
HAL Id: hal-01341701
https://hal.science/hal-01341701

Preprint submitted on 4 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating Model Checking in an Industrial Verification
Process: a Structuring Approach

Pierre-Alain Bourdil, Silvano Dal Zilio, Eric Jenn

To cite this version:
Pierre-Alain Bourdil, Silvano Dal Zilio, Eric Jenn. Integrating Model Checking in an Industrial Veri-
fication Process: a Structuring Approach. 2016. �hal-01341701�

https://hal.science/hal-01341701
https://hal.archives-ouvertes.fr


Integrating Model Checking in an Industrial
Verification Process: a Structuring

Approach

Pierre-Alain Bourdil1, Silvano Dal Zilio2, and Eric Jenn∗1

1IRT Saint-Exupéry, Toulouse, France
2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

An obstacle to the adoption of model-checking in large projects is a lack
of guidelines on how to integrate formal methods with existing system en-
gineering practices. In this context, a methodology should give answers to
several questions: How to manage the models and abstractions used to verify
a claim? How do we gain confidence on the soundness of these models? How
can we build a structured argument from the verification results? In this pa-
per, we describe a structured approach for managing verification arguments
an apply it to check a critical function of an autonomous rover.

1 Introduction

Formal methods, such as model checking, are inexorably percolating in industry, espe-
cially in domains strongly constrained by safety and regulatory constraints. However,
an obstacle to the adoption of model-checking is a lack of guidelines on how to integrate
it with existing system engineering practices. In a “traditional” development process,
checking that a system meets a given requirement is achieved using a combination of
inspection, analysis and tests at each phase of the design process. The confidence in
the verification process is basically expressed as a question of coverage: the process is
deemed sufficient if coverage is sufficient. There are many reasons why this problem is
more complex when dealing with formal verification techniques.

First, formal methods rely on models that have to preserve the properties to be verified.
So we need to ensure that these models are faithful to the intent of the system designers.
Next, no unique technique or model cover all aspects and objectives of the verification

∗Seconded from Thales Avionics, Toulouse, France

1



process. Verification can only be achieved by an appropriate combination of models
(using different viewpoints, abstraction levels, etc.) and it is sometimes necessary to
apply several transformation steps in order to obtain tractable verification problems.
This means that we need to work with a collection of models that are logically connected
to each other. It also means that it is necessary to justify that each abstraction is sound
with respect to the current verification objective. Finally, formal techniques and tools
are only applicable with specific restrictions: on the set of properties that can be checked;
on the computational and communication models that can be used; . . . It is therefore
necessary to track whether these constraints are met and whether they are consistent
with the hypotheses made about the system, its application and its environment.

In this paper, we describe a methodology for providing a convincing argument that a
system design actually complies with a set of expected properties; what we call a veri-
fication argument. In practice, our methodology provides answers to several questions:
How to manage the models and abstractions used to verify a claim? How to gain confi-
dence on the soundness of these models? How can we build a structured argument from
the verification results?

The question of providing valid verification arguments is not new. This is, for
instance, the objective of assurance cases [10, 16]. Nonetheless, we focus here on a
narrower problem and target only the proof of “low level” claims (technical properties)
that rely on model-checking. In some sense, our approach can be seen as a pattern
for integrating model-checking in an assurance case and is therefore complementary to
it. Our methodology is based on the definition of formal claims and relies on the use
of inference rules to combine them in a disciplined way. We also place a particularly
strong emphasis on the transition from the informal to the formal world. This allows us
to apply a small set of well-defined strategies (compositional reasoning, abstraction, etc.)

Contributions. We describe our methodology in Sect. 3 and provide several examples
of “rule schemas” that can be applied to build a valid verification argument. We apply
our approach on a non-trivial use case: the design and implementation of an autonomous
rover developed at the IRT Saint-Exupéry. Actual documents related to the verification
argument, as well as the source for all the formal models, have been made freely available
online at http://www.laas.fr/fiacre/examples/twirtee.html.

Our test-bench, the Three-Wheeled Integrated Rover Testbench for Equipment Engi-
neering (TwIRTee), is described in Sect. 2. It is used as an integrated demonstration
platform for the various engineering activities carried out in the Ingequip project [4]:
hardware/software co-design; design space exploration; modeling and formal verifica-
tion; . . . It is aimed at being representative of the architecture of actual space, aircraft
or automotive systems designed by the project’s industrial partner and to experiment
with new design choices. In Sect. 4 we illustrate our methodology on the verification of a
critical function of the rover, namely a distributed, fault-tolerant clock synchronization
protocol over CAN [15].

