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The ion influx isotherms obtained by measuring unidirectional influx across

root membranes with radioactive or stable tracers are mostly interpreted by

enzyme-substrate-like modeling. However, recent analyses from ion transporter

mutants clearly demonstrate the inadequacy of the conventional interpretation of

ion isotherms. Many genetically distinct carriers are involved in the root catalytic

function. Parameters Vmax and Km deduced from this interpretation cannot therefore

be regarded as microscopic parameters of a single transporter, but are instead
app app

macroscopic parameters (Vm and Km , apparent maximum velocity and affinity

constant) that depend on weighted activities of multiple transporters along the root. The

flow-force interpretation based on the thermodynamic principle of irreversible processes

is an alternative macroscopic modeling approach for ion influx isotherms in which

macroscopic parameters Lj (overall conductance of the root system for the substrate j)

and πj (thermodynamic parameter when J =j 0) have a straightforward meaning with

respect to the biological sample studied. They characterize the efficiency of the entire

root catalytic structure without deducing molecular characteristics. Here we present the

basic principles of this theory and how its use can be tested and improved by changing

root pre- and post-wash procedures before influx measurements in order to come as

close as possible to equilibrium conditions. In addition, the constant values of Vm and

Km in the Michaelis-Menten (MM) formalism of enzyme-substrate interpretation do not

reflect variations in response to temperature, nutrient status or nutrient regimes. The

linear formalism of the flow-force approach, which integrates temperature effect on

nutrient uptake, could usefully replace MM formalism in the 1-3-dimension models of

plants and phytoplankton. This formalism offers a simplification of parametrization to

help find more realistic analytical expressions and numerical solution for root nutrient

uptake.

Keywords: ion transport modeling, influx, efflux, enzyme-substrate modeling, flow-force modeling, nitrate,

potassium, phytoplankton
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INTRODUCTION

The kinetic patterns of ion uptake rates across roots, called
ion influx isotherms, were first established in the 1960s by the
pioneer work of Emanuel Epstein with 86Rb or 42K radioactive
tracers for potassium uptake in barley (Epstein et al., 1963).
These ion influx isotherms were later extended to other ions
with radioactive or stable isotope tracers such as 13N and 15

N for nitrate, 32PO2−
4 and 33PO2−

4 for phosphate, and 35SO2−
4

and 34SO2−
4 for sulfate (Bieleski, 1973; Kochian et al., 1985;

Lee and Drew, 1986; Siddiqi et al., 1989, 1990; Faure-Rabasse
et al., 2002). The conventional enzyme-substrate interpretation of
influx isotherms by Epstein’s group refers to a dual mechanism of
ion transport and defines two distinct transport systems: a high-
affinity transport system (HATS) and a low-affinity transport
system (LATS). HATS is characterized by a saturable kinetic
pattern in the low ion concentration range (<1mM; Lee and
Drew, 1986; Hole et al., 1990; Siddiqi et al., 1990; Aslam et al.,
1992), whereas LATS exhibits saturable or linear behavior in the
high ion concentration range (>1mM; Pace and McClure, 1986;
Siddiqi et al., 1990; Aslam et al., 1992; Kronzucker et al., 1995a).

The concept of transport systems (kinetic components
of ion fluxes across the roots) deduced from the enzyme-
substrate interpretation of influx isotherms is strengthened by
the mathematical deduction of microscopic parameters such
as Vmax and Km for the HATS and sometimes LATS, but
shows its weakness in the case of the LATS mechanism
when no enzymatic parameter can be set when its behavior
is linear (Peuke and Kaiser, 1996). Although ion influx
isotherms have been intensively used to validate molecular
characterization of ion transporters in mutant analyses, recent
analyses of ion transporter mutants for nitrate and potassium
clearly demonstrate that the conventional enzyme-substrate
interpretation is inadequate (Cerezo et al., 2001; Filleur
et al., 2001; Li et al., 2007; Britto and Kronzucker, 2008;
Alemán et al., 2011). Many carriers provided by genetically
distinct gene families are involved in the root catalytic
function (Touraine et al., 2001; Britto and Kronzucker,
2008; Alemán et al., 2011), and some transporters show
double affinity depending on their phosphorylation status, as
observed for the NRT1.1 (renamed NPF6.3) nitrate transporter
(Liu and Tsay, 2003; Ho et al., 2009). Vmax and Km
parameters deduced from an enzyme-substrate interpretation
cannot therefore be regarded as microscopic parameters of
a single transporter, but are instead macroscopic parameters
(Vmapp and Kmapp) that reflect the sum of single activities
of multiple transporters along the root (Neame and Richards,
1972).

Histochemical GUS (β-glucuronidase) or GFP (Green
Fluorescent Protein) activities of pNRT::GUS or pNRT::GFP in
transgenic Arabidopsis plants has revealed that these carriers
are located on the different membrane cell layers within the
mature root, and can be arranged in series or parallel to form
a complex catalytic structure (Guo et al., 2001, 2002; Girin
et al., 2007). The concept of transport systems deduced from
the interpretation of influx isotherms cannot therefore be
merged or confounded with ion transporters because influx

components correspond to subsumed activities of multiple
transporters along the root (Le Deunff and Malagoli, 2014a,b).
Likewise, the copy number of the genes is also increased
by endoreduplication in root cells during their elongation
(Hayashi et al., 2013) and by a genome redundancy in polyploid
crop species such as oilseed rape and wheat. Both situations
probably lead to an underestimation of the number of nitrate
transporters, hampering the enzyme-substrate interpretation of
nitrate uptake isotherms. It is also well demonstrated that ion
influx is uneven along the roots (Lazof et al., 1992; Reidenbach
and Horst, 1997; Colmer and Bloom, 1998; Sorgona et al.,
2011).

Conventional measurements of influx rate across the root in
kinetic patterns are most often made in transient conditions
far removed from equilibrium, because emphasis is laid on
unidirectional influx rate across the plasma membrane instead
of net flux (Britto and Kronzucker, 2001a,b; Britto and
Kronzucker, 2003a; Glass et al., 2002). The pre- and post-
wash conditions used for measurements therefore induced
thermodynamic perturbations of the root membranes (Britto
and Kronzucker, 2001a,b; Szczerba et al., 2006). Thus as
shown by Kronzucker and co-workers, the pre- and post-wash
conditions used in unidirectional influx measurements exhibit
minor discrepancies in the HATS range, but large discrepancies
in the LATS range of nutrient ion concentrations (Britto
et al., 2006; Szczerba et al., 2006). In alternative approaches
such as flow-force or compartmental analysis by the tracer
efflux method (CATE), the measurements of net influx or
efflux rates are more accurate and less chaotic because they
are performed in steady-state conditions and are close to
equilibrium (Britto et al., 2006). These experimental approaches
offer major opportunities to find new solutions to improve
formalisms of ion uptake in agronomic models for agricultural
purposes.

In this review, we discuss experimental procedures to measure
ion influx across the root, and present the basic principles
of flow-force theory established in the 1970s (Thellier, 1969,
1970a,b; Thellier et al., 1971a,b), how this theory has evolved
(Thellier, 1973, 2012; Thellier et al., 2009) and how and why
its formalism could be used in agronomic and phytoplankton
models of nutrient ion uptake.

