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Abstract

Shallow Water equations are widely used at several scales for liquid flows when the depth is
smaller than the longitudinal scale. They are based on assumptions on the velocity profile which
allow to estimate its shape factor and the shear stress at the wall to close the system of equations.
We present here a two layers decompositon between an ideal fluid and a viscous layer, in the spirit of
IBL (Interactive Boundary Layer) or IVI (Inviscid Viscous Interaction) introduced in aeronautics.
It means that the two layers interact. The displacement thickness of the viscous layer and the order
of magnitude of the shear stress at the wall are supposed small and of same order of magnitude.
We use this small parameter for expansion and obtain a coupled system of two interacting layers,
the viscous layer being then a kind of apparent topography due to the displacement thickness. We
show the link with classical Shallow Water equations. The assumption on the velocity profile shape
is rejected in the viscous layer, which makes assumptions on profiles (shape factor and wall shear
stress) more precise. We test the final system on some classical cases like the starting flow, the
flow over bump at several Froude regimes. We finally focus on the flow over a bump in subcritical
flows. The computed wall shear stress in this configuration presents some characteristic features of
the influence of the boundary layer, it depends on the topography, and moreover its maximum is
reached before the top of the bump, which is impossible in classical Shallow Water equations. Also,
an additional term with the same magnitude as the shear stress appears in the system, which can
be interpreted as a correction to the pressure.

Keywords: viscous layer, von Kármán equation, boundary layer, Prandtl equation, shallow water, friction
2010 AMS subject classifications: Primary: 35B40, 35D30, 35L60, 35Q92, 49K20

Introduction

Many phenomena in maritime or fluvial hydraulics involve free surface flows in shallow waters. The so-called
shallow water equations were introduced by Saint-Venant in 1871 [4] for studying floods and tides. Since then,
the model has been widely extended and is used in the modelling and numerical simulation of a number of
natural or manmade phenomena such as river flow [17, 7], flood forecasting [8], pollutant transport [28, 18],
dam-break [1, 33], tsunami [16, 21, 26], overland flow [13, 32, 11], soil erosion [25].

The shallow water system can be obtained from the incompressible Navier-Stokes equations under several
hypotheses, the main one being that the characteristic wavelength is much larger than the water depth. Two
consequences follow then: the hydrostatic pressure law, and the viscosity vanishing in the horizontal direction.
Next, to proceed from Navier-Stokes to shallow water, we integrate the equations along the vertical direction.
At this point, we have to be careful about the vertical velocity profile, which on the one hand has to be
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approximated to deal with nonlinearities, but on the other hand drives the bottom boundary condition, hence
the friction phenomena.

Two classical assumptions on the velocity profile lead to explicit integrations. First, a viscous Poiseuille-
like (i.e. parabolic) profile on the whole water depth gives rise to a linear (with respect to the mean velocity)
friction term, sometimes referred to as laminar friction. Even simpler, the constant vertical profile, somehow
corresponding to an ideal fluid, has the main drawback that by construction the boundary condition at bottom
disappears (non penetration for an ideal fluid). Hence there is no friction term in the integrated equations.
This corresponds to the original model proposed by Saint-Venant, which he obtained by completely different
means. Friction has to be added afterwards, using empirical laws (Manning, Chézy,...)[9]. The main drawback
of these two points of view is the non-adaptability of the viscous term due to large velocity variations, so that
the assumed profiles (parabolic or flat) do not hold. We propose here a more flexible coupled system based on
a supplementary viscous layer study.

More precisely the aim of this paper is to understand how the viscous no-slip boundary condition gives rise
to the friction term in the integrated system. This is done by assuming the existence of a viscous layer above the
ground, with thickness quantified by a parameter δ > 0, which is related to the inverse of the Reynolds number
of the fluid. Here δ will be small but not necessarily vanishing as in classical boundary layer analysis. Above
this layer lies an ideal fluid. Integrating the incompressibility equation under this assumption leads to the same
conservation equation on the fluid depth. On the contrary, the integration of the momentum equation exhibits
major differences. Indeed, it turns out that the order of magnitude of the friction term, which results from the
parietal constraints, is precisely δ, while the above mentioned Poiseuille profile leads to a δ̄2 order of magnitude
(see part 1.3). Motivated by this precise quantification of the intensity of friction, we introduce a new closure
for the flux momentum. It can be interpreted as an additional pressure law, with the same magnitude δ, so that
both terms vanish for an ideal fluid, that is δ = 0.

At this stage, we obtain a system of two equations which are similar in structure with the usual shallow water
system, but involving several additional unknowns functions precisely related to the viscous layer. Following
classical methodology in aerodynamics, see e.g. [29], the second step consists therefore in a careful analysis of
this layer, through the Prandtl equation, which is integrated along the vertical axis to obtain the so-called von
Kármán equation. It drives the evolution of the so-called displacement thickness δ1 (see Figure 1), which is
involved in the definition of the corrective pressure mentioned above, and can be interpreted as some physical
thickness of the viscous layer. The system has to be complemented by the velocity equation of the ideal fluid,
since it is involved in the von Kármán equation. Together with some assumptions on the vertical velocity profile
in the viscous layer, this leads to a system of four equations. In practice we will discuss the effects for flows over
short bumps. The acceleration induced by the bump will change a lot the basic flow so that the shape velocity
profile is no longer a half Poiseuille nor a flat one. This study aims to understand this kind of flows which are
not taken into account by the shallow water equations themselves. The major limit of the following theory is
the necessity of the ideal fluid/viscous layer decomposition.