2



Figure 1: Architecture of the TwIRTee

2 Use Case: Synchronization Function for the TwIRTee

The TwIRTee rover is made of two subsystems, see Fig. 1; the Mission Subsystem (MSS)
and the Power Subsystem (PSS). The complete functional chain involves a Localization
Function (LF), a Mission Planning Function (MPF), a Trajectory Tracking function
(TTF), and a low level Motor Control Function (MCF).

Functions LF, MPF and TTF are located in the MSS while function MCF is in the
PSS. All computing systems are completely asynchronous; the different functions are
allocated on multiple FPGA and connected through a CAN bus.

To protect the equipments, and the people working around TwIRTee, we define a
“safety zone” around the rover large enough to allow emergency stop. The radius of
the safety zone is computed from the maximal mission speed. An erroneous speed
computation may lead the rover to overpass its authorized speed. In this case, a collision
is possible; an event deemed as catastrophic. To mitigate this risk, we introduce a fail-
safe Command/Monitoring pattern (COM/MON) to enforce safety [19]. In practice, all
functions in the MSS are duplicated. For instance, both MSS/COM and MSS/MON
send the speed to the PSS. If the difference of outputs received from COM and MON is
above a given threshold, the COM is considered faulty. (Redundancy and fault recovery
mechanisms are outside the scope of this paper.)

3



This design choice may have an adverse impact on the availability of the system.
Indeed, due to different clocks rates, the clocks at various sites may diverge. Hence
COM and MON may signal reaching a given speed setpoint at very different (local)
time. In this case, PSS will almost systematically reject COM speed, causing inadvertent
emergency stop of the rover.

A solution will be to have a synchronous architecture, based on the use of a
time-triggered protocol and a system wide global network time. Nonetheless, this
may go against some non-technical constraints imposed on the system. Another
solution, that we want to experiment in TwIRTee, is to synchronize the COM and
MON by adding a distributed, fault-tolerant clock synchronization function to the
MSS. Based on this design choice, an analysis of the possible failure modes of the
system functions and their criticality will show that Clock Synchronization (CS) is
critical. Moreover, because the CS function is distributed and asynchronous, the same
analysis may quantify the likelihood to detect a design error by testing as medium.
This warrant the use of more exhaustive verification methods, such as formal verification.

The Clock Synchronization Protocol. A clock synchronization algorithm provides a
global time base in a distributed architecture where each process has its own local clock.
Its purpose is to ensure two main properties [18]: precision, meaning that the difference
between the clock values of any two process is bounded; and accuracy, meaning that the
value of the clock is “not too far” from the actual (real) time. In this section we briefly
present the clock synchronization algorithm we chose for TwIRTee, called a-posteriori
agreement [14].

The algorithm is tailored for CAN and includes fault management mechanisms. We as-
sume a fault model with omission faults for processes (a process does not send a message
it should), transmission faults of the CAN (some messages needs to be retransmitted),
arbitrary clock faults (e.g. drift too fast) and fail-silent processes. Fault occurrences are
bounded by a constant f . The a-posteriori agreement algorithm is based on periodic
resynchronization [18]. Processes initiate a new round of the algorithm at each period by
broadcasting a start message over the CAN. Non-faulty processes receive the message.
After f + 1 start messages, we know for certain that the round is started. This initiates
a synchronization round. The remaining steps, which are also based on the exchange of
typed messages, are used to solve two successive consensus problems. First a vote phase,
to agree on a leader process whose clock is used as the reference. Next an adjust phase,
to agree on an adjustment (a time delay) that should be applied on the local clock of
every process to improve accuracy. The round terminates at the end of the adjust phase.

The algorithm is fully distributed, which means that every process has only a local
view of the round. Since local clocks can be slightly out of sync, processes do not start
their round at the same time; at the beginning of a round n+1, some processes still have
their local round at n. Moreover, new processes may join the synchronization algorithm
at any moment.

