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Abstract
When sufficient labeled data are available, clas-
sical criteria based on Receiver Operating Char-
acteristic (ROC) or Precision-Recall (PR) curves
can be used to compare the performance of un-
supervised anomaly detection algorithms. How-
ever, in many situations, few or no data are la-
beled. This calls for alternative criteria one can
compute on non-labeled data. In this paper, two
criteria that do not require labels are empirically
shown to discriminate accurately (w.r.t. ROC or
PR based criteria) between algorithms. These
criteria are based on existing Excess-Mass (EM)
and Mass-Volume (MV) curves, which generally
cannot be well estimated in large dimension. A
methodology based on feature sub-sampling and
aggregating is also described and tested, extend-
ing the use of these criteria to high-dimensional
datasets and solving major drawbacks inherent to
standard EM and MV curves.

1. Introduction
When labels are available, classical ways to evaluate the
quality of an anomaly scoring function are the ROC and PR
curves. Unfortunately, most of the time, data come with-
out any label. In lots of industrial setups, labeling datasets
calls for costly human expertise, while more and more un-
labeled data are available. A huge practical challenge is
therefore to have access to criteria able to discriminate be-
tween unsupervised algorithms without using any labels.
In this paper, we formalize and justify the use of two such
criteria designed for unsupervised anomaly detection (AD),
and adapt them to large dimensional data. Strong empirical
performance demonstrates the relevance of our approach.

The common underlying assumption behind AD is that
anomalies occur in low probability regions of the data gen-
erating process. This formulation motivates many statis-
tical AD methods. Classical parametric techniques (Bar-
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nett & Lewis, 1994; Eskin, 2000) assume that the normal
data are generated by a distribution belonging to some spe-
cific and a priori known parametric model. The most pop-
ular non-parametric approaches include algorithms based
on density (level set) estimation (Schölkopf et al., 2001;
Scott & Nowak, 2006; Breunig et al., 2000), on dimension-
ality reduction (Shyu et al., 2003; Aggarwal & Yu, 2001)
or on decision trees (Liu et al., 2008). One may refer to
(Hodge & Austin, 2004; Chandola et al., 2009; Patcha &
Park, 2007; Markou & Singh, 2003) for overviews of cur-
rent research on AD. It turns out that the overwhelming
majority of AD algorithms return more than a binary label,
normal/abnormal. They first compute a scoring function,
which is converted to a binary prediction, typically by im-
posing some threshold based on its statistical distribution.

What is a scoring function? As anomalies are very rare,
their structure cannot be observed in the data, in particular
their distribution. It is common and convenient to assume
that anomalies occur in the tail of F the distribution of nor-
mal data, so that the goal is to estimate density level sets of
F . This setup is typically the one of the One-Class Support
Vector Machine (OneClassSVM) algorithm developped in
(Schölkopf et al., 2001), which extends the SVM methodol-
ogy (Shawe-Taylor & Cristianini, 2004) to handle training
using only positive information. The underlying assump-
tion is that we observe data in Rd from the normal class
only, with underlying distribution F and underlying den-
sity f : Rd → R. The goal is to estimate density level
sets ({x, f(x) > t})t>0 with t close to 0. Such estimates
are encompassed into a scoring function: any measurable
function s : Rd → R+ integrable w.r.t. the Lebesgue mea-
sure Leb(.), whose level sets are estimates of the level sets
of the density. Any scoring function defines a preorder on
Rd and thus a ranking on a set of new observations. This
ranking can be interpreted as a degree of abnormality, the
lower s(x), the more abnormal x.