The outline of the paper is as follows. In a first section we recall the Navier-Stokes system, and state the
long wave approximation which is convenient for shallow water approximation. Next we turn to the viscous
layer analysis, and derive Prandtl and von Kármán equations. Vertical velocity profiles are also introduced.
The third section is devoted to the derivation of the Extended shallow water system leading to our new model
(3.8)-(3.10). In Section 4 we derive some formal properties of the model, together with analytical steady state
solutions. Finally, we evidence several properties of the model by numerical simulations, the purpose of the
paper not being to develop sharp discretizations.

1 From Navier-Stokes to shallow waters

In this section we recall how classical models for shallow waters are obtained from Navier-Stokes equations. The
first assumption is a long wave approximation, stating that indeed we deal with a thin layer of water. Next, we
integrate along the vertical direction, assuming a given velocity profile on the whole water depth.

1.1 Navier-Stokes equations

We consider a fluid in a time-dependant domain Ωt = R × {fb(x) ≤ y ≤ η(t, x)} (see figure 1), where the first
dimension x is horizontal and with infinite extension, the second one y is vertical. The fluid is limited by the
ground, represented by a function y = fb(x), and some free surface y = η(t, x). The ground is a given function
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Figure 1 – Domain under consideration: the water layer is defined by the depth h, the bottom is a given
function fb and η is the free surface. Two families of velocity profiles for the flow over the topography,
first with the usual half-Poiseuille description (dashed) (see 1.3 for the explanations), and second with
the flat profile with a boundary layer (plain). Note the shear (slope of the velocity at the wall) is
completely different in both descriptions.

(no erosion or ground modification), whereas the free surface is an unknown of the problem. The water height
is h = η − fb. In this study, the properties of the air above the free surface are completely neglected.

Our starting point to describe the liquid layer is the dimensionless Navier-Stokes equations for an incom-
pressible Newtonian fluid in laminar flow [29]:

∂xu+ ∂yv = 0 (1.1)

∂tu+ u∂xu+ v∂yu = −∂xp+
1

Reh
∆u (1.2)

∂tv + u∂xv + v∂yv = −∂yp−
1

Fr2
+

1

Reh
∆v (1.3)

where

• U = (u, v) is the velocity vector

• Reh = u0h0

ν is the Reynolds number expressing the ratio between the inertia force and the viscosity

• Fr = u0√
gh0

is the Froude number, ratio between the kinetic and potential energies

• p is the pressure

Remark 1.1. Nondimensionalization has been made with the same characteristic length for the abscissa and
the ordinate, and corresponds for instance to the mean water depth h0, that appears in the Reynolds and Froude
numbers.

Remark 1.2. We consider in this work only laminar flows because the asymptotics from the Navier-Stokes
equations is clearer, and moreover the resulting description is quantitative. A similar study can be made with a
modified Reynolds tensor and we can hope it leads at least to some qualitative description.

The system is complemented with the following boundary conditions:

• bottom: no-slip u = v = 0 for y = fb(x)

• free surface y = η(t, x)

– kinematic boundary condition: v = ∂tη + u∂xη

– continuity of the stress tensor: σ · n = 0, where σ =

(
2∂xu− p ∂xv + ∂yu
∂yu+ ∂xv 2∂yv − p

)
is the stress tensor

and n =

(
∂xη
−1

)
is the normal to the free surface.
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1.2 Long wave scaling

Up to now, no hypothesis has been taken into account for the size order of the characteristic quantities u0, h0.
We have in mind applications to rivers or coastal flows where the following conditions may be observed:

• the horizontal velocity has small variation along the vertical;

• the Reynolds number is large;

• the vertical velocity is small compared to the horizontal velocity.

Let us start by investigating the third one, which justifies the following scaling for the velocities:

v = εṽ u = ũ.

Then the mass conservation equation (1.1) enforces also a scaling for the space variables y � x since

0 = ∂xu+ ∂yv = ∂xũ+ ε∂y ṽ.

Hence there are two options for the variable scaling:

1. Long wave hypothesis. We introduce the aspect ratio of the system ε = h0

L . The scaling is

x =
x̃

ε
y = ỹ.

This scaling is the same as a nondimensionalization of the Navier-Stokes equations with a characteristic
length L for the domain and a characteristic physical height h0. This scaling has to be complemented
with t = t̃

ε . So, the long wave hypothesis needs a long time study. Furthermore, since fb(x) = f̃b(x̃), we

have f ′b(x) = εf̃b
′
(x̃) and so the physical slope needs to be small enough.