The a-posteriori agreement algorithm is an example of a complex, realtime, distributed
protocol. The complexity arises from the large number of possible transitions; the pres-
ence of faults; the use of multiple timing constraints at different scale. For instance,

4



the algorithm uses timeouts to detect faulty processes but also to minimize the num-
ber of exchanged messages. This is the reason why we chose to verify this algorithm
formally using a realtime model-checker. Timing constraints are also introduced by the
CAN. In Sect. 4, we sketch the argument used to assert the precision property on the
algorithm. This property relies on some hypotheses of the CAN, like time bounds on
message propagation and delivery. During a broadcast, each non-faulty process receive
the same message with a time delay bounded by Γtight . This delay is due to physical time
propagation and the processing time of local controllers. The maximal delay between
the emission of a message at a correct process and its reception at any non-faulty process
is bounded by Γmax . The value of Γmax take into account the worst case network load,
maximum numbers of message retransmissions, . . . Precision of the clocks depends on
Γtight , while timeouts are based on Γmax .

3 A Methodology for Building Verification Arguments

We consider a top-down system development process, starting from a set of high level
functional requirements and ending with a product (that is both the software and hard-
ware parts actually implementing the system). In practice, a system design generally
reuse existing components. When we decide to apply formal verification, the inputs
are obtained from the system design (including reused components) which we assume
described in a set of informal documents.

It is generally not possible to formally verify a design completely. There can be
problems with cost, with scalability of the methods, but also with some theoretical
limitations of the tools and models that we wish to use (for instance a lack of expressivity
of the models or some undecidability results). Therefore, it is important to specify the
scope of a model, that is which elements of the design are relevant to the given verification
objective. The scope also includes constraints on the environment of the system. Our
methodology associates explicitly with each model: (1) a set of constraints defining its
scope; and (2) the properties that we want to verify.

Our approach starts with a very detailed initial formal model; a model with as few
abstractions and hypotheses as possible with respect to the design. The goal is to limit,
as much as possible, the work needed to justify the trustworthiness of the initial formal
model with respect to the informal design model. Indeed, this activity is usually obtained
by a review from domain experts and by simulation and is inherently error-prone. Except
for the simplest cases, the detailed formal model is not suitable for (automatic) formal
verification. For instance, with model-checking, it will generally gives an infinite-state
system or be subject to the state space explosion problem. Therefore abstractions are
mandatories. Each abstraction should be captured in a new formal model. This means
that we need to build a (structured) collection of formal models in order to prove the
main verification objectives. We also need to structure these models in order to build
a verification argument. We propose a rule-based framework to: manage the resulting
collection of models; to justify the soundness of each abstraction step; and to collect the
verification artifacts: source code, verification results, counter-examples, etc.

5



Our methodology favors having multiple models with incremental abstractions rather
than fewer models encompassing lots of abstractions. Indeed it is often easier to define
(and justify) an abstraction once the system is well understood [5]. In the rest of this
section, we give a high-level description of the methodology that we put in place. We
try to give some examples based on the use case described in Sect. 2.

3.1 Models, Properties and Claims

Models. A model is a simplification of reality that gives a complete description a
system from a particular perspective. It is the description of a mental representation
of a system, existing or not, using a syntax. This syntax can be textual or graphical,
formal or not. This very general definition allows us to define a homogeneous framework
to deal with heterogeneous semantics. A model corresponds to a certain level of
details (or abstractions). We recognize the design as the most detailed model of the
system, in the sense that it describes some aspects of the system that are not relevant
for verification. In our approach, we raise the level of abstraction from the design
model until model-checking can be applied. In our use case, for instance, the system
design is given as an algorithm in pseudo-code and a set of informal requirements; the
simulation code (kindly provided by the authors of [15]) is a set of C-language source
files (the simulation code is semi-formal and its semantics depends on the simulation
framework used); and the formal models are based on the formal specification language
Fiacre. Regarding the abstractions used, we abstract the behavior of the CAN network
using timed FIFO; we over-approximate the effect of clock skews; we made some data
abstractions [20]; etc.

Property. A property is a statement on a design intent [9]. A property can be used
as a constraint on the environment, to ensure that we cover some specific parts of the
system, or as a design specification. For the same reasons as previously, we choose a
very general definition in order to cope with different types of syntax and semantics
for properties. Properties can be expressed formally, using a logic, or informally, using
natural language (in which case we should make provisions for possible imprecisions).

