̂ the Fourier coefficients of T for frequencies
in H . This minimisation problem has a direct solution:
T̂ = J+V where J = GF∗ZH and J+ = (J∗J)−1J∗ is
the pseudo-inverse of J. Finally, T can be obtained from
T̂ very easily applying an inverse Fourier transform. This
approach is the nominal image reconstruction process of the
SMOS pipeline and corresponds exactly to the L1B product.
It is well known that a zero padding on the Fourier domain
may lead to Gibbs effects on the restored image. This can
be partially alleviated (as proposed by [6]) by the use of a
Blackman window B: T = F∗BZΩT̂ .

This approach (that we will refer in what follows as the
zero padding approach), has many advantages: it has a clear
physical interpretation (values outside H are set to zero), it
is very fast (since only a matrix multiplication is needed to
obtain T̂ ), and in general gives good results. Nevertheless,
this is not the case when the visibilities are corrupted by
radio frequency interferences (RFI). Because these RFIs have
frequencies beyond H and their power is far stronger than
Earth radiation, very strong Gibbs effects can be seen on
the final brightness temperature images (see for instance the
bottom left image in Figure 10, corresponding to western
Europe, obtained by the nominal reconstruction process [6]).

C. Previous work

Several methods for post-processing SMOS images recon-
structed using the nominal method have been proposed in the
literature. However, most of them have been directed to both
mitigation and flagging of RFIs from L1B data. In [11], all
pixels whose brightness temperature exceeds threshold of 350
K (the maximum, blackbody radiation at 1.4 GHz) are flagged
as possible RFIs.Then, several snapshots are analysed and
statistical information of the RFI is computed. If the number of
RFI on the given geolocation is larger than a certain number
(40 in the cited article), the point is marked as a RFI and
the most probable brightness temperature is estimated. With
this estimation, a process similar to the Sun correction [12] is
performed: the visibility of the RFI is computed using matrix
G and finally this visibility is subtracted from the original one.
In [13], the authors generate synthetic brightness temperature
images that are as close as possible to the natural ones. Then,
the corresponding visibilities are computed and subtracted
from the original ones. If RFIs are present in the scene, they
will be clearly noted on the brightness temperature obtained
from this subtraction. The same thresholding principle as
in [11] is applied, obtaining possible RFIs locations, but
a gradient threshold is applied as well. After that, a local
optimisation process taking into account the Point Spread
Function of the instrument is applied on a surrounding region,
to better localize each RFI. Finally, in [14] the authors focus
their attention on the accurate geolocation of RFI emitters,
since its main objective is to take political actions on them.
Here again, a thresholding on the brightness temperatures

similar to [11] is applied and a clustering process is performed
with the obtained potential RFI candidates. On each cluster,
an interpolation on a finer grid is performed, thus obtaining a
better geolocation of the RFI emitter.

However, to our knowledge and as pointed out in a recent
work [15], since the nominal method proposed by Anterrieu
et al. [16] in 2002, not much effort has been done in providing
fully restored images in the sense of solving the inverse
problem given by (1). González-Gambau et al. [15] propose
a new restoration method based on the underlying hypothesis
that the geophysical signal of interest varies slowly, and in
that case they manage to reduce the impact of RFIs in the
reconstruction process, in particular the highly oscillatory
patterns they introduce. This method is particularly useful
to improve the salinity estimation in the ocean, however
the authors have reported that some RFI sources present a
widening effect with respect to the result obtained by the
nominal method. Moreover, since on land applications the
geophysical signal varies faster, the approach presents low
performance.

D. Proposed approach and contributions

In this work we propose a novel approach to solve the
inverse problem presented on (1) using a variational formu-
lation that explicitly models the formation of visibilities as
a superposition of the Earth’s natural brightness temperatures
and the RFIs. As it will be demonstrated later, the proposed
method automatically removes signal effects generated from
RFIs, while at the same time extrapolates the image spectrum
in order to minimize Gibbs effects, with no a priori knowledge
of the RFI’s locations. A preliminary, short version of this
work was presented in IGARSS 2014 [17].

The article is organized as follows. In Section II we present
the model on which our restoration approach is based, and we
explain how this model can be solved using state of the art
optimization techniques. In Section III we describe in detail
numerical issues to make the problem numerically tractable.
The definitive implementation is presented in Section IV,
where we discuss major issues like parameter choices and
numerical optimization. In Section V we present experiments
with synthetic data that validate the proposed approach and
we also apply our method to real L1A SMOS data and we
compare them with results obtained using the zero padding
and the Blackman approach. For the sake of brevity, a large
set of experiments is presented in the complementary material.
Conclusions and future work are presented in Section VI.

II. MODELIZATION AND VARIATIONAL FORMULATION: A
FIRST APPROXIMATION TO THE PROBLEM

Visibilities and brightness temperatures are related by the
linear operator given by (1). In its discrete form, using matrix
notation1, this is GT = V . As before, the goal is to obtain the
original temperatures image T from the given visibilities V ,

1For the sake of simplicity, we use the same notation to refer to an image
and its vectorized form. Disambiguation follows easily from the context.
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knowing that, as noted before, G is not invertible. We propose
to model the observed brightness temperature image T̃ as

T̃ = T +O, (3)

where T is the non-polluted Earth’s brightness temperature
image and O is the outliers’ image generated by the RFIs that
are assumed to be sparse pointwise sources (delta functions).
Because of the physical acquisition system, the visibilities are
corrupted with noise, that under realistic assumptions can be
considered to be a Gaussian white noise with 0 mean and
standard deviation σ∆VL [18]. The final equation is then:

GT̃ + n = G(T +O) + n = V (4)

where V is the vector of measured visibilities (corrupted
by the additive Gaussian noise n described before), after
removing the unwanted contributions from the sky, sun and
backlobes [19].