2. Thin layer scaling:
x = x̃ y = εỹ t = t̃

This scaling restricts the study of small vertical velocity only to a thin water depth which tends to zero
when ε→ 0. It is the classical scaling used in the boundary layer approach.

So, the only scaling which is compatible with a small vertical velocity compared to the horizontal velocity is the
long wave scaling. Let us see the consequences for the set of equations (1.1)-(1.3) and the boundary conditions.

∂x̃ũ+ ∂ỹ ṽ =0

ε [∂t̃ũ+ ũ∂x̃ũ+ ṽ∂ỹũ] =− ε∂x̃p̃+
1

Reh

[
ε2∂2

x̃ũ+ ∂2
ỹ ũ
]

(1.4)

ε2 [∂t̃ṽ + ũ∂x̃ṽ + ṽ∂ỹ ṽ] =− 1

Fr2
− ∂ỹp̃+

ε

Reh

[
ε2∂2

x̃ṽ + ∂2
ỹ ṽ
]

(1.5)

ũ = ṽ =0 at ỹ = f̃b

ṽ = ∂t̃η̃+ũ∂x̃η̃ at ỹ = η̃(
ε
(
(2ε∂x̃ũ− p̃)∂x̃η̃ − ε∂x̃ṽ

)
− ∂ỹũ

ε
(
∂x̃η̃(∂ỹũ+ ε∂x̃ṽ)− 2∂ỹ ṽ

)
− p̃

)
=

(
0
0

)
at ỹ = η̃

Taking an approximation at order O(ε) leads to:

• Simplified version of the stress tensor continuity at the free surface: p̃ = 0 and ∂ỹũ = 0 at ỹ = η̃.

• Hydrostatic pressure with (1.5) and p̃ = 0 at the surface:

∂ỹp̃ = − 1

Fr2
⇐⇒ p̃ =

1

Fr2
(η̃ − ỹ).

This result for pressure at order O(ε) is already observed, see for instance [20], chapter 5.

• Cancellation of the viscosity in the x direction in (1.4):

∂t̃ũ+ ũ∂x̃ũ+ ṽ∂ỹũ = −∂x̃p̃+
1

εReh
∂2
ỹ ũ.

4



Remark 1.3. We emphasize here that the above properties, which are classical shallow water hypotheses, are
brought out solely by the long wave approximation.

To summarize, the long wave approximation of the Navier-Stokes equations consists of the following set of
equations:

∂x̃ũ+ ∂ỹ ṽ = 0 (1.6)

∂t̃ũ+ ũ∂x̃ũ+ ṽ∂ỹũ = −∂x̃p̃+
1

εReh
∂2
ỹ ũ (1.7)

∂ỹp̃ =− 1

Fr2
(1.8)

ũ = ṽ = 0 at ỹ = f̃b (1.9)

ṽ = ∂t̃η̃ + ũ∂x̃η̃ at ỹ = η̃ (1.10)

p̃ = 0, ∂ỹũ = 0 at ỹ = η̃ (1.11)

This will be our reference system for the remaining of this article. Hence, from now on we shall drop the tildes
when referring to the variables and unknowns of the previous system of equations.

Notice that in this setting the effective Reynolds number is εReh, which takes into account the aspect ratio
of the system ε = h0/L. We shall come back more precisely on this when studying the Prandtl equation below,
but notice that the actual ideal fluid limit here corresponds to εReh → ∞, leading to the hydrostatic Euler
system:

∂xu+ ∂yv = 0 (1.12)

∂tu+ u∂xu+ v∂yu = −∂xp (1.13)

∂yp = − 1

Fr2
(1.14)

∂tη + u∂xη = v at y = η (1.15)

As usual, the no-slip boundary condition (1.9) is not relevant for the ideal fluid and has to be replaced by the
non-penetration condition

−ufb′ + v = 0 at y = fb. (1.16)

Recovering some connection between the ideal fluid equations and the no-slip condition is precisely the aim of
the viscous layer theory, which we will present in Section 2.

Audusse et al. propose in [3] to consider in the long-wave approximation of both Euler and Navier-Stokes
system several layers and integrate over each layer. Similarly to finite volume numerical methods, matter and
momentum fluxes are taken into account at each interface between the layers. Therefore they are faced with a
superposition of shallow water systems each one interacting with its neighbours. This can be interpreted as a
discretization in the vertical direction of the two-dimensional systems. Our method is different in that the two
layers have different status, based on physical motivations. The relative thickness of each part is not fixed but
evolves in time.

1.3 Shallow water equations

The aim of this paragraph is to recall the classical way to obtain shallow water equations by vertical integration
over the whole water depth, first in the long-wave approximation of the Euler equations, then in the long-wave
approximation of the Navier-Stokes equations.

Averaging the Euler system (1.12)-(1.16) over the water depth leads to the so-called shallow water model
without friction. We introduce the natural averaged velocity.

Definition 1.4. The averaged velocity U is defined by hU =

∫ η

fb

u dy.