We take inspiration from the Property Specification Language (PSL) [1] and associate
a verification directive to every property. These directives attach a role to the properties
which is useful for integrating the verification process in the system design process.
For the sake of simplicity, we consider only a subset of PSL verification directive,
namely: assert, assume, restrict, cover. An assert directive is always associated with a
design specification property and defines the verification objective. Assume and restrict
properties constrain the design. The difference is their role in the verification process.
An assumption must be validated by subject matter expert while a restriction can be
introduced to simplify the verification problem. A restriction should be temporary, like
a scaffold, otherwise it becomes an assumption. For the rest of this paper we will use
the directives names as properties types.

Claims. Models and properties are two sides of the same coin: a property is always
expressed with respect to a model and a model cannot exists without some assumptions.
This strong relationship is captured as a triplet 〈H ; M ; P〉 which we call a claim, inspired

6



by [16]. The claim 〈H ; M ; P〉must be read as: “the model M satisfies P under hypothesis
H”.

Definition 1 (Claim). A claim is a triplet 〈H ; M ; P〉, where: H is a set of assume or
restrict properties; M is a model; and P is a set of assert or cover properties.

A claim makes explicit the relation between a model, its assumption and the verifica-
tion goal. In the simplest cases, we can check the validity of a claim 〈H ; M ; P〉 by using
a verification tool, such as a model-checker. In this case, the property P is expressed as
a temporal formula that needs to be checked on the composition of the assumption with
the model; we say that 〈H ; M ; P〉 is valid if and only if1 H ⊗M ` P . For instance, if we
can give a semantics for properties and models using “sets of execution traces”—that is
associate a set of traces [[M ]] to any model M and similarly for H and P—then validity
is set inclusion and composition is set intersection. In this case we say that the claim
〈H ; M ; P〉 is valid if and only if [[H]] ∩ [[M ]] ⊆ [[P ]].

With sufficient justification from a system expert, it is also possible to admit a claim
as a fact. In all the other cases, when it is not possible to prove a “top-level claim”,
we propose to apply deduction rules in order to decompose the problem into sub-claims.
This approach to structure an argument using an (inference) tree or a set of deduction
rules is quite common, see e.g. [3, 6, 16].

3.2 Rules

We define a rule as a schema linking a claim (the conclusion), with a set of premises
and a condition of application. Premises and conclusion are claims. The condition of
application is a list of conditions required to apply the rule. In our methodology, we
also attach a justification (also called an evidence is other settings, like [16]) to each
application of a rule to show that the use of the rule is sound. This justification acts as
a documentation when we generate the final verification argument.

Definition 2 (Rule schema). A rule is a set of premises claims, C1, . . . , Cn, together
with a conclusion, C, and (optionally) a boolean condition E.

(rule.id)
E C1 . . . Cn

C

The abstract definition of a rule does not assume any semantics on the claims: the
definition respects semantic neutrality [3]. Note that, even though our notation is in-
spired by logical inference rules, the soundness of a rule is not necessarily backed by any
notion of a “proof calculus”, like for instance natural deduction. This is the reason for
adding an extra justification to each application of a rule. We say that the application
of a rule, a rule instance, is sound when its conclusion is valid whenever all the claims
in its premises are.

1The precise definition of the composition operator, ⊗, and of validity, `, depends on the choice of a
semantics for the models.

7



(split)

(H ⊆ H1 ∪H2)
〈H1 ; M ; P〉 〈H2 ; M ; P〉

〈H ; M ; P〉
(comp)

〈H ∧ P1 ; M ; P2 〉
〈H ; M ; P1 〉

〈H ; M ; P1 ∧ P2 〉

(trace)

([[Mc]] ⊆ [[Ma]])
〈H ; Ma ; P〉
〈H ; Mc ; P〉

(scope)
〈Hs ; Ms ; P〉
〈H ; M ; P〉

(formalize)
〈H ; M ; P〉

〈Hyp; Sys; Prop〉

Figure 2: Example of rules used to build verification arguments

We propose some predefined rules to support this process, some of which are given in
Fig. 2. Our first example, rule (split), can be used to decompose a proof goal, 〈H ; M ; P〉,
into two sub-claims with stronger hypotheses, H1 and H2. This rule has a condition of
application, which states that the constraints in H are covered by either H1 or H2 (the
exact meaning of the condition H ⊆ H1 ∪H2 depends on the choice of semantics for the
hypothesis). This rule is useful when H1 and H2 partition H. For example to decompose
a set of initial conditions (defined in H) in two smaller subsets. Typically, a justification
for rule (split) should explain how to interpret the assume and restrict properties in H
as sets.