How to know if a scoring function is good? How can
we know if the preorder induced by a scoring function s is
‘close’ to that of f , or equivalently if these induced level
sets are close to those of f? The problem is to define
this notion of proximity into a criterion C, optimal scor-
ing functions s∗ being then defined as those optimizing
C. It turns out that for any strictly increasing transform
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T : Im(f)→ R, the level sets of T ◦f are exactly those of f .
Here and hereafter, Im(f) denotes the image of the mapping
f . For instance, 2f or f2 are perfect scoring functions, just
as f . Thus, we cannot simply consider a criterion based on
the distance of s to the true density, e.g. C(s) = ‖s − f‖.
We seek for a similar criterion which is invariant by in-
creasing transformation of the output s. In other words, the
criterion should be defined in such a way that the collection
of level sets of an optimal scoring function s∗(x) coincides
with that related to f . Moreover, any increasing transform
of the density should be optimal regarding C.

In the litterature, two functional criteria admissible
w.r.t. these requirements have been introduced: the Mass-
Volume (MV) (Clémençon & Jakubowicz, 2013) and the
Excess-Mass (EM) (Goix et al., 2015) curves. Formally,
it allows to consider CΦ(s) = ‖Φ(s) − Φ(f)‖ (instead of
‖s− f‖) with Φ : R→ R+ verifying Φ(T ◦ s) = Φ(s) for
any scoring function s and increasing transform T . Here
Φ(s) denotes either the mass-volume curve MVs of s or its
excess-mass curveEMs, which are defined in the next sec-
tion. While such quantities have originally been introduced
to build scoring functions via Empirical Risk Minimiza-
tion (ERM), the MV-curve has been used recently for the
calibration of the One-Class SVM (Thomas et al., 2015).
When used to attest the quality of some scoring function,
the volumes induced become unknown and must be esti-
mated, which is challenging in large dimension.

In this paper, we define two numerical performance criteria
based on MV and EM curves, which are tested w.r.t.three
classical AD algorithms. A wide range on real labeled
datasets are used in the benchmark. In addition, we propose
a method based on feature sub-sampling and aggregating.
It allows to scale this methodology to high-dimensional
data which we use on the higher-dimensional datasets. We
compare the results to ROC and PR criteria, which use the
data labels hidden to MV and EM curves.

This paper is structured as follows. Section 2 introduces
EM and MV curves and defines associated numerical crite-
ria. In Section 3, the feature sub-sampling based method-
ology to extend their use to high dimension is described.
Finally, experiments on a wide range of real datasets are
provided in Section 4.

2. Mass-Volume and Excess-Mass based
criteria

We place ourselves in a probability space (Ω,F ,P). We
observe n i .i .d . realizations X1, . . . ,Xn of a random vari-
able X : Ω → Rd representing the normal behavior, with
c.d.f. F and density f w.r.t. the Lebesgue measure on Rd.
We denote by S the set of all scoring functions, namely
any measurable function s : Rd → R+ integrable w.r.t. the
Lebesgue measure. We work under the assumptions that

the density f has no flat parts and is bounded. Excess-Mass
and Mass-Volume curves are here introduced in a differ-
ent way they originally were in (Clémençon & Jakubow-
icz, 2013; Goix et al., 2015). We use equivalent definitions
for them since the original definitions were more adapted
to the ERM paradigm than to the issues adressed here.

Preliminaries. Let s ∈ S be a scoring function. In
this context (Clémençon & Jakubowicz, 2013; Goix et al.,
2015), the MV and EM curves of s can be written as

MVs(α) = inf
u≥0

Leb(s ≥ u) s.t. P(s(X) ≥ u) ≥ α (1)

EMs(t) = sup
u≥0

P(s(X) ≥ u) − tLeb(s ≥ u) (2)

for any α ∈ (0, 1) and t > 0. The optimal curves are
MV ∗ = MVf = MVT◦f and EM∗ = EMf = EMT◦f
for any increasing transform T : Im(f) → R. It can be
proven (Clémençon & Jakubowicz, 2013; Goix et al., 2015)
that for any scoring function s,MV ∗(α) ≤MVs(α) for all
α ∈ (0, 1) and EM∗(t) ≥ EMs(t) for all t > 0.