With this construction, U is defined h-a.e. (i.e. only for h > 0). Then straightforward computations (see
Section 3 below for details) lead to

∂th+ ∂x(hU) = 0, (1.17)

∂t(hU) + ∂x

(∫ η

fb

u2 dy

)
= − 1

Fr2
h(∂xh+ f ′b), (1.18)
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The momentum equation above requires some closure for the flux. This can be achieved by assuming a flat
velocity profile over the water depth, which is compatible with the ideal fluid assumption. This leads to∫ η
fb
u2 dy = 1

h (
∫ η
fb
u dy)2, hence the momentum equation becomes

∂t(hU) + ∂x

(
hU2 +

h2

2Fr2

)
= − hf

′
b

Fr2
. (1.19)

Equations (1.17) and (1.19) correspond to the equations derived by de Saint-Venant by completely different
means, with the additional topography term.

If we proceed in an analogous way from the Navier-Stokes equations in long wave scaling, we obtain a viscous
shallow water where the water depth conservation is the same as before (1.17), but the momentum equation
becomes

∂t(hU) + ∂x

(∫ η

fb

u2 dy

)
= − 1

Fr2
h(∂xh+ f ′b)−

1

εRe
∂yu|y=fb . (1.20)

Once again, without the presence of complementary equations, a closure is needed for the u-profile over all
the water depth. Explicit formulæ are given in [19] depending of the flow index of the fluid. Focusing on a
Newtonian fluid with a negative constant slope, the balance between the friction and the driving force of the
slope gives a parabolic solution for u, the half-Poiseuille or Nusselt solution: u(t, x, y) = − 3Um

2 (y−fbh )(y−fbh − 2)

with Um = − εRehf
′
b

3Fr2 h2 a positive constant. In the general case, even if the invariance is not conserved, a similar
form is chosen for the velocity profile but the deviating is expressed with a variable amplitude instead of a
constant one: u(t, x, y) = − 3

2U(t, x)y−fbh (y−fbh − 2). Nevertheless, the explicit integration gives the following
system:

∂th+ ∂x(hU) = 0 (1.21)

∂t(hU) + ∂x

(
6

5
hU2 +

h2

2Fr2

)
= − hf

′
b

Fr2
− 3

εReh

U

h
. (1.22)

The friction term which naturally appears in this derivation is − 3
εReh

U
h . It is indeed linear with respect to the

mean velocity U , and is usually referred to as the laminar friction term.
An alternative way to reintroduce some viscosity in the inviscid shallow water equations (1.17)-(1.19) is to

put a posteriori some friction term similar to the one in the Poiseuille-shallow water (1.22). A general form for
such a friction term is C`

U
h to be consistent with the previous equation, but a large family of empirical friction

laws involves a C` depending on U as well, for instance Chézy, Manning, see [9] for a bibliographical study.

2 Viscous layer analysis

We turn now to the main step towards the model we look for. It mainly consists in dividing the fluid in two
layers

• An ideal fluid layer dealing with the free surface;

• A thin viscous layer with the no-slip condition at the bottom.

Between these layers lies an interface which connects the velocities and will be described below. In the first layer
we take advantage of the explicit integration along the vertical, in the second we take into account the viscosity
in the vertical direction, hence we recover some friction in the integrated equations. This section is devoted to
the study of the viscous layer.

We introduce a small parameter δ, whose magnitude will be specified below. It is related to the thickness
of the viscous layer, but does not correspond to its actual physical value. We follow the classical strategy used
in the so-called boundary layer theory, see e.g. [27],[29], except that in that case δ → 0, whereas we keep
a finite value here. The first step is to derive a set of equations, sometimes referred to as RNSP (Reduced
Navier-Stokes/Prandtl) equations [22]. Since they are yet two-dimensional, the next step consists in writing
another equation, by integrating the Prandtl system over the viscous layer height. This leads to the so-called
von Kármán equation, where extra unknowns are introduced. To obtain a closed form, some assumptions have
to be done on the vertical velocity profile, which are discussed in the last paragraph.
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2.1 Prandtl equations

Starting from the Navier-Stokes equations with long wave scaling, we introduce the following change of variables,
referred to as the Prandtl shift:

t = t, x = x, y = δy + fb, p = p.

As a consequence, we have the relations

∂y =
1

δ
∂y, ∂x = ∂x −

f ′b
δ
∂y. (2.1)

Velocities must be scaled in order to preserve the mass conservation (1.6), which rewrites here

∂xu+ ∂y(
v − f ′bu

δ
) = 0.

Hence we choose u = u and v =
v−f ′

bu

δ
. The complete Prandtl shift is therefore

x = x, y = δy + fb, t = t, p = p, u = u, v =
v − f ′bu

δ
. (2.2)

Then equations (1.6), (1.7), (1.8) and (1.9) become

∂xu+ ∂yv =0

∂tu+ u∂xu+ v∂yu =− ∂xp+
f ′b
δ
∂yp+

1

εRehδ
2 ∂

2
yu (2.3)

1

δ
∂yp =− 1

Fr2
(2.4)

u = v =0 at y = 0.