A. Variational formulation

We propose to recover T by solving the following con-
strained minimization problem:

(Tsol, Osol) = minT,O {TV(T ) + µS(O)}
such that ‖G(T +O)− V ‖22 ≤ |H|σ2

∆VL
.

(5)

In this formulation, TV (·) denotes the total variation semi-
norm (Appendix A) and S(·) is a norm that promotes sparsity
of the outliers image Osol, for instance the `1 norm or the
`0 counting measure (Appendix A). Parameter µ controls
the trade-off between both terms; its choice can be formally
derived from geometric considerations on the outliers, and will
be discussed in detail in Section IV-A. The data fit term is
derived directly from the white, Gaussian distributed data noise
model n = G(T + O) − V . The bound |H|σ2

∆VL
represents

the area of H times the visibilities variance σ2
∆VL

.
It is well known that the minimization of the `2 norm

corresponds to the Maximum A Posteriori estimator of white
Gaussian noise. In the SMOS instrument, the visibilities are
always perturbed by a random radiometric noise, which is
assumed to be uncorrelated (on the visibilities) and distributed
according a Gaussian model with standard deviation [18]:

σ∆VL =
TA + TR√

2Bτ
, (6)

where TA is the antenna temperature, TR is the receiver
temperature, B is the bandwidth and τ is the integration time.
The bandwidth for MIRAS instrument is B = 19 MHz and
the integration time is τ = 0.663 seconds2. The other two
variables (TA and TR) depend on the observed scene and
operational conditions. The value of those temperatures was
reported to be TA = 294 K and TR = 200 K, leading to a
noise standard deviation σ∆VL = 0.098 K.

Problem (5) can be reformulated as an unconstrained one:

(Tsol, Osol) = minT,O ‖G(T +O)− V ‖22 + λ(TV(T ) + µS(O)),
(7)

2Integration time is in fact 1.2 seconds, but it is adjusted by a factor of
1.81 to take into account correlation and sampling effects.

where the Lagrange multiplier λ must be chosen to ensure
equivalence between both problems. Parameter λ is therefore
the counterpart of the noise constraint in (5), and it is well
known that there exist a unique Lagrange multiplier λ,
uniquely determined by |H|σ2

∆VL
, ensuring that both the

constrained and unconstrained problems admit the same
solution. A classical way to set λ programmatically is to use
Uzawa’s algorithm [20], described on Algorithm 2. Basically,
the procedure consists in starting with a fixed λ0, then solving
the original problem with this λ0 and adjusting λk iteratively,
depending on how near or how far the solution is to the
original constraint. The procedure continues with ensured
convergence until the data fit term is close enough to the
expected noise |H|σ2

∆VL
.

Remark: The total variation is used to super-resolve
T beyond the experimental frequency coverage H while
avoiding Gibbs oscillations: it is a complete substitution
for the zero padding approach, where instead of filling the
coefficients outside H with zero, they are recovered by
the TV minimization [21]. On the other hand, the sparsity
operator is chosen to model the RFIs image O since this
image is zero almost everywhere because RFIs are very
sparsely located. It is well known that the `1 or the `0 norms
promote sparsity [22]: consequently, image Osol is expected
to recover a sparse image composed only by the RFIs.

When S(·) is the `1 norm, problem (7) is convex, and
despite not being strictly convex, it admits a unique local (and
therefore global) minimizer ( [23], [24]). However, a careful
treatment has to be taken since the term multiplied by λ is non-
differentiable. Fortunately, there exist optimization methods to
solve this kind of problems. One of them is the Forward-
Backward (FB) splitting algorithm [25], while other splitting
approaches such as the Split-Bregman method could also be
used3:

Proposition 1. Let E(x) = E1(x) + E2(x), where E1 and
E2 are convex functions such that E1 is differentiable with
Lipschitz gradient, and E2 is a simple function, in the sense
that its associated proximal operator

proxγE2
(x) = arg inf

y
E2(y) +

1

2γ
‖x− y‖2 (8)

admits a closed form or a simple algorithm to compute it. If
these hypotheses hold, the following generic algorithm can be
derived: for each k ∈ N, the k-th iteration starting from seed
x0 = (T 0, O0) is given by{

xk+1/2 = xk − γ∇E1(xk)
xk+1 = proxγE2

(xk+1/2).

In order to ensure convergence to the minimizer, γ must be
smaller than 2/L, where L is the Lipschitz constant of ∇E1.

3We decided to use FB since, while the parameters in FB follow naturally
from the implementation, those involved in the SB algorithm are related to
convergence rates and are therefore harder to set.
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In our case, we have E1(T,O) = ‖G(T + O) − V ‖22 and
E2(T,O) = λ(TV(T ) + µS(O)) that yields

∇E1(T,O) =

(
G∗G(T +O)− V
G∗G(T +O)− V

)
,

proxγE2
(T,O) =

(
proxγλTV(T )

proxγλµ‖·‖1(O)

)
.

It is straightforward to show from (8) that the proxγλµ‖·‖1(O)
corresponds to the soft thresholding operator (see Ap-
pendix A):

s∆(t) =

{
sign(t)(|t| −∆) if |t| ≥ ∆,
0 if |t| < ∆.