Numerical unsupervised criteria. The main advan-
tage of EM compared to MV is that the area under its
curve (AUC) is finite, even if the support of the dis-
tribution F is not. As curves cannot be trivially com-
pared, consider the L1-norm ‖.‖L1(I) with I ⊂ R an
interval. As MV ∗ = MVf is below MVs pointwise,
arg mins ‖MVs − MV ∗‖L1(I) = arg min ‖MVs‖L1(I).
We thus define CMV (s) = ‖MVs‖L1(IMV ), which is
equivalent to consider ‖MVs − MV ∗‖L1(IMV ) as men-
tioned in the introduction. As we are interested in evalu-
ating accuracy on large density level-sets, one natural in-
terval IMV would be for instance [0.9, 1]. However, MV
diverges in 1 when the support is infinite, so that we arbi-
trarily take IMV = [0.9, 0.999]. The smaller is CMV (s),
the better is the scoring function s. Similarly, we con-
sider CEM (s) = ‖EMs‖L1(IEM ), this time considering
IEM = [0, EM−1(0.9)], with EM−1

s (0.9) := inf{t ≥
0, EMs(t) ≤ 0.9}, as EMs(0) is finite (equal to 1). We
point out that such small values of t correspond to large
level-sets. Also, we have observed that EM−1

s (0.9) (as
well as EM−1

f (0.9)) varies significantly depending on the
dataset. Generally, for datasets in large dimension, it can
be very small (in the experiments, smallest values are of
order 10−7) as it is of the same order of magnitude as the
inverse of the total support volume.

Estimation. As the distribution F of the normal data is
generally unknown, MV and EM curves must be estimated.
Let s ∈ S and X1, . . . , Xn be an i.i.d. sample with com-
mon distribution F and set Pn(s ≥ t) = 1

n

∑n
i=1 1s(Xi)≥t.

The empirical MV and EM curves of s are then simply de-
fined as empirical version of (1) and (2),

M̂V s(α) = inf
u≥0
{Leb(s ≥ u) s.t. Pn(s ≥ u) ≥ α} (3)
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ÊMs(t) = sup
u≥0

Pn(s ≥ u) − tLeb(s ≥ u) (4)

Note that in practice, the volume Leb(s ≥ u) is estimated
using Monte-Carlo approximation, which only applies to
small dimensions. Finally, we obtain the empirical EM and
MV based performance criteria:

ĈEM (s) = ‖ÊMs‖L1(IEM ) IEM = [0, ÊM
−1

(0.9)],

(5)

ĈMV (s) = ‖M̂V s‖L1(IMV ) IMV = [0.9, 0.999]. (6)

3. Scaling with dimension
In this section we propose a methodology to scale the use of
the EM and MV criteria to large dimensional data. It con-
sists in sub-sampling training and testing data along fea-
tures, thanks to a parameter d′ controlling the number of
features randomly chosen for computing the (EM or MV)
score. Replacement is done after each draw of features
F1, . . . , Fm. A partial score ĈMV

k (resp. ĈEMk ) is com-
puted for each draw Fk using (5) (resp. (6)). The final per-
formance criteria are obtained by averaging these partial
criteria along the different draws of features. This method-
ology is described in Algorithm 1. A drawback from this

Algorithm 1 Evaluate AD algo. on high-dimensional data
Inputs: AD algorithm A, data set X =
(xji )1≤i≤n,1≤j≤d, feature sub-sampling size d′, number
of draws m.
for k = 1, . . . ,m do

randomly select a sub-group Fk of d′ features
compute the associated scoring function ŝk =
A
(
(xji )1≤i≤n, j∈Fk

)
compute ĈEMk = ‖ÊM ŝk‖L1(IEM ) using (5) or
ĈMV
k = ‖M̂V ŝk‖L1(IMV ) using (6)

end for
Return performance criteria:

ĈEMhigh dim(A) =
1

m

m∑
k=1

ĈEMk (idem for MV)

approach is that we do not evaluate combinations of more
than d′ features within the dependence structure. However,
according to our experiments, this is enough in most of the
cases. Besides, we solve two major drawbacks inherent to
MV or EM criteria, which come from the Lebesgue ref-
erence measure: 1) EM or MV performance criteria can-
not be estimated in large dimension, 2) EM or MV perfor-
mance criteria cannot be compared when produced from
spaces of different dimensions.