Our second example, rule (comp), is a simple example of applying compositional
reasoning. We can interpret this “decomposition rule” as follows. If we know that M
satisfies P1 (with assumption H) then, to prove that M satisfies P1 ∧P2, it is enough to
prove that M satisfies P2 with the stronger hypothesis H ∧ P1. Therefore rule (comp)
is useful to decompose a verification goal into simpler sub-goals. We could define more
complex rules, where different components of M depends on each other, in the style of
assume-guarantee reasoning [11,12]. In this case, a justification should be added to show
how to break any possible circular reasoning and therefore ensure the soundness of the
rule.

Our last example, rule (trace), illustrates the use of abstractions during the verification
process. In this case, we assume that we have two different models of the system—an
abstract (Ma) and a concrete (Mc) one—both equipped with a trace semantics. Rule
(trace) simply states that we can check properties on the abstract model if any execution
trace of Mc (the set [[Ma]]) is also a trace of Ma. For instance, in our use case, we use
rule (trace) to check a specific property on a timed system (considering the set of traces
with all timing information erased) by proving it on an equivalent system with more
relaxed timing constraints. In this particular case, we need to add a justification that
properties in P depends only on the order of the events and not their date, so that
timing information can be safely omitted.

We can add rules for more abstractions. Some abstractions are purely automatic,
like: predicate abstraction; Counter-Exemple Guided Abstraction Refinement; symme-
try; . . . while other are hand-crafted, such as cut-point, counter-abstraction, or data
independence.

8



3.3 Verification Argument and Evidence-Based Rules

Rules can be applied successively until we reach an axiom, that is a rule with no premises.
In our context, an axiom is either a claim proved using a model-checker or it is a fact.
This gives a derivation tree where the root is the main verification objective. We call
this tree a verification argument. Hence we build the argument bottom-up, starting from
the verification objective and ending with axioms.

The main goal of our work is to prove the verification objective. By construction,
the verification objective (the root claim) of an argument is valid when all the rules
instances in the argument are sound. We can back the soundness of the three rules
defined in the previous section by reasoning on the semantics of the models. This is not
always the case and this is one of the motivation for adding a justification to every rule
instance. Next, we give two examples of “evidence-based rules”, (scope) and (formalize),
which are rules whose soundness is supported only by subject matter expertise. Both
rules are necessary to build an argument in all but the simplest of cases. Also, while
these rules share a common, very basic schema, they are quite different in nature.

Scoping rule: in general, design documents describe more elements than necessary for
the verification objectives. Therefore we often need to simplify the models and the set
of requirements in order to focus on some elements in the design. This is achieved by
rule (scope), see Fig. reffig:infer, where Ms, Hs are obtained by simplifying M , H with
respect to the property P . The soundness of this rule relies only on its justification.
For instance to explain why some parts of the design documents have no influence on
the proof of the verification objective P . Means for the justification are those accepted
in the context of aeronautical certification [8]: analysis (including proof), tests and
peer-review. For instance, in our use case, we use scoping to select the assumption
made on: the clock characteristics; the CAN; the processes implementing the clock
synchronization algorithm (scheduling, H/W initialization, . . . ). Other elements in the
design are abstracted by the designer as irrelevant for our verification objective, for
instance some hypothesis on the environment (maximal velocity of the robot) or the
functional specification of the LF, MPF, TTF and MCF functions.

Formalization rule: another instance where formal reasoning is not enough to simplify
a claim is related to the steps where we move from an informal to a formal model.
Rule (formalize) states that H, M , P are formal interpretation of the corresponding
models; Hyp,Sys,Prop. The construction of 〈H ; M ; P〉 starts with the definition of
modeling requirements. Concerning the assumptions made on the environment, Hyp, the
modeling requirements should set the (range of) parameters pertaining to: the model of
computation (message passing, shared variables, etc.); the temporal constraints (network
delay, processing time, etc.); the bounds on the interactions (size of buffers, FIFO, etc.);
etc. This activity is valuable for the designer as it explicits important characteristic of
the environment and helps detect imprecision on the design, such as undefined FIFO size.
Requirements for properties in Prop states how assert properties have to be checked. For
instance, a formal property can be expressed as a temporal logic formula or checked using
an observer. Finally, modeling requirement for the design model Sys should be as close
as possible to those expressed on Hyp, so that we start with a formal model that relies

9



. . .