EXPERIMENTAL PROTOCOLS FOR
ENZYME-LIKE VS. FLOW-FORCE
MODELING

Although the effects of local ion status and/or uptake-wash
regime on uptake isotherm kinetics have long been recognized
as very important factors influencing kinetic responses (Cram
and Laties, 1971; Leigh et al., 1973; Ayadi et al., 1974; Tinker and
Nye, 2000), they have been discussed only in the recent literature
(Britto and Kronzucker, 2001a, 2006; Szczerba et al., 2006).
Here we show that experimental procedures used to measure
unidirectional ion influx across root membranes to establish ion
influx isotherms will be different according to the modeling type
chosen: enzyme-like or flow-force.
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Influx Rate Measurements According to
Enzyme-Like Interpretation of Root Ion
Uptake
In the conventional enzyme-like procedure, ion flux
measurements across the root membranes at a given temperature
(isotherm condition) are made on roots of intact plants (Polley
and Hopkins, 1979; Siddiqi et al., 1989, 1990; Delhon et al., 1995;
Faure-Rabasse et al., 2002) or excised roots (Epstein et al., 1963;
Leigh et al., 1973; Kochian and Lucas, 1982; Kochian et al., 1985).
The flux measurements with radioactive or stable tracers of the
major nutrient ions present in soil (NO−3 , NH

+

4 , K
+, PO2−

4 ) are
performed over a short period of time: 5–10 min (Figure 1),
because the half-life of the ion cytoplasmic pool is only 2–7 min
(Presland and MacNaughton, 1984; Lee and Clarkson, 1986;
Devienne et al., 1994; Muller et al., 1995). It is assumed that this
short measurement time allows the assessment of influx from
carriers located in the plasma membrane of epidermis root cell
layer instead of net flux resulting from the difference between
influx and efflux (Walker and Pitman, 1976). It is then critical to
accurately determine the time needed to measure unidirectional
ion influx, together with the durations of pre- and post-wash to
equilibrate the apparent free spaces of the cell wall. As a rule,
these durations are deduced from the half-life of tracer exchange
between the apoplast and cytosol compartments, obtained by
desorption experiments (Presland and MacNaughton, 1984; Lee
and Clarkson, 1986; Devienne et al., 1994; Muller et al., 1995;
Kronzucker et al., 1995b,c,d).

Pre- and Post-Wash Steps During Unidirectional

Measurement of Influx Rate with Ion Tracers in

Non-Steady-State or Non-Equilibrium Conditions
The determination of ion influx rate from plants never exposed
to the ion of interest except for a 5 min pre-wash solution prior
to influx measurement, or directly in labeling solution does not
correspond to stationary or equilibrium conditions (Figure 1).
Unidirectional influx rate values are obtained in a transient state
although plants have the same nutrient status because they have
been uniformly pre-treated (Figure 1). By contrast, the steady-
state conditions can be defined as a situation in which ion fluxes
in and out of the root cells of a substrate Sj do not fluctuate under
given environmental conditions. In this stationary condition,
the root system is crossed by a flow of matter or energy but
the system properties do not change over time. In addition,
the steady-state conditions do not rule out an active transport
across the membrane that prevents many diffusive fluxes from
ever reaching equilibrium. Such a situation is encountered in
short-term isotopic labeling experiments in which the plant
growth rate and nutrient solution are held constant (Britto and
Kronzucker, 2001b, 2003a;Malagoli et al., 2008). The equilibrium
is defined as no further net movement of solute in the lack of
driving forces such as difference in concentration or electric field.
In conventional pre-wash procedures presented in Figure 1A,
the conditions for the ion of interest are far removed from
the equilibrium or steady state conditions because plants are
never exposed to this ion before influx measurements (Siddiqi
et al., 1989, 1990; Tinker and Nye, 2000). These situations

can be qualified as transient conditions because the system
properties change over time. Likewise, during the post-wash step
a low temperature is sometime applied to block the activity of
influx and efflux carriers (Figure 1B). However, this condition
may induce strong disturbances in measurements of ion influx
from a thermodynamic point of view by modifying influx and
efflux velocity characteristics of ion transporters (Britto and
Kronzucker, 2001a).

Duration of Pre- and Post-Wash Steps is Determined

by Compartmental Analysis by Tracer Efflux
Turnover in the tracer cytosolic pool is calculated from
compartmental analysis by tracer efflux (CATE) from plants
growing under steady-state conditions (Rauser, 1987; Cram,
1988; Siddiqi et al., 1991; Kronzucker et al., 1995b,c,d).
Depending on the ion studied, the plant roots were exposed to
a radioactive or stable tracer for 30 min to 1 h allowing both
substantial labeling of the cytosolic pool and limited labeling
of the vacuolar compartment under steady-state conditions.
The plants were then transferred to a non-labeling solution of
the same concentration, and a kinetic study of tracer elution
due to its efflux was performed to monitor desorption from
extra-cellular compartments, and then ion efflux from cytosol
to external medium (Figure 2A). It is well-established that
compartmental analysis from a semi-logarithmic plot of the time-
course of 13N radiotracer efflux shows three different phases
(Figure 2B). The successive phases are linked to the surface
liquid film (phase I), cell wall composed of the water free space
(WFS) and Donan free space (DFS; phase II) and cytosolic pool
(phase III; Rauser, 1987; Kronzucker et al., 1995b,c,d; Britto
and Kronzucker, 2003b). From these experiments, duration of
ion tracer desorption (i.e., ion exchange between labeled and
unlabeled ion in the apoplast) by washing with unlabeled nutrient
solution is easily determined by the duration of phases I and II
for different ion species (Siddiqi et al., 1989, 1990; Kronzucker
et al., 1995b,c,d; Malagoli et al., 2008). The idea is to maximize
ion removal from WFS and DFS while minimizing ion loss from
the cytosolic pool. However, even in the steady-state conditions
used, Kronzucker and co-workers have shown that elution of 42K
tracer by washing of barley roots causes disturbance of ion efflux
and leads to less accurate measurements of kinetic parameters.
Accordingly, a new procedure involving continuous monitoring
of bathing solution by removal and replacement of external
solution aliquots was defined to improve the estimation of the
kinetic constant, called sub-sample CATE (SCATE; Britto et al.,
2006).