Remark 1 (FEATURE IMPORTANCES) With standard MV
and EM curves, the benefit of using or not some feature j

in training cannot be evaluated, since reference measures
of Rd and Rd+1 cannot be compared. Solving the second
drawback precisely allows to evaluate the importance of
features. By sub-sampling features, we can compare ac-
curacies with or without using feature j: when computing
ĈMV
high dim or ĈEMhigh dim using Algorithm 1, this is reflected

in the fact that j can (resp. cannot) be drawn.

Remarks on theoretical grounds and default parameters are
provided in supplementary material.

4. Benchmarks
Does performance in term of EM/MV correspond to
performance in term of ROC/PR? Can we recover, on
some fixed dataset and without using any labels, which
algorithm is better than the others (according to ROC/PR
criteria)? In this section we study four different empirical
evaluations (ROC, PR, EM, MV) of three classical state-of-
the-art AD algorithms, One-Class SVM (Schölkopf et al.,
2001), Isolation Forest (Liu et al., 2008), and Local Outlier
Factor (LOF) algorithm (Breunig et al., 2000), on 12 well-
known AD datasets. Two criteria use labels (ROC and PR
based criteria) and two do not (EM and MV based crite-
ria). For ROC and PR curves, we consider the area under
the (full) curve (AUC). For the excess-mass curve EM(t)
(resp. mass-volume curve), we consider the area under the
curve on the interval [0, EM−1(0.9)] (resp. [0.9, 0.999])
as described in Section 2. A full description of the datasets
is available in supplementary material. The experiments
are performed both in a novelty detection framework (also
named semi-supervised framework, the training set consist-
ing of normal data only) and in an unsupervised framework
(the training set is polluted by anormal data). In the for-
mer case, we simply removed anomalies from the train-
ing data, and EM and PR criteria are estimated using only
normal data. In the latter case, the anomaly rate is arbi-
trarily bounded to 10% max, and EM and PR criteria are
estimated with the same test data used for ROC and PR
curves, without using their labels. Recall that standards
EM and MV performance criteria refering on the Lebesgue
measure, they require volume estimation. They only ap-
ply to continuous datasets, with small dimension (d ≤ 8).
The datasets verifying these requirements are http, smtp,
pima, wilt and adult. For the other datasets, we use the per-
formance criteria ĈMV

high dim and ĈEMhigh dim computed with
Algorithm 1. We arbitrarily chose m = 50 and d′ = 5,
which means that 50 draws of 5 features, with replacement
after each draw, are done. Other parameters have also been
tested but are not presented here. This default parameters
are a compromise between computational time and perfor-
mance, in particular on the largest dimensional datasets.
The latter require a relatively large productm×d′, which is
the maximal number of different features that can be drawn.
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Table 1. Results for the novelty detection setting. One can see that ROC, PR, EM, MV often do agree on which algorithm is the best
(in bold), which algorithm is the worse (underlined) on some fixed datasets. When they do not agree, it is often because ROC and PR
themselves do not, meaning that the ranking is not clear.