〈H ; M ; G0
1 〉

(mc.6)

(Gi
1 ⊆ Gi

1,1 ∪ · · · ∪Gi
1,k)

∧
j∈1..k

〈Habs ∧G1 ,j ; Mabs ; G i+1
1 〉

([[Mc]] ⊆ [[Ma]]) 〈Habs ∧G i
1 ; Mabs ; G i+1

1 〉
(.8)

〈H ∧G i
1 ; M ; G i+1

1 〉
(trace.7)

〈H ; M ; Gn
1 〉

(induction.5)

〈Hyp; Sys; P1 〉
(formalize.4)

. . .
(comp.2)

Figure 3: Verification argument for the clock precision property

on as few abstractions as possible. Once again, this activity may eliminate imprecision
in the design model.

Once the model requirements are defined, we need to define one or more model element
for every model requirement. Model elements are relative to the formal language used
to build the claim. They give a detailed description of the formal model and capture
modeling choices that ”implement” the modeling requirements. For each model element
a rationale is given that shows how the modeling choice meets its requirement. Model
requirements can be seen as High Level Requirements (HLR) while model elements
describes Low Level Requirements (LLR). Rationale helps to show that LLR meet their
HLR. This decomposition supports traceability from requirements to formal model code.
This process ease peer-review and raise the overall confidence on the formal modeling
process. This is, for instance, analogous to the way assurance process reduce the risk a
test oracle does not detect an incorrect system [16].

4 Illustration of our Methodology on the Rover Use Case

Figure 3 gives an overview of the structure of a verification argument for the clock
synchronization algorithm. We focus on one initial claim related to the precision of the
clocks. The derivation tree does not display the justification for each rule application.
In practice, each rule application is associated to a report. As an example, the report
for rule (formalize.4), as well as all the source for the formal models, are available online
at http://www.laas.fr/fiacre/examples/twirtee.html.

We give some insights on the soundness of each rule application below. As a first step,
rule (comp.2), we decompose the precision property as the conjunction of two simpler
properties: (1) that each round of the algorithm terminates and reaches a consensus on an
adjustment (property P1); and (2) that, assuming P1, we can bound the clock difference
by a constant. The last claim can be shown by analysis, so we focus our discussion on
claim 〈Hyp; Sys; P1 〉. Next, we provide formal models for the system design and the
hypothesis using rule (formalize.4). In the same step, property P1 is interpreted as a
LTL liveness property, Gn

1 , where n is the index of the current round. Since the number

10



of rounds is unbounded, it is not possible to check the property using an enumerative
model-checker and more abstractions are needed.

The following step is to use an induction on the number of rounds, rule (induction.5).
At this level, even though the state space of the models is finite, it is too big for model-
checking (with more than 108 states). We apply rule (trace.7) to consider a more abstract
model where propagation and hardware processing time (Γtight) is zero. Informally, this
is justified by the fact that there are more “execution traces” in the abstract model (we
check condition [[Mc]] ⊆ [[Ma]]) and by the fact that property Gn

1 is untimed. Finally, we
apply rule (split.8) to obtain more tractable model-checking problems by partitioning
the set of initial conditions. For instance, if we consider a configuration of the system
with 5 nodes and 2 faults, we end up with about thirty sub-claims to solve, each with
a manageable state space size (a few millions states). In this case we can conclude the
argument by providing model-checking results as evidence.

5 Conclusion and Related Work

We propose a methodology for structuring the formal models—and the reasoning—
necessary to prove a claim on a system design. Our approach relies on the construction
of a structured verification argument in which claims are linked with formal models and
with a rationale showing how the model elements meet their requirements. We have
followed this methodology to prove properties on a critical function of an autonomous
rover, TwIRTee, that has been used as a test-bench for various engineering activities,
see e.g. [2, 4]. While we focus on realtime model-checking in our illustration (Sect. 4),
other formal methods have been used on the design of TwIRTee. For instance, SAT-
based model-checking and the event-B method have both been used to check its collision
avoidance function. We plan to apply our methodology to this use-case and to integrate
all these results in a complete assurance case.