Alternative Flow-Force Procedure
In the flow-force procedure, the main difference is that flux
measurements are performed on the roots at or close to
equilibrium with the external nutrient solution (Ayadi et al.,
1974; Tinker and Nye, 2000). The equilibrium is defined as
no further net movement of solute in the absence of driving
forces such as difference in concentration, or electric field.
Accordingly, the plant roots placed in a non-labeled solution
at a given external concentration were not washed before the
tracer flux measurements to avoid destroying the initial state of
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FIGURE 1 | Conventional procedure of ion influx measurements with radioactive or stable ion isotopes by stepwise increase of ion concentrations. (A)

Stepwise protocol for nitrate influx isotherms determination in intact plant roots of barley (from Siddiqi et al., 1989, 1990), spruce (Kronzucker et al., 1995a), and

Arabidopsis (Filleur et al., 2001). (B) Stepwise protocol for K+ influx isotherms determination of excised roots of 6-day-old dark·grown maize seedlings (from Kochian

and Lucas, 1982; Kochian et al., 1985).

equilibrium (Figure 3). The external concentration was smoothly
increased by adding aliquots with labeled nutrient ion at a
higher concentration, and the net flux was measured. The plants

were then transferred to non-labeling solution at the same
concentration to remove tracer from the cell wall. To some
extent, the steady-state conditions used in SCATE procedure are
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FIGURE 2 | Conventional procedure of root efflux analysis. (A) Stepwise protocol for efflux in intact plant roots of spruce, barley, and rice. (B) Representative

plot of ion efflux from roots of intact plants. Linear regression on semi-logarithmic plots was used to resolve phase I, II, and III corresponding to ion root surface film,

cell wall, and cytosolic pools (from Clarkson, 1974; Kronzucker et al., 1995b; Britto and Kronzucker, 2003b).

close to that which should be followed in the flow-force analysis
(Britto et al., 2006).

Does the Broad Range of Applied External
Concentrations Have Any Biological
Significance in Building Isotherms?
For a long time in the enzyme-like conventional procedure, the
maximal external ion concentrations used to build the isotherms
exceeded those measured in non-anthropized or agricultural soil
solutions by one or two orders of magnitude. For example,
nutrient solution concentrations used in laboratory studies lay
in the range 1 µM to 250 mM for nitrate (Siddiqi et al.,

1989, 1990; Kronzucker et al., 1995a,b; Hu et al., 2009), nitrate
concentrations being lower than 1mM in non-anthropized soils
and lower or equivalent to 10–20mM after fertilization in
agricultural soils (Reisenauer, 1966; NaNagara et al., 1976; Wolt,
1994; Britto and Kronzucker, 2005; Miller et al., 2007). Likewise,
for potassium, the concentrations explored ranged from 1 µM
to 10 or 100 mM (Epstein et al., 1963; Polley and Hopkins,
1979; Kochian and Lucas, 1982), typical K+ concentration in
the soil solution ranging only from 1 µM to 6 mM (Maathuis,
2009). Furthermore, in the conventional enzyme-substrate wash
procedure, measurement errors in unidirectional influx rate
are less significant (10%) in a low range of ion concentration.
However, the wash procedure induces errors of at least 30%
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FIGURE 3 | Optimal experimental design for the Flow-Force modeling. Stepwise protocol for influx in intact plant roots placed in conditions of steady-state

growth. The stepwise increase of labeled ion concentration. = +[X] represents the concentrations of labeled ion needed to reach a desired final concentration for

stepwise influx measurements.

in the high range of ion concentrations (Britto et al., 2006).
Likewise, in the high range of concentrations for six major
nutrient ions (Cl−, NO−3 , SO

2−
4 , K+, NH+4 , Na

+), the efflux
component increases, and efflux:influx ratios tend toward a
value close to 1. Because the anion (A−) influx is mediated
by an electrogenic symport mechanism with a general A−/2H+

stoichiometry, this result suggests that H+-ATPase pumps must
run twice to counterbalance the anion efflux. Under a broad
range of concentrations, this futile ion cycling probably has
a large energy cost (Britto and Kronzucker, 2006). Taken all
together, these results show that over a high range of ion nutrient
concentrations, besides the lack of biological meaning of ion
concentrations used, the kinetic patterns of the isotherms cannot
be regarded as being accuratemeasurements of the unidirectional
influx owing to the magnitude of the efflux component (Britto
and Kronzucker, 2006).

ENZYME-LIKE MODELING

When influx of substrate j (Jj) has been plotted against Sj
concentrations in external solution (noted cej ), a wide variety of

curves can frequently be fitted to experimental data points: (i)
curve with one arch, (ii) curve with two arches, or (iii) curve
with one arch followed by a quasi-linear response, (iv) curves
with more than two arches, and (v) sigmoid curves (Figure 4).
For example in erythrocytes, sodium uptake between 0 and
150 mM shows a sigmoid rather than a curvilinear relationship
(Garrahan andGlynn, 1967). Similarly, depending on the internal
concentration of K+, root influx of K+ showed an allosteric
regulation (Glass, 1976).

Carrier Viewpoint of Enzyme-Like
Modeling
The idea of modeling arches given by the experimental points
obtained with unidirectional flux of tracer originated from the

pioneering work of Emmanuel Epstein and his group (Epstein
and Hagen, 1952; Epstein, 1953, 1966). The interpretation of ion
influx isotherms is based on applying analogical reasoning to
enzyme functioning (Briskin, 1995; Jacoby, 1995). In brief, this
reasoning states that the absorption mechanism of a substrate Sj
from external to internal is catalyzed by a carrier C. In this case,

Sej + C←→ CSj → Sij + C, (1)

where Sej and Sij represent substrate Sj present in external and

internal solution, respectively. CSj represents the complex
formed between Sj and the carrier. This formalism is equivalent
to Michaelis–Menten kinetics formalizing an enzymatic
transformation of S into P through E activation:

S+ E←→ ES→ P+ E, (2)

where ES represents the enzyme-substrate complex.
The graphs {cej , J

ei
j (c

e
j )} obtained are curves with one arch

(Figure 2A), and are modeled by a hyperbola of the Michaelis–
Menten type stated to represent the involvement of a single
carrier (Cornish-Bowden et al., 2004).

v = Vmax ·[cs]/(Km+ [cs]), (3)

where v is the velocity or “flow,” cs is the external substrate
concentration,Vmax (maximum velocity) represents the velocity
of enzyme saturated by the substrate, and 1/Km is an
approximation of the enzyme affinity for the substrate. This
equation can also be written:

Jeij (c
e
j ) = Vmax ·[cej ]/(Km+ [cej ]), (4)

where Vmax is the saturation velocity of carrier C by substrate
Sj, and 1/Km is an approximation of the affinity of carrier C for
substrate Sj.
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FIGURE 4 | Influx isotherms for K+ and NO−

3
absorption by plant roots in H. vulgare and Arabidopsis. (A) Isotherms for 42K+ uptake of excised roots from

5-day·old dark-grown barley seedlings. K+ influx rate was measured after 10 min of labeling at 30◦C with a nutrient solution of 0.5 mM CaCI2 containing between

0.002 and 50 mM 15NO3
− (adapted from Epstein et al., 1963). (B) Isotherms for 15NO3

− of intact roots from 6-weeks-old Arabidopsis plants. No3
− influx rate was

measured after 5 min of labeling at 25◦C with a complete nutrient solution containing between 0.005 and 20 mM 15NO−3 . Bars indicates SE for n = 6 (adapted from

Filleur et al., 2001). (C) Monophasic isotherm interpretation for 86Rb+ uptake of roots from 4-5-d-old Arabidopsis intact seedlings (adapted from Polley and Hopkins,

1979). (D) Multiphasis or discontinuous isotherms interpretation for 86Rb4 uptake of excised roots from 6-d-old dark grown maize roots (log10v vs. log10 [Rb+]ext)

(from Nissen, 1989). K+ influx rate was measured after 10 or 30 min of labeling at 23◦C with a nutrient solution of 0.2 mM CaSO4 and 1 mM MES Buffer pH 6.5

containing between 0.005 and 50mM 86Rb4 (Kochian and Lucas, 1982). Arrows indicates transition for potassium uptake. (E) Allosteric regulation of 86Rb+ influx

rate by internal K+ concentrating 6-d-old intact barley roots. K+ influx rate was measured after 10 min of labeling at 30◦ C with a nutrient solution of 0.5 mM CaSO4

containing between 0.02 and 0.16 mM 86Rb+(from Glass, 1976).