Although proxγλTV(T ) does not have an explicit form, there
exist several algorithms that solve this proximal operator (
[23], [24]). In Appendix A we explain the one used in this
work.

The algorithm described so far converges to the unique
global minimizer that corresponds to the solution of prob-
lem (5) with sparsity operator S(O) = ‖O‖1. We use this
solution as an initialisation for the second step, where the
sparsity operator is chosen to be S(O) = ‖O‖0, which is
non-convex. For this problem, the same FB algorithm can
be considered and is guaranteed to converge to a local mini-
mizer [26]. Now, instead of the soft thresholding, the proximal
operator for S(O) = ‖O‖0 becomes the hard thresholding
h√2γλµ(t) = t1{|t|≥

√
2γλµ} (see Appendix A). The reason to

run the FB algorithm with ‖O‖0 is to exploit even more the
sparsity characteristics of the problem, since it is known that
norm ‖O‖0 leads to a sparser solution than ‖O‖1 [22].
Note that in the case of `0 norm, the convergence of the
Uzawa’s algorithm is not guaranteed. Thus, in this second
step, we do not apply Uzawa’s algorithm: we consider that
the λ value obtained for `1 is correct also for the `0 norm.
In fact, because the solution obtained with `1 is a very good
approximation to the sparse representation, a few iterations of
the FB with `0 is enough to converge to the local minimum.

III. NUMERICAL ISSUES

A. Matrix G∗G

The FB algorithm requieres a multiplication by matrix G∗G
at each iteration. Matrix G is a 4695 × 16384 matrix: 4695
is the number of visibilities and 16834 is the number of
samples of the brightness temperature. It follows that matrix
G∗G is 16384× 16384. Because it is a dense matrix, a great
number of operations are performed at each iteration, which
is computationally not desirable. However, a change of basis
to the Fourier domain yields:

∇E1(T,O) = F∗((GF∗)∗GF∗F(T +O)− (GF∗)∗V ), (9)

where F is the matrix representation of the Fourier transform
(and F∗ its conjugate) . The advantage of this representation
is that matrix ((GF∗)∗GF∗ reveals a highly sparse structure:
to keep the Frobenius norm of ((GF∗)∗GF∗ at 99.99% of
its value, we only need to keep 0.0008 of its entries. From a
computational point of view, solving Equation 9 can be done

even more efficiently using a standard Fast Fourier Transform
implementation:

∇E1(T,O) = F∗((GF∗)∗GF∗F(T +O)− (GF∗)∗V ),
(10)

where F denotes the Cooley and Tuckey standard Fast
Fourier Transform, that we use instead of matrix multiplication
by the matrix F.
The property of being sparse on the Fourier domain can
be easily understood from the image formation point of
view: each of the visibilities values corresponds to the cross-
correlation of two signals received at two different antennas.
Clearly, if the antennas are close to each other this correlation
is high, but the farther they get it tends to be negligible.
The use of the standard (rectangular) FFT on a hexagonal
lattice can be made possible by re-projecting the samples in
a rectangular grid (see [8] or [16, Section III]). Consequently,
we can modify the FB algorithm described above to perform
the minimization in the Fourier domain. This implementation
is summarized in Algorithm 1 (where all the variables have
the same meaning as before).

Proposed method with Fordward-Backward
implementation

input : A vector of visibilities V
output: A brightness temperature image T , and an RFIs

image O
initialization:
Step 0:
• Set T 0 = 0 and O0 = 0
• Choose γ < 2/L, where L is the Lipschitz constant of
∇(E1)

Step k (k ≥ 0):

T k+ 1
2 = T k − γF∗(FG∗GF∗F(T k +Ok)− FG∗)V

Ok+ 1
2 = Ok − γF∗(FG∗GF∗F(T k +Ok)− FG∗)V

T k+1 = proxγλTV(T k+1/2)

Ok+1 = sγλµ(Ok+1/2).

Algorithm 1: Proposed method with Fordward-Backward
implementation in the Fourier domain.

B. Spectral TV

In order to reduce the “staircasing” effect inherent to many
TV minimization methods( [27], [28]), we use an approach
inspired on the Spectral TV method. This idea was first
introduced in [21] and further developed by Moisan [29],
from which our implementation is derived. In this approach,
staircaising reduction is achieved by: (i) Computing image
derivatives not by finite differences but analytically on the
Fourier series expansion; (ii) Approximating the continuous
TV as a Riemann summation over a grid at least two times
finer than the critical sampling rate. In our case, instead of
doubling the sampling rate, we choose to extend the spectral
domain of T to an intermediate cell H, in-between the experi-
mental frequency coverage H , and the cell C corresponding to
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the (largely overcritical) spatial sampling rate of T (Figure 4).
There is another reason to use the Spectral TV. SMOS data

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60
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Visibilities domain

Fig. 4. Intermediate, hexagonally shaped cell H used to reduce the staircaising
effect inherent to discrete TV minimisation methods.

is captured on a hexagonal grid, and thus the variables T
and O are modeled on a hexagonal grid as well. Most TV
algorithms are based on the computation of derivatives using
discrete differences, that are not straightforward to adapt to the
hexagonal grid. This problem is avoided if we use the Spectral
TV, because it computes the image derivatives analytically in
the Fourier expansion. In Appendix A we introduce the modi-
fications done to Chambolle’s algorithm in order to implement
the Spectral TV. An alternative implementation based on the
work presented in [30], was recently proposed in [31] and
in [32, Ch. 3]. In what follows, we denote the Spectral TV of
an image T based on the domain H as TVH(T ).