We can find some related works that include the use of formal methods within an
assurance case. For instance, Denney et al. [7] use the results of a static analysis tool
as part of an argument for an UAV. A similar work, with Event-B, is proposed in [13].
Likewise, Jee et al. [10] integrate real-time model-checking in their argument about the
safety of a pacemaker. Nonetheless, they use a single model, as an evidence, but do not
provide an incremental process to help derive this model from the specifications.

At the moment, our approach is not supported by any tooling. For future work,
we envisage to provide end users with means to automate, or at least simplify, the
management of claims. We would also like to help the user with selecting the appropriate
verification tool. For instance, some of the rules given in Sect. 3.2 can be generalized
into patterns that can be used to guide the generation of a valid argument. A possible
solution for implementing our approach could be to integrate it with the Evidential Tool
Bus of [17], that supports the integration of multiple verification tools in order to build
assurance cases.

11



References

[1] Standard for property specification language (PSL). IEC 62531:2012(E) (IEEE Std
1850-2010), 2012.

[2] Mathieu Clabaut, Ning Ge, Nicolas Breton, Eric Jenn, Remi Delmas, and Yoann
Fonteneau. Industrial grade model checking - use cases, constraints, tools and
applications. In Int. Conf. on Embedded Real Time Software and Systems (ERTSS),
2016.

[3] Simon Cruanes, Grégoire Hamon, Sam Owre, and Natarajan Shankar. Tool inte-
gration with the evidential tool bus. In Proc. of VMCAI. Springer, 2013.

[4] P. Cuenot, E. Jenn, E. Faure, N. Broueilh, and E. Rouland. An experiment on
exploiting virtual platforms for the development of embedded equipments. In Int.
Conf. on Embedded Real Time Software and Systems (ERTSS), 2016.

[5] Abhishek Datta and Vigyan Singhal. Formal verification of a public-domain DDR2
controller design. In 21st Int. Conference on VLSI Design. IEEE, 2008.

[6] E. Denney and G. Pai. Evidence arguments for using formal methods in software
certification. In Software Reliability Engineering Workshops (ISSREW), 2013.

[7] Ewen Denney, Ganesh Pai, and Josef Pohl. Heterogeneous aviation safety cases:
Integrating the formal and the non-formal. In 17th Int. Conference on Engineering
of Complex Computer Systems (ICECCS). IEEE, 2012.

[8] RTCA DO. 178c. Software considerations in airborne systems and equipment cer-
tification, 2011.

[9] Harry Foster. Applied assertion-based verification: An industry perspective. Now
Publishers Inc, 2009.

[10] Eunkyoung Jee, Insup Lee, and Oleg Sokolsky. Assurance cases in model-driven de-
velopment of the pacemaker software. In Leveraging Applications of Formal Meth-
ods, Verification, and Validation. Springer, 2010.

[11] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEE Trans-
actions on Software Engineering, 7(4), 1981.

[12] Amir Pnueli. In transition from global to modular temporal reasoning about pro-
grams. Springer, 1985.

[13] Yuliya Prokhorova and Elena Troubitsyna. Linking modelling in Event-B with
safety cases. In Software Engineering for Resilient Systems. Springer, 2012.

[14] Lúıs Rodrigues, Mário Guimaraes, and José Rufino. Fault-tolerant clock synchro-
nization in CAN. In 19th IEEE Symp. on Real-Time Systems. IEEE, 1998.

12



[15] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and L. Rodrigues. Fault-tolerant
broadcasts in CAN. In 28th Int. Symp on Fault-Tolerant Computing, 1998.

[16] John Rushby. On the interpretation of assurance case arguments. In 2nd Int.
Workshop on Argument for Agreement and Assurance (AAA), 2015.

[17] John M Rushby. An evidential tool bus. In 7th International Conference on Formal
Engineering Methods (ICFEM), volume 3785 of LNCS. Springer, 2005.

[18] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal of the ACM
(JACM), 34(3), 1987.

[19] Pascal Traverse, Isabelle Lacaze, and Jean Souyris. Airbus fly-by-wire: A total
approach to dependability. In Building the Information Society. Springer, 2004.

[20] Pierre Wolper. Expressing Interesting Properties of Programs in Propositional Tem-
poral Logic. In 13th Symp. on Principles of Programming Languages. ACM, 1986.

13