Equation (2.3) together with (2.4) leads to

1

εRehδ̄2
∂2
yu = O(1).

This leads to several possible scalings for δ̄ in terms of εReh, namely

• if δ verifies εRehδ
2 � 1, we recover the ideal fluid equations;

• if δ satisfies εRehδ
2 � 1, we obtain ∂2

yu = 0. This equation is explicitly solved and from the continuity
of the stress tensor and the adherence on the ground we obtain u ≡ 0. So we do not consider this trivial
case;

• the last possibility is εRehδ
2 ∼ 1. This analysis preserves as many as possible terms in the equations, and

hence most of the physical phenomena described by those terms. It is referred to as “dominant balance”.

This is why in what follows, we consider the scaling

δ =
1√
εReh

. (2.5)

With this hypothesis, we obtain the Prandtl equations written in viscous layer variables:



∂xu+ ∂yv = 0 (2.6)

∂tu+ u∂xu+ v∂yu = −∂xp−
f ′b
Fr2

+ ∂2
yu (2.7)

∂yp = − δ

Fr2
(2.8)

u = v = 0 when y = 0 (2.9)
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Remark 2.1. The Prandtl equations we obtain are in the same form as those obtained directly with a boundary
layer scaling on the Navier-Stokes equations ([29], ch. VII) except for the topography term in (2.7).

Remark 2.2. Notice that (2.8) implies that ∂xp in (2.7) does not depend on y.

Up to now, we do not have enough boundary conditions for the viscous layer. The natural connection consists
in assuming that the velocity at the “top” of the viscous layer, that is for ȳ = (η − fb)/δ, coincides with the
ground velocity for the ideal fluid, defined by Ue(t, x) =

(
ue(t, x), ve(t, x)

)
= U

(
t, x, fb(x)

)
, where U = (u, v) is

the velocity vector for the ideal fluid. More precisely, we impose the required boundary condition at infinity as

u
(
t, x, (η − fb)/δ

)
= ue(t, x), δv

(
t, x, (η − fb)/δ

)
= ve(t, x)− f ′b(x)ue(t, x). (2.10)

This is meaningful since in the Prandtl shift x̄ = x and t̄ = t. Note that in classical boundary layer theory the
limit known as “asymptotic matching” is used: ū(t, x, ȳ →∞)→ ue(t, x).

Therefore we conclude this paragraph by giving the behaviour of ue, which is an easy consequence of equations
(1.13) and (1.16).

Proposition 2.3. The horizontal component ue satisfies the following equation:

∂tue + ue∂xue = −∂xp|y=fb(x) (2.11)

2.2 Von Kármán equation

The von Kármán equation (see Schlichting [29]) expresses the defect of velocity between the ideal fluid and
the viscous layer. A classical way to obtain such an equation consists in writing the Prandtl equation, then
introducing the velocity defect (ue − u), and finally integrating it on the viscous layer. Following [29] we
introduce the following two integrated quantities.

Definition 2.4. Let U be the averaged velocity (Definition 1.4). We define

• the displacement thickness δ1, defined by

hU = (h− δδ1)ue (2.12)

• the momentum thickness δ2, defined by∫ η

fb

u2 dy =
(
h− δ(δ1 + δ2)

)
u2
e (2.13)

The displacement thickness expresses the distance by which the ground should be displaced to obtain an
ideal fluid with velocity ue with the flow rate hU . In the same way, the momentum thickness accounts for the
loss of momentum in the viscous layer.

A simple computation leads to the following expressions for these quantities:

δ1 =

∫ (η−fb)/δ

0

(
1− ū

ue

)
dȳ, δ2 =

∫ (η−fb)/δ

0

ū

ue

(
1− ū

ue

)
dȳ.

Thus we can recover the classical formulæ in the boudary layer scaling δ → 0 (see [29])

δ1 =

∫ +∞

0

(
1− ū

ue

)
dȳ, δ2 =

∫ +∞

0

ū

ue

(
1− ū

ue

)
dȳ.

Proposition 2.5. The displacement and momentum thicknesses are ruled by the so-called von Kármán equation:

∂t(ueδ1) + ueδ1∂xue + ∂x(u2
eδ2) = τ, (2.14)

where ue(t, x) = u
(
t, x, fb(t, x)

)
and τ denotes the parietal constraints:

τ = ∂yu|y=0. (2.15)
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Remark 2.6. Notice that in this single equation three new unknowns are actually introduced, namely δ1, δ2 and
τ . We postpone the presentation of the closure assumptions until the next section.

Proof. First we notice that (2.11) together with the Prandtl shift rewrites

∂t̄ue + ue∂xue = −∂xp|y=0 +
f ′b
δ
∂yp|y=0 = −∂xp−

f ′b
Fr2

,

where we have used (2.8) to rewrite the right-hand side. The difference between this equation and (2.7) gives

∂t̄(ue − u) + ue∂xue − u∂xu− v∂yu = −∂2
yu.