For the graphs with two arches, we consider that each
of the arches reflects the activity of a particular type of
carrier considered to play the dominant role in the range of
concentrations over which the arch is observed (Figure 4A).
Each of the arches is then modeled by a Michaelis–Menten
hyperbola and characterized by the values of the microscopic
parameters Vmax and Km (Vm1, Km1 for the first hyperbola
and Vm2, Km2 for the second, and so on). Because graphs with

two arches are those most frequently obtained, it was widely
assumed that two types of carriers or mechanisms were most
often involved in the absorption process: a lowmaximum velocity
(and so capacity) and HATS (mechanism I, called HATS for High
Affinity Transport System) and a high maximum velocity, LATS
(mechanism II, called LATS for Low Affinity Transport System).

When the second mechanism shows a linear part (Figure 4B),
it is considered that the diffusion becomes dominant in the
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corresponding concentration range (Kochian and Lucas, 1982;
Briskin, 1995; Jacoby, 1995; Britto and Kronzucker, 2008). When
the graphs {cej , J

ei
j (c

e
j )} are sigmoid (Figure 4E), it is inferred that

the corresponding carriers could be allosteric proteins (Glass,
1976).

In summary, enzyme-like modeling seems powerful since it
determines the molecular characteristics of the carrier from
the macroscopic unidirectional influx measurements of root
biological samples (e.g., number of different types of carriers
involved, estimated values of Km and Vmax of these carriers,
possible allosteric nature of carriers). However, at the same time,
a broad diversity of equations fitting experimental data points
is controversial because no unity in the identification of root
transporter and associated parameters is allowed.

Discussion of Enzyme-Like Modeling
Theoretical studies based on the modeling of realistic
mechanisms for carrier functioning showed, with the help
of some simplifying assumptions, that such systems could
actually generate pulses obeying the Michaelis–Menten equation
(King and Altman, 1956; Schachter, 1972; Wong and Hanes,
1973). However, although the arches of the experimental graphs
can be reasonably modeled by a Michaelian hyperbola, this does
not mean that hyperbolic Michaelis–Menten fitting is the best
of all possible models for these arches made from experimental
data points: in other words enzyme-like modeling may possibly
be satisfactory, but is not necessarily so. Indeed, there is no
particular reason plant roots should behave like an enzyme.

Molecular Analyses of Ion Carrier Mutants Are

Inconsistent with the Predictions of Enzyme-Like

Modeling
In the last two decades the cloning and molecular
characterization of new macronutrient carriers such as
potassium and nitrate, operating over a wide range of external
concentrations, has thrived (Touraine et al., 2001; Britto and
Kronzucker, 2008; Wang et al., 2012). The mutant analyses
validated the existence of complex carrier systems for root
absorption rather than a simple carrier system over low and
high ranges of potassium and nitrate concentrations (Alemán
et al., 2011; Le Deunff and Malagoli, 2014b; Krapp, 2015). For
example, the dual affinities of some K+ and NO−3 transporters
as a result of protein modifications such as phosphorylation and
dephosphorylation invalidate the notion of distinct high and
low affinity transport systems established by the enzyme-like
approach (Liu and Tsay, 2003; Cheong et al., 2007; Ho et al., 2009;
Ragel et al., 2015). It also denies the oversimplification of carrier
insertion in one single membrane (Crawford and Glass, 1998;
Le Deunff and Malagoli, 2014b). In addition, the redundancy of
the genes encoding nitrate transporters in Arabidopsis operating
in a low range of external concentrations (<1 mM) such as
NRT2.1, NRT2.2, NRT2.4, NRT2.5, and NRT1.1 (NPF6.3) also
invalidates enzyme-substrate analogical reasoning (Li et al., 2007;
Kiba et al., 2012; Glass and Kotur, 2013; Kotur and Glass, 2014;
Lezhneva et al., 2014). Furthermore, the recent discovery of new
gene families of nitrate transporters: CLC (ChLoride Channel)
and NAXT (NitrAte eXcretion Transporter) has increased the

complexity of the root catalytic device for nitrate (De Angeli
et al., 2006; Segonzac et al., 2007). The ClCa transporter is
involved in nitrate influx into the vacuole and participates in
the short-distance transport of nitrate and the homeostasis for
cellular nitrate (Monachello et al., 2009; Krebs et al., 2010).
Likewise, impairment of nitrate vacuolar sequestration in a
mutant defective in tonoplast proton pump, or inhibition of the
proton pump using pharmacological inhibitors, up-regulated
the AtNRT1.5 gene expression and down-regulated AtNRT1.8
expression (Han et al., 2016). The NRT1.5 nitrate transporter
is involved in nitrate xylem loading, while the NRT1.8 gene is
responsible for xylem unloading (Lin et al., 2008; Li et al., 2010;
Chen et al., 2012; Zhang et al., 2014). These results demonstrate
that the regulation of the cytosolic nitrate concentration in
roots regulates the long-distance transport of nitrate from roots
to shoots and the nitrate influx at the root plasma membrane
(Geelen et al., 2000; Monachello et al., 2009). They corroborate
the previous conclusion of compartmental analysis by the
tracer efflux method showing that influx of nitrate to roots is
highly regulated by nitrate import into the vacuole, efflux from
the cell and loading into the xylem (Pitman, 1977; Britto and
Kronzucker, 2001b, 2003a,b). This molecular complexity will
certainly go on increasing with the identification of other genes
encoding nitrate carriers involved in nitrate influx and efflux
from the vacuole (Migocka et al., 2013) or nitrate xylem loading
and unloading (Köhler et al., 2002; Han et al., 2016).

Hence the overall root organ should be considered as a
catalytic device across the root radius, formed by a complex
of nitrate transporters (CNT) operating at low and high ranges
of external concentrations (Tinker and Nye, 2000; Britto and
Kronzucker, 2003a). The compartment location and inducibility
of nitrate transporters conflicts with the implicit interpretation
of enzyme-substratemodeling where Vmax and Km are constant
parameters and where nitrate transporters are located in a
“single root membrane.” This probably explains the varied shapes
of isotherms encountered in the literature under the different
experimental conditions used (Figure 4).