IV. FINAL IMPLEMENTATION

A. On the choice of µ, a resolution parameter

Parameter µ is actually the only user parameter of our
method. It controls the trade-off between TVH(T ) and S(O).
Depending on its value, a visual structure on the scene will
be considered as an outlier (and therefore, assigned to the
outliers image O) or as part of the scene (the Earth brightness
temperature image T ). Its value can be obtained as follows.
Consider a cylinder c of radius r and height h. The involved
norms or semi-norms are

TV (c) = 2πrh, ‖c‖0 = πr2
1[h>0], ‖c‖1 = πr2h.

When the sparsity operator is the `1 norm, c is considered
as an outlier if TV (c) ≥ µ‖c‖1, leading to µ ≤ 2

r . In the
experiments, we have selected a value µ ' 2

10 = 0.2, which
amounts to consider that the radii of the outliers are at most
10 pixels wide. However, Earth structures spanning less than
10 pixels, can still be recovered by choosing a larger value for
µ. It is worth noting that different values for µ can be used in
order to have a fixed support in spatial resolution at no extra
computational cost, by using what area represents a pixel at
each image location.

In the case of the `0 norm, a cylinder is considered as an
outlier as soon as TV (c) ≥ µ‖c‖0, i.e. µ ≤ 2h

r . Hence, µ
can then be interpreted as the minimal h/r outlier ratio. Here,
contrarily to the `1 case, the height (here expressed in Kelvin
units) plays an important role in distinguishing an outlier from
the data, and larger values for µ may be chosen ( µ ' 100 2

10 =
20).

In this sense, µ can be viewed as a scale parameter, and as
such it is unavoidable. Any other restoration method involves
the choice of similar parameters, on one way or the other.
For instance, besides the intrinsic unavoidable instrument
bandwith, the cut-off frequency in the zero padding method
imposes a resolution limit (and produces a strong Gibbs
effect as well). The same holds for the Blackman apodization
method, where the resolution limit is determined by the cut-
off frequency of the Blackman window. The advantage of
our method is that parameter µ, as described above, has a
clear geometric meaning and its choice is very intuitive. The
effect of these parameters will become clear once we will have
discussed Figure 5 in Section V.

Uzawa

input : L1A SMOS Data - Visibilities: Ṽ
input : Uzawa tolerance step: utol
output: A temperature image T , an outliers image O
initialization:
Step 0: Set T 0 = 0 and O0 = 0. Set λ0 with any suitable
value ( for instance, 1).

while |us| > utol do
(T k+1, Ok+1) =
minT,O ‖G(T +O)− Ṽ ‖22 + λk(TV(T ) + µS(O));
us = ‖G(T k +Ok)− Ṽ ‖22 − σ2

∆VL
;

λk+1 = max{λk + ρus, 0} ;
end

Algorithm 2: Uzawa general algorithm applied to find
the correct value λ that is consistent with |H|σ2

∆VL
in the

corresponding constrained minimization problem. Param-
eter ρ is set once for all to control the convergence rate.
See [20] for further details.

B. Numerical optimization
Several methods have been proposed to accelerate the FB

convergence rate. Two related approaches are FISTA [33]
and monotone-FISTA [34]. The main difference between both
methods and the FB algorithm is a clever combination of
the two previous iterations, that increases the convergence
rate. FISTA algorithm does not ensure monotone convergence
(neither do FB) , which is not a desirable property for an opti-
mization algorithm. In [34], the authors introduce a monotone
version of this algorithm known as MFISTA, that does not
change the convergence rate of the original FISTA algorithm,
but guarantees monotonicity. The final and complete algorithm
is presented in Algorithm 3 but can be summarized as follows.
It consists of two loops: an external loop that implements
the Uzawa algorithm, solving the problem of finding the
correct Lagrange multiplier λ. The internal loop implements de
MFISTA algorithm, which is basically the FB algorithm with
additional auxiliary variables to accelerate the convergence
rate.

V. EXPERIMENTAL RESULTS

In this section we present results obtained on both simulated
and real data. In both cases, we compare our approach to the
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FINAL PROPOSED ALGORITHM

input : L1A SMOS Data - Visibilities: Ṽ
input : Uzawa tolerance step: τu
input : MFista tolerance step: τm
output: A brightness temperatures image T , an RFI

image O

initialisation: Set T 0 = 0 and O0 = 0 ;
Initialize Uzawa: Set λ0 = 1 and ρ ∈ (0..1] ;
while |eu| > τu do

Initialize MFISTA: Set t0 = 1 and em > τm;
while em > τm do

(T kz , O
k
z ) = prox γ

LE2
(T k, Ok)− γ

L∇E1(T k, Ok))

tk+1 =
1+
√

1+4(tk)2

2
(T kx , O

k
x) =

arg min(t,o)={(Tkz ,Okz ),(Tk−1
x ,Ok−1

x )}E(t, o)

(T k+1, Ok+1) =

(T kx + tk−1
tk+1 (T kz −T k−1

x ), Okx+ tk−1
tk+1 (Okz−Ok−1

x ))
;
em = |E(T k+1, Ok+1)− E(T k, Ok)|

end
eu = ‖G(T k +Ok)− Ṽ ‖22 − σ2

∆VL
;

λk+1 = max{λk + ρeu, 0} ;
end

Algorithm 3: Final proposed algorithm

nominal reconstruction process: the zero-padding approach [6]
and the Blackman apodization approach [2].