Dataset iForest OCSVM LOF

ROC PR EM MV ROC PR EM MV ROC PR EM MV
adult 0.661 0.277 1.0e-04 7.5e01 0.642 0.206 2.9e-05 4.3e02 0.618 0.187 1.7e-05 9.0e02
http 0.994 0.192 1.3e-03 9.0 0.999 0.970 6.0e-03 2.6 0.946 0.035 8.0e-05 3.9e02
pima 0.727 0.182 5.0e-07 1.2e04 0.760 0.229 5.2e-07 1.3e04 0.705 0.155 3.2e-07 2.1e04
smtp 0.907 0.005 1.8e-04 9.4e01 0.852 0.522 1.2e-03 8.2 0.922 0.189 1.1e-03 5.8
wilt 0.491 0.045 4.7e-05 2.1e03 0.325 0.037 5.9e-05 4.5e02 0.698 0.088 2.1e-05 1.6e03

annthyroid 0.913 0.456 2.0e-04 2.6e02 0.699 0.237 6.3e-05 2.2e02 0.823 0.432 6.3e-05 1.5e03
arrhythmia 0.763 0.487 1.6e-04 9.4e01 0.736 0.449 1.1e-04 1.0e02 0.730 0.413 8.3e-05 1.6e02
forestcov. 0.863 0.046 3.9e-05 2.0e02 0.958 0.110 5.2e-05 1.2e02 0.990 0.792 3.5e-04 3.9e01
ionosphere 0.902 0.529 9.6e-05 7.5e01 0.977 0.898 1.3e-04 5.4e01 0.971 0.895 1.0e-04 7.0e01
pendigits 0.811 0.197 2.8e-04 2.6e01 0.606 0.112 2.7e-04 2.7e01 0.983 0.829 4.6e-04 1.7e01
shuttle 0.996 0.973 1.8e-05 5.7e03 0.992 0.924 3.2e-05 2.0e01 0.999 0.994 7.9e-06 2.0e06
spambase 0.824 0.371 9.5e-04 4.5e01 0.729 0.230 4.9e-04 1.1e03 0.754 0.173 2.2e-04 4.1e04

EM, MV, ROC and PR curves AUCs are presented in Ta-
ble 1 for the novelty detection framework. Additional fig-
ures and results for the unsupervised framework are avail-
able in supplementary material. Results from Table 1 can
be summarized as follows. Consider the 36 possible pair-
wise comparisons between the three algorithms over the
twelve datasets{(

A1 on D, A2 on D
)
, A12 ∈ {iForest, LOF, OCSVM},
D ∈ {adult, . . . , spambase}

}
. (7)

For each dataset D, there are three possible pairs (iFor-
est on D, LOF on D), (OCSVM on D, LOF on D) and
(OCSVM on D, iForest on D). Then the EM-score dis-
criminates 28 of them (78%) as ROC score does, and 29
(81%) of them as PR score does. Intuitively this can be in-
terprated as follows. Choose randomly a dataset D among
the twelve available, and two algorithms A1, A2 among
the three available. This amounts to choose at random a
pairwise comparison (A1 on D, A2 on D) among the 36
available. Suppose that according to ROC criterion, A1 is
better than A2 on dataset D, i.e. (A1 on D) � (A2 on D).
Then the EM-score discriminates A1 and A2 on dataset D
in the same way, i.e. also finds A1 to be better than A2 on
dataset D, this with 78 percent chance.

Besides, let us consider pairs (A1 onD,A2 onD) which are
similarly ordered by ROC and PR criteria, namely s.t. A1

is better than A2 (or the reverse) on dataset D according
to both EM and PR. According to Table 1, this represents
every pairs but one in spambase and two in smtp. Then,
one achieves 27/33 = 82% of similarly discriminated pairs
(w.r.t. to ROC and PR criteria). Moreover, EM is able to re-
cover the exact (w.r.t. ROC and PR criteria) ranking of (A1

on D, A2 on D, A3 on D) on every datasets D except-
ing wilt and shuttle. For shuttle, note that ROC scores are

very close to each other (0.996, 0.992, 0.999) and thus not
clearly discriminates algorithms. The only significant error
committed by EM is for the wilt dataset (on which no fea-
ture sub-sampling is done due to the low dimension). This
may come from anomalies not being far enough in the tail
of the normal distribution, e.g. forming a cluster near the
support of the latter distribution.