Macroscopic vs. Microscopic Parameters
The above arguments do not completely invalidate the enzyme-
like modeling approach. It is easier to manipulate the
macroscopic values taken by a few parameters (V

app
m and K

app
m ,

apparent maximum velocity and affinity constant) than to
manipulate the experimental values or even the plot that can be
drawn from these values. However, we must face the fact that
V
app
m and K

app
m do not have the molecular meanings we might

expect (Vm and Km from an enzymatic reaction). It is clear
that parameters Vmax and Km are only “apparent” parameters,
i.e., they reflect activity of ion uptake at the root level and
the subsumed activity of several elemental transporters (Neame
and Richards, 1972; Polley and Hopkins, 1979; Briskin, 1995;
Tinker and Nye, 2000; Franks, 2009). Unfortunately, V

app
m and

K
app
m are too often regarded as actual values of microscopic

parameters at the elemental transporter level (Siddiqi et al., 1989,
1990; Forde and Clarkson, 1999; Tinker and Nye, 2000). For
the absorption process, V

app
m and K

app
m are only macroscopic

parameters describing the overall behavior of the root sample
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studied for the absorption process considered in the experimental
conditions used. The major difficulty in using these macroscopic
parameters arises from the fact that we are unable (i) to
find a simple meaning for them in relation to the integrated
constitution and functioning of the root sample at a molecular
level and (ii) to fill the gap between the transporters and the
unidirectional or net flux measured at root level. Some of the
most serious shortcomings of the enzyme-substrate interpretation
to describe nutrient ion uptake have been corrected in the
ecological models of phytoplankton in the last three decades (see
Section: Changes in the Number and Nature of Transporters
Involved in Nutrient Uptake Modify Vmax and Km values and
Section: Inducibility of Nutrient Transporters in Relation with
Plant Nutrient Status alsoModifies Apparent Values ofVmax and
Km below).

FLOW-FORCE MODELING

Stating the Problem
Non-equilibrium thermodynamics may be a useful frame for a
macroscopic description of the substrate-absorption in which the
parameters have a straightforward meaning with respect to the
biological sample studied (Katchalsky and Curran, 1965; Thellier
et al., 2009; Thellier, 2012).

Briefly, let us consider a system, the “internal” and “external”
compartments of which are termed “i” and “e,” respectively.
The system may be defined by state variables that are either
intensive (temperature [in K], pressure, electric potential,
chemical potential of a substance, etc.) or extensive (entropy,
volume, quantity of electricity, quantity of a substance,
etc.). Intensive and extensive variables can be coupled or
“conjugated”: temperature/entropy, pressure/volume, electric
potential/quantity of electricity, chemical potential of a
substance/quantity of that substance. Generally speaking, the
properties of extensive variables are such that they cannot
be defined at a point but only in macroscopic systems or
subsystems (e.g., the volume of a point is meaningless) and
they are additive (e.g., with a system made up of subsystems,
the content of a substance in the system is the sum of the
contents of that substance in the subsystems). By contrast, the
properties of intensive variables are defined at a mathematical
point and are not additive. For instance, when we speak about
“the temperature of a system,” we imply that all the points
in the system are at that temperature. If one or several state
variables of a system do not keep the same value in time, this
system is said to undergo a “transformation” (or “process”). Two
different types of transformation may occur: (i) an exchange of
an extensive variable between the internal, i, and the external,
e, compartments of the system and/or (ii) a chemical reaction
within the system. Let us consider the case of an exchange. The
exchange is driven by forces resulting from potential gradients.
In the simple case (that considered here) of an exchange of an
extensive variable such as a chemical potential of a substance (Sj)
between i and e through an infinitely thin frontier, the driving
force is merely the difference in the value of the conjugate
intensive variable in e and i. In the case presented, this is the
difference in the concentration of substance J (namely, cij and

cej ). The “flow,” Jj, of Sj between e and i is the quantity of Sj
exchanged per unit of time. Using isotopic tracers, it is easy to
measure the influx, Jeij , and the efflux, Jiej , of Sj separately with:

Jj = Jeij − Jiej (5)

When close enough to equilibrium (i.e., when cij and c
e
j no longer

fluctuate in the case of a substance), the flow, Jj, is a linear
function of the force, Xj (i.e., Cj in the case of a substance):

Jj = Lj · Xj, (6)

in which the coefficient Lj is termed the “conductance” of the
process. Farther away from equilibrium, the relation between flow
and force becomes non-linear (Thellier, 1973).

Application of Flow-Force Relationships to
the Transport Process
Transposing Equation (1) for a transport process in cell systems
in which i is the cytosol of the root cells and e is the apoplastic
spaces results in the net flow of a substance Sj:

Jj(c
e
j ) = Jeij (c

e
j )− Jiej (c

e
j ), (7)

where Jj(c
e
j ) is the positive flow (influx) from e to i and Jiej (c

e
j ) is

the positive flow (efflux) from i to e. Based on the general flow-
force theory as set out above, we may consider that in a biological
system (here a root cell) in the presence of two substances Sj
and Sk, the flow of Sj depends not only on “combined” terms
(i.e., difference in concentrations across the cell membrane),
but also on “crossed” terms (i.e., the effect of Sk on flow of
Sj, for instance). It is said that there is a “coupling” between
these two processes. Two well-known examples of couplings are:
(i) the coupling between the transport process of a substance,
Sj, and a reaction process, R (active transport of first order)
and (ii) the coupling of the transport process of a substance,
Sj, to the transport process of another substance, Sk (active
transport of the second order, Mitchell, 1967; Hanson, 1978).
Flow-force modeling may be proposed to simulate ion flows
across the root membrane based on driving forces, and not
only the putative enzymatic deduced functioning of carriers
(Thellier et al., 2009; Thellier, 2012). To deal with linear
equations, the transport process, as governed by differences in
substrate concentrations, has to be close enough to equilibrium.
If ◦cej is the concentration of the growth medium with which

plants have pre-equilibrated, the experiments will have to be
carried out using a series of external concentrations of Sj, c

e
j ,

close enough to ◦cej . Accordingly, washing the roots before the

absorption experiments (as is commonly reported in numerous
influx measurement experiments) would strongly disturb the
pre-equilibration value, and so ultimately the thermodynamic
conditions and forces driving flow. Washing (with calcium salt,
for instance) before influx measurement should therefore be
avoided.
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The Optimal Experimental Protocol for
Flow-Force Modeling
The experimental protocol (Thellier et al., 2009) best suited to
application of the flow-force approach is as follows. We prepare
a series of growth vessels containing a nutrient solution with
the initial concentration (◦cej ) of Sj. We dip plant samples in

these growth vessels long enough for them to equilibrate with
this medium with regard to Sj. Without removing the plant
samples from the vessels, we impose various concentrations, cej ,

of Sj in the growth vessels by adding either small amounts of
Sj (c

e
j > ◦cej ) or small volumes of a solution identical to the

initial medium except that it contains no Sj (c
e
j < ◦cej ). This

enables us to smoothly increase or decrease test concentration
of substance J. For each value of cej thereby obtained, influx,

Jiej (cej ), and efflux, Jeij (cij) of Sj can be measured using labeled

medium marked with a suitable isotope with unlabeled plant
samples (direct influx measurements) or unlabeled medium with
pre-labeled plant samples (efflux measurements). Accordingly,
the net flux for each value of cej , Jj(c

e
j ) can be obtained easily using

Equation (3).