Through (2.6) and (2.9), we can rearrange the term v = −
∫ y

0
∂xu. Furthermore with the addition and withdrawal

of u∂xue, we get

∂t̄(ue − u) + (ue − u)∂xue + u∂x(ue − u) + ∂yu

∫ y

0

∂xu dy = −∂2
yu.

The last term in the left-hand side is rewritten

∂yu

∫ y

0

∂xu dy = −u∂xu+ ∂y

(
u

∫ y

0

∂xu dy

)
.

Now we integrate over y the resulting equation between 0 and (η − fb)/δ using the boundary condition (2.10):

∂t̄

(∫ (η−fb)/δ

0

(ue − u) dy

)
+ ∂xue

∫ (η−fb)/δ

0

(ue − u) dy

+

∫ (η−fb)/δ

0

u∂x(ue − u) dy −
∫ (η−fb)/δ

0

u∂xu dy + ue

∫ (η−fb)/δ

0

∂xu dy

= ∂yu|y=0.

The last three terms of the left-hand side can be rewritten as ∂x

(∫ (η−fb)/δ

0
u(ue − u) dy

)
. So, using also definition

(2.15), the equation becomes:

∂t̄

(∫ (η−fb)/δ

0

(ue − u) dy

)
+ ∂xue

∫ (η−fb)/δ

0

(ue − u) dy + ∂x

(∫ (η−fb)/δ

0

u(ue − u) dy

)
= τ.

Finally, since ue is independent of y, we have the relations

ueδ1 =

∫ (η−fb)/δ

0

(ue − u) dy, u2
eδ2 =

∫ (η−fb)/δ

0

u(ue − u) dy,

and since all the unknowns are independent of y and t = t̄, we can drop as well the bars in the derivatives. With
all this, we obtain equation (2.14).

2.3 Velocity profile in the viscous layer

The von Kármán equation (2.14) together with the equation on ue (2.11) give only a partial representation
of the boundary layer, since they involve four unknowns, namely ue, δ1, δ2, and ∂yu|y=0 which represents the
parietal forces. To proceed further towards an integrated model, we need a closure for this system of equations.
By definition, the viscous layer is the layer where the velocity u varies from 0 on the floor to ue. Therefore we
introduce a profile function ϕ as well as a scaling factor ∆(t, x), chosen in such a way that ∆ quantifies the
physical thickness of the viscous layer. As a general rule we wish to have

u(y)

ue
= ϕ

(
y

∆(t, x)

)
= ϕ(ζ).

9



Therefore we choose ∆ ≤ (η − fb)/δ, and ϕ such that

ϕ(t, x, 0) = 0, ϕ(t, x, y) = 1 when ∆ ≤ y ≤ (η − fb)/δ,
∫ 1

0

(1− ϕ) dζ ≡ α2 < +∞. (2.16)

Hence

δ1 =

∫ (η−fb)/δ

0

(
1− u(ȳ)

ue

)
dy =

∫ (η−fb)/δ

0

(1− ϕ
(
ȳ/∆)

)
dy = ∆α2.

Therefore choosing ∆ amounts to fixing the form factor α2 defined in (2.16) (e.g. ∆ = δ1 corresponds to α2 = 1).
Now we can readily obtain a relationship between δ1 and δ2:

δ2 = ∆

∫ (η−fb)/δ

0

ϕ(1− ϕ) dζ =
δ1
H
, where α1 =

∫ 1

0

ϕ(1− ϕ) dζ and H =
α2

α1
. (2.17)

Finally, the parietal constraints can also be expressed in terms of the profile ϕ:

τ = ∂yu|y=0 =
ue
∆
ϕ′(0) =

ueα2

δ1
ϕ′(0). (2.18)

The collection of all the preceding relations leads to put the Von Kármán equation (2.14) on the following
form:

∂t(ueδ1) + ueδ1∂xue + ∂x(
u2
eδ1
H

) =
ueα2

δ1
ϕ′(0). (2.19)

At this stage, several shapes can be used for the profile, including turbulent ones. As far as laminar profiles
are concerned, we refer to [29, ch.X] for elements of comparisons between different profiles. According to the
velocity profile similarity principle over a flat plane at zero-incidence [29], we shall assume that ϕ depends solely
on the ζ variable. Table 1 contains the results for two polynomials approximations: the piecewise linear one
and the parabolic one. These two profiles do not allow the observation of separation for decelerated flows as
their coefficients are fixed. Adaptive profiles allowing flow separation can also be seen, for instance in [5] for the
Integral Interacting Boundary Layer equations (IBL).

Velocity distribution (0 6 ζ 6 1) α2 H ϕ′(0)

ϕ(ζ) = ζ 1/2 3 1

ϕ(ζ) = −ζ2 + 2ζ 1/3 5/2 2

Table 1 – Piecewise linear and parabolic profiles for a finite layer δ̄∆. Note that for an infinite layer,
the solution would be Blasius solution where α2ϕ

′(0) = 0.332 and H = 2.59. See Schlichting for other
possible choices.

uue

D

y

uue

y

∆1

Figure 2 – Left, three examples of test velocity profiles : from top to bottom a piecewise linear profile
up to a finite ∆, a parabolic profile up to a finite ∆, a Blasius like profile. Right the same profiles are
plotted for a same δ1 focusing on the displacement thickness (2.12).