Same conclusions and similar accuracies hold for MV-
score, which only makes one additional error on the pair
(iForest on pima, OCSVM on pima). Considering all
the 36 pairs (7), one observes 75% of good comparisons
w.r.t. ROC-score, and 72% w.r.t. PR score. Considering the
pairs which are similarly ordered by ROC and PR criteria,
this rate increases to 25/33 = 76%. The errors are essen-
tially made on shuttle, wild and annthyroid datasets.

To conclude, when one algorithm has better performance
than another on some fixed dataset, according to both ROC
and PR AUCs, one can expect to recover it without using
labels with an accuracy of 82% in the novelty detection
framework (and 77% in the unsupervised framework, cf.
supplementary material).

5. Conclusion
We (almost) do not need labels to evaluate anomaly de-
tection algorithms (on continuous data). According to our
benchmarks, the EM and MV based numerical criteria in-
troduced in this paper are (in approximately 80 percent of
the cases) able to recover which algorithm is better than the
other on some dataset (with potentially large dimensional-
ity), without using labels. High-dimensional datasets are
dealt with using a method based on feature sub-sampling.
This method also brings flexibility to EM and MV criteria,
allowing for instance to evaluate the importance of features.
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Clémençon, S. and Jakubowicz, J. Scoring anomalies: a
M-estimation approach. In AISTATS, 2013.
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Supplementary Material
5.1. additional intuition behind EM/MV

Note that MV ∗(α) is the optimal value of the constrained
minimization problem

min
Γ borelian

Leb(Γ) s.t. P(X ∈ Γ) ≥ α. (8)

The minimization problem (8) has a unique solution Γ∗α
of mass α exactly, referred to as minimum volume set
(Polonik, 1997): MV ∗(α) = Leb(Γ∗α) and P(X ∈ Γ∗α) =
α.

Similarly, the optimal EM curve is linked with the notion
of density excess-mass (as introduced in the seminal con-
tribution (Polonik, 1995)). The main idea is to consider
a Lagrangian formulation of the constrained minimization
problem obtained by exchanging constraint and objective
in (8),

EM∗(t) := max
Ω borelian

{P(X ∈ Ω)− tLeb(Ω)}. (9)

Figure 1 compares the mass-volume and excess-mass ap-
proaches.

Remark 2 (LINK WITH ROC CURVE) To evaluate unsu-
pervised algorithms, it is common to generate uniform out-
liers and then use the ROC curve approach. Up to iden-
tify the Lebesgue measure of a set to its empirical version
(i.e. the proportion of uniform point inside), this approach
is equivalent to using the mass-volume curve (Clémençon
& Robbiano, 2014). However, in the former approach, the
volume estimation does not appear directly, so that the (po-
tentially huge) amount of uniform points needed to provide
a good estimate of a volume is often not respected, yielding
optimistic performances.

5.2. Remarks on the feature sub-sampling based
Algorithm 1.

Remark 3 (THEORETICAL GROUNDS) Criteria
ĈMV
high dim or ĈEMhigh dim do not evaluate a specific scoring

function s produced by some algorithm (on some dataset),
but the algorithm itself w.r.t. the dataset at stake. Indeed,
these criteria proceed with the average of partial scoring
functions on sub-space of Rd. We have no theoretical
guaranties that the final score does correspond to some
scoring function defined on Rd. In this paper, we only
show that from a practical point of view, it is a useful and
accurate methodology to compare algorithms performance
on large dimensional datasets.

Remark 4 (DEFAULT PARAMETERS) In our experiments,
we arbitrarily chose m = 50 and d′ = 5. This means that

50 draws of 5 features (with replacement after each draw)
have been done. Volume in spaces of dimension 5 have thus
to be estimated (which is feasible with Monte-Carlo), and
50 scoring functions (on random subspaces of dimension 5)
have to be computed by the algorithm we want to evaluate.
The next section shows (empirically) that these parameters
achieve a good accuracy on the collection of datasets stud-
ied, the largest dimension considered being 164.