The Flow-Force Model
Using reasonable simplifying assumptions such as (i) similar
values for the activity coefficient of the substrate in the internal
and external media, (ii) quasi-constant transmembrane electrical
potential over the range of values of cej , and (iii) constant export

of the substrate Sj to the aerial parts over the duration of the
experiments, the following equation expressing flow of substance
J across a membrane can be written:

Jj(c
e
j ) = RTλjln((c

e
j )/(
◦cej )) = Ljln((c

e
j )/(
◦cej )), (8)

with

Lj = RTλj, (9)

where R is the gas constant, T the absolute temperature and λj,
the overall conductance of the sample for the net uptake of Sj.
Table 1 presents the parameters of models, their symbols and
their units. When a change in the experimental conditions causes
a change λj, an Arrhenius diagram lets us determine whether the
change is quantitative or qualitative (see Thellier et al., 2009 for
further explanations).

A more general expression of net flows that can be used when
the simplifying assumptions are not properly fulfilled would be:

Jj(c
e
j ) = Ljln(πj · (c

e
j )), (10)

whereπj characterizes the resulting effect of all terms (i.e., activity
coefficients, electric potential difference, potential couplings,
etc.) other than cej involved in the driving force for the net

absorption of Sj by the plant sample under study. This means
that when a system of semi-log coordinates is used {ln (cej ),

Jj(c
e
j )}, the plot representing the experimental points is expected

to be quasi-linear for the values of cej sufficiently close to the

TABLE 1 | Key to symbols used in the text.

Symbol Description Unit

e Apoplastic space of the root cells

i Internal space of the root cells

◦cej Initial concentration in the bulk solution mol. m−3

cij Concentration of Sj component in the

cytosol

mol. m−3

cej Concentration of Sj component in the

apoplast

mol. m−3

j Solute under study

Jj Solute influx (based on membrane area) mol. m2. s-1

Kappm Apparent half saturation constant mol. m−3

Km Half saturation Michaelis-Menten constant mol. m−3

Lj Conductance of the overall root system mol. h−1.g−1 root DW

Ln Logarithm to base e

πj Effect of all the processes energizing the

transport of Sj

mol−1.m3

R Gas constant 8.314 J mol−1 K−1

Sj Solute concentration of solute J in the bulk

solution

mol. m−3

T Absolute temperature K or ◦C

Vappm Apparent maximal uptake rate mol. s−1

Vmax Maximum reaction velocity of

Michaelis-Menten

mol. s−1

equilibrium concentration ◦cej (Thellier et al., 2009). Hence

it is expected that if the experiment is undertaken under
optimal conditions (similar values of activities coefficients, no
change in electrical potentials across the membrane and constant
value of net flux across tonoplast and up to aerial parts), the
intersection of plots on the abscissa (i.e., flow = 0) estimates πj

as:

ln(1/◦cej ) = lnπj. (11)

Conversely, if the experimental protocol is not optimal,
then the plot intersects the abscissa again at a point −ln
πj, but where πj is no longer equal to 1/◦cej , although it

remains the result of the contribution of all terms other than
cej involved in the driving forces energizing the absorption

of Sj. In such a case, difference in activity coefficient,
transmembrane potentials and fluxes into cells may all be
single or combined candidates contributing in a significant
way to forces driving flow. This underlines the importance of
conducting experiments close to equilibrium in order to avoid
confounding effects when investigating and ultimately modeling
flows. In other words, −ln πj, represents a thermodynamic
constant that accounts for energy coupling necessary for Sj
transport. The plot in Figure 5 illustrates some examples of
representations in semi-log coordinates {ln (cej ), Jj(c

e
j )} for

potassium and nitrate uptake from data points obtained
in intact plants and unicellular algae in the literature
(Kannan, 1971; Polley and Hopkins, 1979; Faure-Rabasse
et al., 2002).
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FIGURE 5 | Transformation of nitrate or potassium uptake rate isotherms in semi-log coordinates {ln (ce
j
), Jj(c

e
j
)}. (A,B) Rate of potassium (86Rb+) uptake

by cells of chlorella pyrenoidosa as a function of and transformation of the data in semi-log coordinates (From Kannan, 1971). Verticla bars represent ±SD of the

means. (C,D) Rate of Potassium (86Rb+) uptake by roots of Arabidpopsis intact seedlings as a function of KCI concentration in the medium and transformation of the

data in semi-log coordinates (from Polley and Hopkins, 1979). (E,F) Rate of nitrate uptake by roots of Brassica napus intact seedlings as a function of KNO3

concentration in the medium and transformation of the data in semi-log coordinates (from Faure-Rabasse et al., 2002). Plants were either non-induced (grown without

NO3 supply, black circles) or induced during 24 h by 1 mM KNO3 prior to measurements (gray circles). Vertical bars indicated ±SD for N = 3 when larger than the

symbol.

Quantitative/Qualitative Modifications of
the Global Conductance, λj, in Response to
a Change in the Experimental Conditions
When a change in experimental conditions (e.g., use of younger
or older plants) causes a change of λj, this change can come
from quantitative modification of the root catalytic device (which
gathers all transporters) involved in the absorption of Sj (change
in the number of molecules of carriers) and/or qualitative
changes (change in the nature or activity of the carriers). In the
range of the biological temperatures [i.e., between 275 (1.85◦C)

and 305K (31.85◦C)], different values of λj are obtained for

different temperature values (all the other variables unchanged).

Using an Arrhenius plot {1/T, log Jj} or {1/T, λj}, the experimental
points are expected to lie on a straight line, the slope of which
plays a role comparable to that of an activation energy for

the overall process of absorption under consideration (Thellier,
1971). When the experiments are carried out with two different

conditions (for instance using young or adult plants or at
two different external concentrations Sj), if the two plots thus

obtained are parallel to each other (similar slope), then the overall
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absorption processes differ quantitatively (e.g., the density of
carriers at the root epidermis is not the same). By contrast,
if the plot slopes are significantly different, then a qualitative
change has occurred (e.g., in the specific activity of the carriers).
Figure 6 illustrates the Arrhenius diagram obtained by plotting
the logarithm of nitrate influx Jj vs. 1/root temperature at 100
µM and 5 mM external nitrate concentration (Le Deunff and
Malagoli, 2014a). Although the experiment was not carried out in
the best conditions, the parallel behavior of the two linear curves
(Figure 6B) highlights that the temperature does not change the
root conductance for nitrate at 100 µM and 5 mM. Hence the
increase in nitrate influx with temperature is not associated with
changes in the catalytic efficacy of the root catalytic device for
nitrate (specific activity of carriers), but is instead associated with
quantitative changes such as the numbers of nitrate carriers.

Application of Flow-Force Modeling under
Suboptimal Experimental Conditions
To our knowledge, no experiment has ever been carried out
under the optimal conditions indicated in Section: Application of

FIGURE 6 | Building an Arrhenius plot from experimental data points to

check qualitative or quantitative modifications or the root catalytic

device for nitrate uptake. (A) Variations of nitrate uptake rate at 100 µM and

5 mM external nitrate concentration induced by different root temperature

treatments. (B) Arrhenius diagrams {1/T, log Jj) deduced from nitrate influx rate

variations in response to root temperature changes. Vertical bars indicated

±SD for N = 3 when larger than the symbol.