A. Simulated Data

In order to have an overall idea of the proposed method’s
performance, we analyze it on different contexts:
• No RFIs are present in the image: only instrumental

noise;
• RFIs with intensities in the same range as the Earth’s

brightness temperature plus instrumental noise;
• RFIs with intensities on a larger range ((0,35000] K)4

plus instrumental noise;
• RFIs located outside the image grid (with sub-pixel ac-

curacy in non-integer positions) plus instrumental noise;
• Only the synthetic Earth’s brightness temperature is con-

sidered (no instrumental noise or RFIs). This scenario
is considered to evaluate the extrapolation power of the
proposed approach.

The process to generate the simulated images is the following:
1) We generate a brightntess temperatures image Tgt, based

on [35], where gt stands for ground truth;
2) We obtain the visibilities associated to image Tgt: Vgt =

GTgt;
3) We generate a visibility noise random vector n, with

independent identically distributed Gaussian entries with
zero mean and covariance matrix σ2

∆VL
Id;

4This range corresponds to the range we have observed on real data

4) We add the noise visibilities to the ground truth visi-
bilities to obtain an outlier-free noisy visibility vector:
V = Vgt + n;

5) We generate a set of RFIs’ images, one for each of the
cases described above (no RFIs, RFIs in the image range,
RFIs between (0,35000] K and RFIs outside the grid
positions). If we note Tδ any of these synthetic RFIs’
images, its corresponding induced visibilities is: Vδ =
GTδ;

6) Finally, we obtain the simulated visibilities adding both
terms: Vf = V + Vδ = Vgt + Vδ + n, which are in full
agreement with the image formation model.

The RFIs positions and intensity values are generated
randomly, and the number of outliers varies from 2 to 105.

Error measurement: In order to obtain a quantitative
analysis the results, we need to define an error measure.
Following [6], we consider the computation of the RMS error
between the original image T and the recovered image Tr,
over the entire Extended Alias-Free Field of View (E-AF-
FOV). Because of the band-limited property of the MIRAS
instrument, even in an ideal case with no instrumental noise,
we could not restore the original image T : only a smoothed
version of T can be recovered. In [6], results are compared
against a smoothed version of T , obtained by an inverse fourier
Transformation considering only the coefficients inside the the
experimental frequency coverage, denoted by Tw. Because we
want to analyze the extrapolation properties of the presented
method, we report the RMS error using both Tw and T :
the RMS error computed against Tw describes the recovering
capabilities of our method without considering the spectral
extrapolation contribution, while the RMS error computed
against T provides also this information.

Figure 5 shows the result of our method when applied to an
image with no RFIs, but with instrumental noise. We recall that
no modification to the functional is needed: we still consider
the sparsity operator on a the outliers image O, whose values at
the end of the minimization are all zero. Although the RMSE
against the band-limited image Tw is more or less the same for
all methods, it is clear that the proposed method outperforms
the others when looking at the RMSE error computed against
the original image T . This is a clear improvement, due mainly
to the spectral extrapolation, that can also be seen on the edges
of the difference images. This experiment confirms that the
proposed method is generic, in the sense that it can be applied
to images without RFIs. band-limited

From this experiment it is also clear the decrease on
spatial resolution due to the lowpass characteristics of MIRAS
instrument: the band-limited image Tw is contaminated with
Gibbs oscillations and Menorca and Ibiza-Formentera islands
are severely smoothed. The three rows of Figure 5 show
the results obtained using zero padding, zero padding with
Blackman apodization, and the proposed method. Note that
the latter yields a sharper image, with lowest RMSE. Note
also that although the proposed method fails to completely

5This is not a limitation: it is based on the observation that rarely a real
image has more than 10 outliers.
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recover all the structures in the scene (for instance, Menorca
is still severely smoothed as a result that its intensity level is
close to the ringing appearing in Tw), the result is still better
than the ones obtained with the zero padding or the nominal
method.

Figures 6 and 7 show the results obtained when RFIs are
present in the scene. In the first case, the RFIs intensities
fall within the Earth’s brightness temperature range; in the
second case, the RFIs intensities range from 0 to 35000 K.
Here again, the proposed method is consistently better than the
zero padding approach and even in the presence of very large
outliers (35000 K) the maximum error is 200 times smaller,
leaving an error of near 150 K, which is in the order of the
ground truth image values. In these examples the loss of small
structures becomes more evident: all Baleares islands were
removed.

In Figure 8 we present the results obtained when the outliers
are not located on the sampling grid points. It can be observed
that the performance of the proposed method continues to be
consistent with the case where the outliers were located on the
grid.

Table I summarizes the quantitative measures corresponding
to the results obtained with the proposed method in all
the simulated scenarios. It is clear that the method behaves
consistently in all of them. We can conclude that the method
is well adapted for several contexts that may occur on real
data, and that no context-dependent strategies are needed in
order to apply it. In other words, the method and its parameters
can be set once for all, independently on the observed data.