5.3. Datasets description

The characteristics of these reference datasets are summa-
rized in Table 2. They are all available on the UCI repos-
itory (Lichman, 2013) and the preprocessing is done in a
classical way. We removed all non-continuous attributes as
well as attributes taking less than 10 differents values. The
http and smtp datasets belong to the KDD Cup ’99 dataset
(KDDCup, 1999; Tavallaee et al., 2009), which consists
of a wide variety of hand-injected attacks (anomalies) in a
closed network (normal background). They are classicaly
obtained as described in (Yamanishi et al., 2000). These
datasets are available on the scikit-learn library (Pedregosa
et al., 2011). The shuttle dataset is the fusion of the train-
ing and testing datasets available in the UCI repository. As
in (Liu et al., 2008), we use instances from all different
classes but class 4. In the forestcover data, the normal data
are the instances from class 2 while instances from class
4 are anomalies (as in (Liu et al., 2008)). The ionosphere
dataset differentiates ‘good’ from ‘bad’ radars, considered
here as abnormal. A ‘good’ radar shows evidence of some
type of structure in the ionosphere. A ‘bad’ radar does
not, its signal passing through the ionosphere. The spam-
base dataset consists of spam or non-spam emails. The for-
mer constitute the abnomal class. The annthyroid medical
dataset on hypothyroidism contains one normal class and
two abnormal ones, which form the outlier set. The ar-
rhythmia dataset reflects the presence and absence (class 1)
of cardiac arrhythmia. The number of attributes being large
considering the sample size, we removed attributes contain-
ing missing data. The pendigits dataset contains 10 classes
corresponding to the digits from 0 to 9, examples being
handwriting samples. As in (Schubert et al., 2012), the ab-
normal data are chosen to be those from class 4. The pima
dataset consists of medical data on diabetes. Patients suf-
fering from diabetes (positive class) were considered out-
liers. The wild dataset involves detecting diseased trees in
Quickbird imagery. Diseased trees (class ‘w’) is the abnor-
mal class. In the adult dataset, the goal is to predict whether
income exceeds $ 50K/year based on census data. Only the
6 continuous attributes are kept.

5.4. complementary results

Results from the unsupervised framework (training and
testing data are polluted by outliers) are similar for both
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Figure 1. Comparison between MV ∗(α) and EM∗(t)
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Table 2. Original Datasets characteristics

nb of samples nb of features anomaly class

adult 48842 6 class ’> 50K’ (23.9%)
http 567498 3 attack (0.39%)
pima 768 8 pos (class 1) (34.9%)
smtp 95156 3 attack (0.03%)
wilt 4839 5 class ’w’ (diseased trees) (5.39%)
annthyroid 7200 6 classes 6= 3 (7.42%)
arrhythmia 452 164 classes 6= 1 (features 10-14 removed) (45.8%)
forestcover 286048 10 class 4 (vs. class 2 ) (0.96%)
ionosphere 351 32 bad (35.9%)
pendigits 10992 16 class 4 (10.4%)
shuttle 85849 9 classes 6= 1 (class 4 removed) (7.17%)
spambase 4601 57 spam (39.4%)

EM and MV criteria. We just observe a slight decrease
in accuracy. Considering all the pairs, one observes
26/36 = 72% (resp. 27/36 = 75%) of good comparisons
w.r.t. ROC-score (resp. w.r.t. PR score) for EM, and 75%
(resp. 78%) of good comparisons w.r.t. ROC-score (resp.
w.r.t. PR score) for MV. Considering the pairs which are
similarly ordered by ROC and PR criteria, the rate for EM
as for MV increases to 24/31 = 77%. Figure 5.4 shows
excess-mass and mass-volume curves on the adult dataset
in a novelty detection setting. Corresponding figures for
the other datasets follow.
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Table 3. Results for the unsupervised setting still remains good: one can see that ROC, PR, EM, MV often do agree on which algorithm
is the best (in bold), which algorithm is the worse (underlined) on some fixed datasets. When they do not agree, it is often because ROC
and PR themselves do not, meaning that the ranking is not clear.