Flow-Force Relationships to the Transport Process and Section:
The Optimal Experimental Protocol for Flow-Force Modeling.
However, making a few simplifying hypotheses (in particular
the assumption that the efflux remains small compared with the
influx over the range of concentrations used, which means that
the net flow is not too different from the influx), it is possible to
apply flow-force modeling to the numerous experiments carried
out since isotopic tracers became available (Thellier et al., 2009;
Le Deunff and Malagoli, 2014a).

Initial Approach to the Problem: The
Electrokinetic Formalism
Flow-force modeling of cell transports was initially introduced
using the “electrokinetic formulation,” based on a formal analogy
with classical electrokinetics (Thellier, 1969, 1970a,b, 1973). This
does not change the main equations given above. The reason is
that classical electrokinetics amounts to flow-force modeling in
the linear domain.

ATTEMPTS TO CORRECT THE
SHORTCOMINGS OF
ENZYME-SUBSTRATE INTERPRETATION
IN THE NUTRIENT UPTAKE MODELS

For over 50 years, the enzyme-substrate interpretation of isotherm
kinetics has prevailed, and has been extended to models of
nutrient ion uptake in plants (Barber, 1995; Le Bot et al., 1998;
Tinker and Nye, 2000; Ma et al., 2008) and phytoplankton
(Dugdale, 1967; MacIsaac and Dugdale, 1969; Morel, 1987;
Smith et al., 2009, 2014; Aksnes and Cao, 2011; Fiksen et al.,
2013). Among all the models, the phytoplankton ecological
models of nutrient uptake based on the Michaelis–Menten
(MM) formalism show the most noteworthy developments for
coping with deviations between simulated andmeasured outputs.
The development of these phytoplankton ecological models
encapsulates all the problems encountered by the rigid values of
Vmax and Km provided by the MM models developed in plants
(Aksnes and Egge, 1991; Franks, 2009).

Changes in the Number and Nature of
Transporters Involved in Nutrient Uptake
Modify Vmax and Km Values
Phytoplankton physiologists have found that one of the main
problems of MM models is the rigid values of the Vmax
and Km obtained in short-term experiments in oligotrophic
and eutrophic regimes (Aksnes and Egge, 1991; Franks, 2009;
Bonachela et al., 2011; Fiksen et al., 2013; Smith et al., 2014). Plant
physiologists reached the same conclusion in the 1970s (Nye and
Tinker, 1969; Jungk et al., 1990; Barber, 1995; Tinker and Nye,
2000). Several experiments have demonstrated the shortcomings
of MM kinetics to describe nutrient ion uptake of phytoplankton
(Droop, 1970, 1973; Aksnes and Egge, 1991; Franks, 2009). The
observed co-variation of Vmax and Km values has invalidated
the definition of Km as an affinity constant, and demonstrated
that the Vmax and Km are only apparent parameters (V

app
m

and K
app
m ) and cannot be regarded as constant values depending
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for instance on time or internal nutrient status (Neame and
Richards, 1972; Aksnes and Egge, 1991; Franks, 2009; Aksnes
and Cao, 2011). Hence recent trait-based phytoplankton models
provide novel mechanistic expressions to tackle and correct the
static expression of the enzyme-substrate formalism (Aksnes and
Egge, 1991; Aksnes and Cao, 2011; Bonachela et al., 2011; Fiksen
et al., 2013; Smith et al., 2014). By deriving equation of nutrient
transport at cellular level rather than at enzymatic individual
level, Aksnes and Egge (1991) demonstrate that MM modeling
is a special case of their mechanistic model. In these models, the
uptake of nutrient ions depends on the number and density of
uptake sites on the plasmalemma of phytoplankton cells, which
determines the plasticity of the uptake apparatus in response
to temperature and nutrient diffusion in relation with nutrient
regimes (Aksnes and Egge, 1991; Fiksen et al., 2013; Lindemann
et al., 2016). In addition, the affinity constant α, defined as the
Vmax/Km ratio, is preferred to Km because it represents the
area of the cell membrane able to catch nutrient ions and it is
proportional to the cell size. The introduction of mechanistic
parameters in these extended MM models avoids bias up to 50%
in some configurations compared with usual MMmodels (Fiksen
et al., 2013), showing the pertinence of the approach.

Inducibility of Nutrient Transporters in
Relation with Plant Nutrient Status Also
Modifies Apparent Values of Vmax and Km
In plants, activities of nutrient transporters such as NO−3 , PO

2−
4 ,

K+, and SO2−
4 are modified by external nutrient availability and

pre-treatment with the nutrient under study, which alter nutrient
status in plants (Glass, 1976; Siddiqi et al., 1989, 1990; Jungk et al.,
1990). Thus in Arabidopsis, it has been clearly demonstrated that
AtNRT2.1,AtNRT2.2, andAtNRT1.1 nitrate transporter genes are
induced by external nitrate (Tsay et al., 1993; Amarasinghe et al.,
1998; Krapp et al., 1998). Transcriptional induction depends on
plant N status, the level induction decreasing with increasing
nitrate concentration during the pre-treatment (Siddiqi et al.,
1989, 1990). After the induction, a steady de-induction process
is observed, with a reversion after 48–72 h to the initial value
of nitrate influx rate before induction (Faure-Rabasse et al.,
2002; Okamoto et al., 2003). These results demonstrate that
depending on plant N status and nitrate pre-treatment, values
for the parameters Vmax and Km can be determined, but are not
constant. Although in phytoplankton, inducible behavior of some
nutrient carriers such as nitrate transporters has been recently
discovered (Rogato et al., 2015), nutrient uptake regulation by
N status was already taken into account in trait-based models
through a modulating term dependent on the internal nutrient
concentration or N/C ratio (Droop, 1970, 1973; Geider et al.,
1998; Litchman et al., 2007; Litchman and Klausmeier, 2009;
Bonachela et al., 2011).

Despite the quantitative use of the enzyme-substrate approach
in nutrient uptake models (N, P, K, S) in plants and
phytoplankton, the thermodynamic processes involved in
nutrient ion uptake and the realistic solutions offered by
the flow-force modeling approach can no longer be ignored.