We end this set of experiments on synthetic data with an
analysis of the spectral extrapolation capability of the proposed
method. In this test, we only analyse the results of the bandpass
effect of the MIRAS instrument. No instrumental noise or
outliers are added to the input ground truth image. For this
experiment, the outliers’ support in the proposed model was
set to 1 pixel, following the strategy described in Section IV-A.
Results are displayed on Figure 9. In the first row, we show
the result of computing TL1B = J+GTgt. The error reported
on the corresponding table is only related to the bandpass
matrix G and zero padding solution with its corresponding
matrix J+. It is clear from this example that our method truly
performs a spectral extrapolation, whose effects can be easily
observed both on the image edges and on the reduction of
Gibbs oscillations in the hole image. These two aspects can
also be observed in the associated table, on the reported values
of RMSE against the original image T and the band-limited
version Tw. It is clear that the zero-padding approach is better
to obtain the band-limited version of the image: the RMSE is
only 0.55, against 5.10 for the proposed method. Nevertheless,
when we compare against the original T image, the result
obtained using the proposed method is consistently better: the
RMSE is 7.86 (against 9.67 for the zero-padding method),
the maximum error is much lower and also the difference
image presents much less structure than on the zero-padding
approach. One final remark: note that in this case, when
parameter µ is set considering an outlier of 1 pixel radius, the
small structures are kept (observe the presence of all Baleares
islands). This suggests that, when no RFIs are present in the

image, we can set much larger value for µ, leading to better
results.

B. Experiments on real data

The second set of experiments was performed on real
data. Experiments were performed on several snapshots and
datasets. Here, for the sake of brevity, we illustrate typical
results presenting three snapshots taken on march 2010. Noise
variance σ2

∆VL
was considered to be 0.1, which is the measure-

ment error reported by the SMOS mission. Finally, parameter
µ was set to 0.2. This corresponds to a 10 pixels support. As
pointed out before, since the spatial resolution of the tempera-
ture map varies spatially, the area enclosed by a fixed number
of pixels depends on each location. It is straightforward to
work at a fixed spatial resolution by adjusting µ following the
resolution map of the bright temperature image.

Figure 10 shows the results obtained for three snapshots,
where the first row corresponds to Northern Africa, the second
one to Northern Europe (Denmark and England) and the third
one to Central Europe (Italy). The first row is a snapshot
which does not contain any RFI. The result obtained using
the proposed method illustrates two of its advantages. First, it
performs a better spectral extrapolation, resulting in a much
sharper image than the one recovered using zero padding with
Blackman apodization. Second, it performs a reduction on
Gibbs effects, which is clear when comparing these results
with the ones obtained with the zero padding method.

The second an third rows show the results obtained for two
snapshot containing strong RFIs. Again in this case, we can see
that the proposed method yields better results: it removes RFIs
from the scene, while improving the spectral extrapolation and
reducing the Gibbs effects, clearly visible on the Zero Padding
and Blackman results.

C. About computational cost

The number of iterations and convergence rate depend on
each particular input data. For instance, in a regular PC with
an Intel Core i7 processor and 16 GB of RAM, if no RFIs
are present in the image, the method converges within one or
two minutes; If RFIs are present in the image, convergence is
about ten times slower (in the order of 10,000 iterations).

VI. CONCLUSIONS AND FUTURE WORK

In this work we propose a novel approach for the restoration
of images acquired by the SMOS mission. Two fundamental
contributions are presented: First, a variational approach that
seeks to restore the image of the Earth’s brightness temperature
on one side, and the image of outliers or RFIs on the other
side. The second contribution is the use of the visibilities
or L1A data product directly for the restoration of corrupted
images with RFIs, when most of the previous work use the
temperatures obtained by zero padding regularisation as input
(L1B data product). If we consider that the expected noise is
known, the Lagrange multiplier λ is adjusted automatically
by the optimization procedure considering the given noise
variance, as explained in Section II-A. The method has only
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Original image (Tgt) band-limited image Tw
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RMSE(Tgt) Max Error(Tgt) RMSE(Tw) Max Error(Tw)
TZP 13.160 108.523 8.936 37.513
TZPB 13.612 143.147 9.933 70.018
TL1A 9.2245 145.523 6.661 44.366

Fig. 5. Comparison with previous approaches when no outliers are present in the image. Error measures are expressed in Kelvin units and the error range on
the images is set between [-10,10] K. For this experiment, parameter µ was set to 2.0 (corresponding to RFIs of at least 1 pixel radius). TZP , TZPB and
TL1A denotes the results obtained by the Zero Padding method, the Blackman apodization method, and the method proposed in this work respectively.

RMSE(Tgt) Max Error(Tgt) RMSE(Tw) Max Error(Tw)
No outliers present in the image 10.743735 142.671738 7.644904 75.479853
Outliers with values on the image range 10.416675 147.356192 7.266313 57.133400
Outliers in the range [0,35000] K 13.082794 170.410338 10.678159 149.955697
Outliers outside grid position (25000 K) 11.945941 166.184179 9.403918 133.394016

TABLE I
QUANTITATIVE RESULTS OBTAINED WITH THE PROPOSED METHOD FROM SIMULATED DATA, IN DIFFERENT SCENARIOS: WITHOUT OUTLIERS, WITH

OUTLIERS INTENSITIES WITHIN THE RANGE OF THE IMAGE, WITH OUTLIERS LOCATED ON THE SAMPLING GRID POSITIONS AND OUTSIDE OF IT.
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Original image (Tgt) band-limited image Tw
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RMSE(Tgt) Max Error(Tgt) RMSE(Tw) Max Error(Tw)
TZP 13.733980 101.325733 9.787204 63.695435
TZPB 13.726109 140.964082 10.078270 69.381071
TL1A 10.416675 147.356192 9.454039 112.115255