Remark 2.7. • In the case where u ≤ ue, the shape factor H satisfies H ≥ 1 since α1 ≤ α2.

• The limit case H = 1 enforces a discontinuity at the origin for ϕ: ϕ ≡ 1 for ζ > 0, ϕ(0) = 0, thus formally
leading to a singular friction term in the equation.
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3 Extended shallow water model

We are now in position to obtain the extended model we are looking for. The first step consists in integrating
the mass and momentum conservation equations, as in the usual way to derive the shallow water equations from
Navier-Stokes, see for instance [15]. The resulting mass equation is the same, but several differences occur for
momentum. Indeed, the parietal constraints arise in the right-hand side at order 1 in δ, motivating a new closure
for the momentum flux. The momentum equation thus depends on the unknowns δ1 and δ2, so the system has
to be coupled with the von Kármán equation we derived above.

3.1 Mass and momentum integrated equations

We recall that the natural averaged velocity in viscous shallow water is hU =
∫ η
fb
u dy. From the incompressibility

equations we recover the usual balance equation on the water depth h.

Proposition 3.1 (Mass equation). The mass conservation in its integrated form is

∂th+ ∂x(hU) = 0. (3.1)

Proof. We integrate the conservation equation (1.6) between fb and η

v(t, x, η) = v(t, x, fb)−
∫ η

fb

∂xu dy

= v(t, x, fb)− ∂x
(∫ η

fb

u dy

)
+ u(t, x, η)∂xη − u(t, x, fb)f

′
b.

Now from the no-slip boundary condition (1.9) we get v(t, x, fb) = u(t, x, fb) = 0, and the kinematic one (1.10)
gives u(t, x, η)∂xη−v(t, x, η) = −∂tη = −∂th since the ground is independent of time, and we recognize (3.1).

We turn now to the momentum balance equation. The main point to notice at this stage is the appearance
of the parietal constraint τ with prefactor δ.

Proposition 3.2 (Momentum equation). The integrated momentum conservation is written:

∂t(hU) + ∂x

(∫ η

fb

u2 dy

)
= −h∂xp− δτ, (3.2)

where τ is defined by (2.15).

Proof. We apply the same process as for the equation of mass conservation. Recall that the momentum equation
(1.7) together with the scaling (2.5) can be rewritten

∂tu+ u∂xu+ v∂yu = −∂xp+ δ
2
∂2
yu.

We integrate in y, and recall that ∂xp does not depend on y, see Remark 2.2. Hence we get∫ η

fb

∂tu+

∫ η

fb

u∂xu dy +

∫ η

fb

v∂yu dy = −h∂xp+

∫ η

fb

δ
2
∂2
yu dy.

Exchanging the time derivative and the integral, and integrating by parts in the last term of the left-hand side
gives

∂t

(∫ η

fb

u dy

)
− u(t, x, η)∂tη +

∫ η

fb

u∂xu dy + [vu]ηfb −
∫ η

fb

u∂yv dy = −h∂xp− δ
2
∂yu|y=fb

Finally we use the mass conservation (1.1) to replace the ∂yv term, and the parietal force is estimated thanks
to the Prandtl shift, since ∂yu|y=fb = ∂ȳū|ȳ=0/δ̄ = τ/δ̄ (see (2.15) above). Therefore we obtain

∂t

(∫ η

fb

u dy

)
− u(t, x, η)∂tη +

∫ η

fb

2u∂xu dy + [vu]ηfb = −h∂xp− δτ,

which together with the boundary conditions gives (3.2).

11



Remark 3.3. Both equations (3.1) and (3.2) remain true for an ideal fluid as well, since the terms at y = fb
cancel thanks to the non penetration boundary condition (1.16).

Remark 3.4. The viscous layer theory leads to a friction term in a laminar form but only over the height
δ̄δ1. Also the order term is only δ̄ whereas for the Poiseuille-shallow water (see equation (1.22)) it is at order
δ̄2 = 1

εRe .

3.2 Towards the extended model

At this point we are faced with two equations (3.1) and (3.2) which are very similar to the usual shallow water
equations, except that the friction term is not given explicitly in terms of U and/or h. A consistent expression
with the model is obtained through the velocity profile, see (2.18) above. The momentum equation remains
unclosed: we need to give a closure for

∫ η
fb
u2 dy. The classical approximation for the shallow water system is

based on the fact that for an ideal fluid with a low depth, we have
∫ η
fb
u2
PF dy ' 1

h

(∫ η
fb
uPF dy

)2

as we said in

section 1.3.
Relation (2.13) does not give any closure for the momentum flux, it merely emphasizes that it can be

entirely completed by the choice of δ2. In this respect, we prove now that this expression for the flux is the most
convenient, since it takes into account the effect of the viscous layer, and in some sense independantly of the
choice for δ2. The complete closure can be achieved by the study of the viscous layer, as we did above in Section
2.3. More precisely, we have the following two results, which clarify the role of the von Kármán equation. The
starting point is the system of three integrated equations:

∂th+ ∂x(hU) = 0 (3.3)

∂t(hU) + ∂xJ = −h∂xp− δτ (3.4)

∂tue + ue∂xue = −∂xp, (3.5)

where J is the momentum flux for which we seek a closure. We evidence now the fact that a convenient definition
of J allows to recover the von Kármán equation from this system of integrated equations.