One of the most severe limitations of MM models in plants
and phytoplankton is that temperature, which partly drives
biochemical reaction rates and ion diffusion processes, and
which in turn modify parameters Vmax and Km, is not
taken into account (Aksnes and Egge, 1991; Tinker and Nye,
2000; Fiksen et al., 2013). Nutrient ion kinetics are established
under isothermal conditions. Response of the uptake process
to temperature is thus left out of the MM model, even
though temperature is a key variable acting either directly
(on carrier functioning) or on nutrient availability in the
diffusion boundary layer around phytoplankton cells or roots
(Aksnes and Egge, 1991; Smith, 2011; Fiksen et al., 2013). The
temperature dependence of nutrient influx rate in plants is well
illustrated in Figure 6 for nitrate. Use of flow-force formalism
for nutrient uptake, which includes the temperature dependence
of the uptake, might greatly improve plant and phytoplankton
models in response to changes in environmental variables
(e.g., temperature, nutritional regimes). Likewise, the nitrate
pretreatment with 1 mM KNO3 for 24 h on previously starved
B. napus plants induced contrasting root conductance for nitrate
and so different catalytic efficiencies (Figures 5E,F). Therefore,
the embedding in flow-forcemodels of the mechanistic approach
used in the trait-based approach developed in phytoplankton
models (cell size, number of uptake sites per cell, uptake site
handling time, affinity of a single uptake site, etc.) should
further improve their formalisms and enhance their performance
(Lindemann et al., 2016). Attempts at flexible approaches to
the uptake parameters in nutrient uptake models such as the
introduction of mechanistic support for the uptake sites or
cross-combination of the flow-force formalism with in planta
and environmental factor effects, predicts higher and more
realistic nutrient uptake rates than the usual MM counterparts
(Bonachela et al., 2011; Fiksen et al., 2013; Le Deunff and
Malagoli, 2014a; Malagoli and Le Deunff, 2014). Outputs of these
new conceptual models demonstrate that usual nutrient uptake
models based on the enzyme-substrate formalism are inevitably
forced by some parameters to match measured nutrient taken up
(Ma et al., 2008; Franks, 2009). Unlike phytoplankton nutrient
uptake models, the nutrient uptake models in plants also have to
allow for the effects of the growth, geometry, and aging of the root
system that affect the nutrient uptake. The next sections explain
how these effects are taken into account in recent modeling
approaches.

Flow-Force Agronomic Models for Nutrient
Uptake with One Spatial Dimension
Agronomic models of nutrient ion uptake in one spatial
dimension (1-D models) depend on measurements of root
distribution profile in the different soil layers from the soil
surface to rooting depth along the growth cycle. The relationship
between root development and rooting depth is generally
described by an experimentally measured heuristic law that
gives root distribution for different times throughout the plant
growth cycle. This law accounts for the root length density
distribution in one spatial dimension (Gerwitz and Page, 1974).
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From this framework, a new mechanistic structural-functional
model for nitrate uptake was developed for a crop of winter
oilseed rape (Brassica napus L.). The functional component of
the model derives from a revisited conceptual framework that
combines the thermodynamic flow-force interpretation of nitrate
uptake isotherms and environmental and in planta effects on
nitrate influx (Le Deunff and Malagoli, 2014a). The structural
component of the model is based on estimation of root biomass
contributing actively to N uptake using the determination of
a synthetic parameter IRSA (Integrated Root System Age) that
allows assignment of a root absorption capacity at a specific
age of the root (Gao et al., 1998; Malagoli and Le Deunff,
2014). This model of one spatial dimension (1-D model) is
able to respond more realistically to external nitrate fluctuations
throughout the plant growth cycle under field conditions for
three levels of N fertilization at both functional and structural
levels (Malagoli and Le Deunff, 2014). In this model, it is assumed
that convection and diffusion of nitrate ions to the root surface
are optimal because the soil water content is close to field
capacity. Likewise, no root competition for nitrate uptake or
effects of root exudates, microbial activity and mycorrhizae are
taken into account. Nitrate influx depends on fluctuation of
soil nitrate concentrations, changes in climatic (temperature and
PAR) and in planta factors (day-night and ontogenetic cycles),
and changes in root uptake capacities with aging throughout the
plant growth cycle (Le Deunff and Malagoli, 2014b).

Toward Flow-Force Agronomic Models
with Two and Three Spatial Dimensions
Two- and three-dimensional models for nutrient ion uptake have
been developed to take into account the spatial geometry of
root systems and the dynamics of water and nutrient availability
and their spatial distribution in soil during the growth cycle
(Somma et al., 1998; Roose, 2000; Biondini, 2008; Tournier,
2015). In general, these models were built to find analytical
solutions to differential equations provided by equations of soil
ion convection-diffusion and root ion influx isotherms (Roose
et al., 2001; Roose and Kirk, 2009). Analytical solutions are
obtained for one single cylindrical root for isothermal conditions,
and then extended to the whole root system (Roose, 2000; Roose
et al., 2001). Because analytical solutions can now be derived
from almost any form of nutrient uptake function (Roose and
Kirk, 2009), we propose to use the thermodynamic flow-force
linear formalism of nutrient ion isotherms (Equation 10) instead
of the non-linear formalism of Michaelis–Menten (Equation 4).
This will make parametrization simpler to obtain a more realistic
analytical expression for nutrient uptake by a single cylindrical
root.

Although parameter Lj in Equation (9; root conductance for
substrate Sj) is taken as constant to solve the equations, it may
not be truly constant. For example, the effects of fluctuating
temperature throughout the growth cycle, spatial heterogeneity
of nitrate in the soil, root aging, the day-night cycle and
ontogenesis, which modify Jj(c

e
j ) through changes in Lj, are not

taken into account in this approach (Le Deunff and Malagoli,

2014a,b). Accordingly, obtaining analytical solutions to these
equations will not completely solve the problems associated
with extension of the uptake behavior of one root segment to
the entire root system throughout the plant growth cycle. In
particular, the building of a realistic root network is confronted
with the patterning process of root systems caused by the
spatial heterogeneity of available water and nutrient ions in soil
throughout the growth cycle (Drew, 1975; Bao et al., 2014).

Instead of finding analytical solutions and scaling up the
uptake behavior of one root segment to the entire root system,
mechanistic 3-D models have been developed that numerically
solve nonlinear partial differential equations coupling soil water
and nutrient transport with root uptake at the single root scale
(Somma et al., 1998; Doussan et al., 2006; Javaux et al., 2008;
Tournier et al., 2015). Thanks to recent advances in scientific
computing, such models are now able to simulate water and
nutrient transport with root uptake for realistic root systems,
taking advantage of unstructured grids adapted to the complex
geometry of the root system and solving the computationally
intensive discrete problems on parallel architectures (Tournier,
2015). Like for 2-Dmodels, the flow-force formalism can be easily
introduced in this type of 3-D model.

CONCLUDING REMARKS

Major benefits of the flow-force formulation are that it makes
experimentally testable predictions and it expresses the results
of macroscopic measurements (i.e., made on an entire biological
sample) by macroscopic parameters (Lj and πj) associated
with a biological meaning, without considering molecular
characteristics of carriers. It also provides a coordinate graph {ln
(cej ), Jj(c

e
j )} that is linear if c

e
j values are sufficiently close to the

equilibrium concentration of Sj (
◦cej ). The kinetic patterns can

be improved by changing the pre- and post-wash procedures for
roots before net influx rate measurements in order to come as
close as possible to equilibrium conditions. In addition, linear
formalism of the flow-force approach could usefully replace the
Michaelis–Menten formalism of the enzyme-substrate approach
currently used in the phytoplankton and agronomic nutrient ion
uptake models (Barber, 1995; Tinker and Nye, 2000; Roose and
Kirk, 2009; Tournier, 2015). This would offer a simplification of
parametrization to help find more realistic analytical expressions
and numerical solutions for ion uptake in 2-D and 3-Dmodels of
nutrient uptake in plants.
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