Fig. 6. Analysis of the different methods when the outliers intensities fall within the range of the Earth’s brightness temperatures. Error measures are expressed
in Kelvin. TZP , TZPB and TL1A denotes the results obtained by the Zero Padding method, the Blackman apodization method, and the method proposed in
this work (with µ = 0.2) respectively.
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Original image (Tgt) band-limited image Tw

Restored image Difference image Difference image
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RMSE(Tgt) Max Error(Tgt) RMSE(Tw) Max Error(Tw)
TZP 248.437399 5985.546374 248.253076 5988.876063
TZPB 112.882746 2132.461092 112.498513 2135.790782
TL1A 13.082794 170.410338 10.678159 149.955697

Fig. 7. Results obtained with simulated data when several outliers with different intensities are present on the image. In this example, outliers are generated
on the following grid positions with its corresponding values: (-0.0357,-0.3093), 35.000 K; (-0.1429,0.0619), 10000 K; (-0.3929,-0.0928), 25000 K; (0.5714,
-0.1753), 800 K; (0.3304,-0.1289), 8000 K; (0.2589, 0.2629), 35000 K; (0.2589,-0.4897), 30000 K; (0.0357,-0.0515), 2000 K (Recall that this information
is not used during the restoration process: it is only provided for a better understanding of the Figure.). Error measures are expressed in Kelvin units and
the error range on the images is set between [-10,10] K. TZP , TZPB and TL1A denotes the results obtained by the Zero Padding method, the Blackman
apodization method, and the method proposed in this work (with µ = 0.2) respectively.
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Original image (Tgt) band-limited image Tw
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RMSE(Tgt) Max Error(Tgt) RMSE(Tw) Max Error(Tw)
TZP 87.283054 3335.698589 86.752718 3336.383413
TZPB 41.005901 1185.824560 39.933994 1186.509384
TL1A 11.945941 166.184179 9.403918 133.394016

Fig. 8. Analysis of the different methods when the the outliers are not located on the sampling grid. Note that the method performs well, with a performance
similar to the one obtained when outliers are present on grid positions. In this experiment, the outlier introduced in the image has an intensity of 20000
K. Error measures are expressed in Kelvin units and the error range on the images is set between [-10,10] K. TZP , TZPB and TL1A denotes the results
obtained by the Zero Padding method, the Blackman apodization method, and the method proposed in this work (with µ = 0.2) respectively.
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Original image (Tgt) band-limited image Tw

Restored image Difference image Difference image
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RMSE(Tgt) Max Error(Tgt) RMSE(Tw) Max Error(Tw)
TZP 9.671122 110.410052 0.557796 2.717416
TZPB 13.071849 144.637200 9.179310 63.214112
TL1A 7.858867 89.453253 5.101420 54.833780

Fig. 9. Comparison of extrapolation results. Error measures are expressed in Kelvin units and the error range on the images is set between [-10,10] K. TZP ,
TZPB and TL1A denotes the results obtained by the Zero Padding method, the Blackman apodization method, and the method proposed in this work (with
µ = 2) respectively. See text for details.
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Zero Padding Blackman The proposed L1A method

Zero Padding Blackman The proposed L1A method

ZP+Blackman Blackman The proposed L1A method
Fig. 10. Comparison between previous works and our method. The first row correspond to a snapshot from Northern Africa, where no outliers are present
in the scene. Second and third row correspond to Northern Europe and Central Europe (With Italy clearly visible) respectively. All snapshots where acquired
on march 2010. Color scale ranges from 0 to 350 Kelvin and all of the results are shown on the Extended Free of Alias Field of View (E-AF-FOV).

one free parameter µ that, as discussed in Section IV-A,
controls which impulsive structures are RFIs or belong to
the Earth’s temperature map. Parameter µ is therefore a scale
parameter that can be easily chosen based on geometric
considerations. As pointed out before, scale parameters or
resolution parameters are unavoidable in any image restoration
problem. In most restoration techniques, the low-pass filters
that are considered impose a resolution limit that fade out or
even eliminate small relevant structures.

In summary, experiments on both synthetic and real data
data show the ability of our method to recover the Earth’s
brightness temperature with high precision, and confirm the
suitability of our method, outperforming previous approaches
proposed for SMOS images restoration. On the other hand,
the drawback of the proposed method is the time it requires to
restore each snapshot (several minutes when RFIs are present
in the scene) due to its iterative nature and to the fact that in
each iteration an inverse FFT has to be computed. In this sense,
the nominal approach runs almost instantly since it requires a

single FFT inversion.

APPENDIX A
PROXIMAL OPERATORS

For the sake of completeness, we include the derivation of
each of the proximal operators involved in this work. We first
recall the proximal operator definition of a functional E:

proxγE(x) = arg inf
y

E(y) +
1

2γ
‖x− y‖2.

Proposition 2 (Proximal operators of `0 and `1 norms).
proxγ‖·‖1(o))[i] = sγ(o[i]), proxγ‖·‖0(o))[i] = τγ(o[i]),
where

sγ(t) =

{
sign(t) (|t| − γ) if |t| ≥ γ
0 if |t| < γ

τγ(t) =

{
t if |t| ≥ γ
0 if |t| < γ

are the soft and hard thresholding operators, respectively.
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A. Derivation of the proximal operator of TVH
We recall first the definition of the total variation semi-norm

of an image u : Ω ⊂ R2 → R:

J(u) = sup
ψ∈C1(Ω,R2), ‖ψ‖L∞(Ω)≤1

{∫
Ω

u(x) divψ(x)dx

}
,

where C1(Ω,R2) denotes the space of continuously differen-
tiable functions of compact support contained in Ω. We also
recall the discrete formulation, considering 2D images of size
N ×N (u ∈ X = RN×N ):

TV(u) =
∑

1≤i,j≤N

|(∇u)i,j |

and on its more general form:

TV(u) = sup
p
< p,∇u >Y

with |p| ≤ 1 and Y = X × X . With this notation, proxγTV
can be expressed:

proxγTV(u) = arg inf
y

TV(y) +
1

2γ
‖u− y‖2.