Dataset iForest OCSVM LOF

ROC PR EM MV ROC PR EM MV ROC PR EM MV
adult 0.644 0.234 6.6e-05 2.7e02 0.627 0.184 1.8e-05 5.6e02 0.545 0.098 7.4e-06 1.9e03
http 0.999 0.686 1.4e-03 2.2e01 0.994 0.207 5.7e-03 3.3 0.354 0.019 9.8e-05 3.9e02
pima 0.747 0.205 1.2e-06 1.2e04 0.742 0.211 6.0e-07 1.9e04 0.686 0.143 6.0e-07 3.2e04
smtp 0.902 0.004 2.7e-04 8.6e01 0.852 0.365 1.4e-03 7.7 0.912 0.057 1.1e-03 7.0
wilt 0.443 0.044 3.7e-05 2.2e03 0.318 0.036 3.9e-05 4.3e02 0.620 0.066 2.0e-05 8.9e02

annthyroid 0.820 0.309 6.9e-05 7.7e02 0.682 0.187 4.1e-05 3.1e02 0.724 0.175 1.6e-05 4.1e03
arrhythmia 0.740 0.416 8.4e-05 1.1e02 0.729 0.447 6.8e-05 1.2e02 0.729 0.409 5.6e-05 1.5e02
forestcov. 0.882 0.062 3.2e-05 2.3e02 0.951 0.095 4.4e-05 1.4e02 0.542 0.016 2.4e-04 4.6e01
ionosphere 0.895 0.543 7.4e-05 9.3e01 0.977 0.903 8.7e-05 7.7e01 0.969 0.884 6.9e-05 1.0e02
pendigits 0.463 0.077 2.7e-04 2.5e01 0.366 0.067 2.6e-04 2.8e01 0.504 0.089 4.5e-04 1.6e01
shuttle 0.997 0.979 7.1e-07 1.2e05 0.992 0.904 5.8e-06 1.7e02 0.526 0.116 7.1e-07 1.7e07
spambase 0.799 0.303 2.2e-04 3.5e01 0.714 0.214 1.5e-04 2.9e02 0.670 0.129 3.7e-05 2.7e04

Figure 2. MV and EM curves for adult dataset (novelty detection framework). We can see that both in terms of EM and MV curves,
iForest is found to perform better than OCSVM, which is itself found to perform better than LOF. Comparing to Table 1, ROC and PR
AUCs give the same ranking (iForest on adult � OCSVM on adult � LOF on adult). The 3 pairwise comparisons (iForest on adult, LOF
on adult), (OCSVM on adult, LOF on adult) and (OCSVM on adult, iForest on adult) are then similarly ordered by EM, PR, MV and
EM criteria.
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Figure 3. MV and EM curves for http dataset (novelty detection framework)

Figure 4. MV and EM curves for http dataset (unsupervised framework)
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Figure 5. MV and EM curves for pima dataset (novelty detection framework)

Figure 6. MV and EM curves for pima dataset (unsupervised framework)
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Figure 7. MV and EM curves for smtp dataset (novelty detection framework)

Figure 8. MV and EM curves for smtp dataset (unsupervised framework)
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Figure 9. MV and EM curves for wilt dataset (novelty detection framework)

Figure 10. MV and EM curves for wilt dataset (unsupervised framework)
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Figure 11. MV and EM curves for adult dataset (novelty detection framework).

Figure 12. MV and EM curves for adult dataset (unsupervised framework)