In Section 3 [23] derives a solution of this problem. Indeed,
the Euler equation for the previous equation is:

u− y + γ∂ TV(u) 3 0

which is equivalent of:

u ∈ ∂ TV∗((y − u)/γ)

where TV∗ is the dual function of TV(also known as the
Legendre-Fenchel transform):

TV∗(v) = sup
u
< u, v >X −TV(u)

writing
y

γ
∈ y − u

γ
+

1

γ
∂ TV∗(

y − u
γ

)

we can see that w = (y − u)/γ is the minimizer of:

||w − (y/γ)||2

2
+

1

γ
TV∗(w)

Because TV∗ is known to be the characteristic function of
some closed convex set K, we deduce that

w = ΠK(y/γ)

where ΠK denotes the nonlinear projection to K.
This derivation is in fact independent of the ∇ operator on
TV. In fact, we can generalize the previous result to a more
general form. If we redefine

TV(u) = sup
p
< p,Au >Y

with |p| ≤ 1 for any linear operator A, we obtain the
same result, with the only difference that set K is defined
accordingly:

K = {A∗v : v ∈ C1
c (Ω,R2), ||v||∞ ≤ 1}

where A∗ is the adjoint operator. Finally, projection ΠK(y)
can be obtained by solving:

min ||γA∗p− y||2

with ||p|| ≤ 1. In the discrete formulation, and again fol-
lowing [23], the existence of the KKT conditions yields the
existence of lagrange multipliers αi,j , resulting:

A(γA∗p− y)i,j − αi,jpi,j = 0

for all 0 ≤ i, j ≤ N . With this new formulation, the final
iterative algorithm derived by [23] can be reformulated:

pn+1
i,j =

pni,j + τ(AA∗pn − d)i,j

1 + τ |AA∗pn − d|i,j

with d = A(y/γ). For the specific case where A = div, [23]
has proven (Theorem 3.1) that, if 0 < τ ≤ 1

κ2 then γ div pn

converges to ΠγK(y) as n → ∞, where κ is the norm of
operator div. Nevertheless, the demonstration is generic and
we can easily extend the results to the more general form
where A is any linear operator. Thus, we have the following

Proposition 3. Let τ ≤ 1/κ2 with κ the norm of operator A∗.
Then γA∗pn converges to ΠγK(y) as n→∞.

In our case, the spectral TV minimization consists in
restricting the frequency domain to the cell H, i.e.

proxγ TVH(u) = arg inf
u∈BL(H)

TV(u) +
1

2γ
‖u− y‖2.

where BL(H) denotes the space of band limited functions
with spectral support within H. This constraint can be inte-
grated into the TV operator by means of the indicator function:

ιBL(H)(x) =

{
0 if x ∈ BL(H)
+∞ if x /∈ BL(H)

Then the proximal operator for the spectral TV becomes

proxγ TVH(u) := proxγTV+ιBL(H)
(u).

This can finally be expressed:

arg inf
u∈BL(H)

∑
0≤i,j≤N

|∇F−1ZF (u))i,j |+
1

2γ
‖u− y‖2.

where Z is a mask operator that restrict the domain to be
contained on H. Going back to Theorem 3, if we note A =
∇F−1ZF , the adjoint operator is

A∗ = F−1Z∗F div

where Z∗ is the conjugate of Z, which has a simple form
since Z is in fact a mask (1 for points on H and 0 otherwise).
To assure convergence, we finally set τ < 1/κ2 where κ =
sup||p||≤1 ||F−1Z∗F div p|| can be determined empirically.
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[33] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[34] ——, “Fast gradient-based algorithms for constrained total variation
image denoising and deblurring problems,” IEEE Transactions on Image
Processing, vol. 18, no. 11, pp. 2419–2434, 2009.

[35] A. Camps, I. Corbella, M. Vall-llossera, N. Duffo, F. Marcos,
F. Martı́nez-Fadrique, and M. Greiner, “The SMOS end-to-end per-
formance simulator: Description and scientific applications,” in IEEE
International Geoscience and Remote Sensing Symposium, vol. 1, 2003,
pp. 13–15.

http://dx.doi.org/10.1109/TGRS.2015.2499324
http://dx.doi.org/10.1109/TGRS.2015.2499324
http://dx.doi.org/10.1007/s10851-010-0251-1
https://hal.archives-ouvertes.fr/hal-01349516


17

Javier Preciozzi received the computer engineering
degree from Universidad de la República, Uruguay,
in 2002, the master degree on applied mathematics
from ENS Cachan, France in 2005, the master
degree in computer science from Universidad de la
República, Uruguay, in 2006 and the Ph.D. in elec-
trical engineering from Universidad de la República,
Uruguay, in 2016. His main area of interest are
image restoration, remote sensing and biometrics.

Andrés Almansa received his HDR (2005), Ph.D.
(2002) and M.Sc.(1998)/Engineering(1995) degrees
in Applied Mathematics and Computer Science from
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