Proposition 3.5. Let (h, U, ue, J) be solution to (3.3), (3.4) and (3.5). Assume δ1 is defined by (2.12). Then
δ1 and δ2 solve the von Kármán equation (2.14) if and only if there holds

J =
(
h− δ(δ1 + δ2)

)
u2
e. (3.6)

Proof. We start from the von Kármán equation and introduce (2.12) to obtain

∂t(hue)− ∂t(hU) + (hue − U)∂xue + δ∂x(u2
eδ2) = δτ.

To this equation we add (3.4), the parietal term disappears, leading to

∂t(hue) + ∂xJ + hue∂xue − hU∂xue + δ∂x(u2
eδ2) = −h∂xp.

Developping the time derivative and simplifying with (3.5) we obtain

ue∂th+ ∂xJ − hU∂xue + ∂x
(
δu2
eδ2
)

= 0.

Finally, we use (3.3) to eliminate the time derivative, regroup terms and get

∂x
(
J − hueU + δδ2u

2
e

)
= 0,

so that, up to a constant which can be taken equal to zero by considering that the flux is zero when the velocity
is zero, we have

J = hueU − δδ2u2
e, (3.7)

which together with (2.12) gives precisely (3.6).
Conversely, we consider (2.12) and use successfully the mass and momentum balance equations

∂t(ueδδ1) = ∂t(hue)− ∂t(hU) = ue∂th+ h∂tue + ∂x
((
h− δ(δ1 + δ2)

)
u2
e

)
+ h∂xp+ δτ

= −ue∂x(hU)− hue∂xue − h∂xp+ ∂x(hu2
e)− δ∂x

(
(δ1 + δ2)u2

e

)
+ h∂xp+ δτ

= −ue∂x(hue) + ue∂x(δδ1ue)− hue∂xue + ∂x(hu2
e)− δ∂x

(
(δ1 + δ2)u2

e

)
+ δτ

= −δ
(
−ue∂x(δ1ue) + ∂x((δ1 + δ2)u2

e)− τ
)
.

Noting that ∂x(δ1u
2
e) = ue∂x(δ1ue) + δ1ue∂xue we recover as required the von Kármán equation.
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In the above proposition, we only use the three equations (3.3)-(3.5) and the physical definition (2.12) of
δ1. However if we forget the physical definition, we obtain another formulation using the von Kármán equation
(2.14) together with equations (3.3)-(3.5). This approach gives back the physical definition in the sense of
characteristics as explained in the next proposition.

Proposition 3.6. Let J be defined by (3.6), and (h, U, δ1, ue) be a (smooth) solution to the system (3.3), (3.4),
(3.5), together with the von Kármán equation (2.14). Denote by δ∗1 the thickness obtained using (2.12). Then

∂t (ue(δ1 − δ∗1))− ue∂x (ue(δ1 − δ∗1)) = 0.

Hence, the error is constant along the characteristics of the ideal fluid. In particular, if initially δ1 = δ∗1 then it
is true for all times.

Proof. From (2.12)

∂t(ueδδ
∗
1) = ∂t(hue)− ∂t(hU) = ue∂th+ h∂tue + ∂x

((
h− δ(δ1 + δ2)

)
u2
e

)
+ h∂xp+ δτ

= −ue∂x(hU)− hue∂xue − h∂xp+ ∂x(hu2
e)− δ∂x

(
(δ1 + δ2)u2

e

)
+ h∂xp+ δτ

= −ue∂x(hue) + ue∂x(δδ∗1ue)− hue∂xue + ∂x(hu2
e)− δ∂x

(
(δ1 + δ2)u2

e

)
+ δτ

= −δ
(
−ue∂x(δ∗1ue) + ∂x((δ1 + δ2)u2

e)− τ
)
.

Now using the von Kármán equation to eliminate δ2, we obtain

δ∂t(ueδ
∗
1) = −δ

(
−ue∂x(δ∗1ue) + ∂x(δ1u

2
e)− ∂t(ueδ1)− ueδ1∂xue

)
= −δ

(
−ue∂x

(
ue(δ

∗
1 − δ1)

)
− ∂t(ueδ1)

)
,

which is the desired result.

3.3 Final Extended shallow water model

In summary, putting together the results of Proposition 3.5, the closure formulas (2.18) and (2.17) using the
velocity profile in the viscous layer, and the hydrostatic law for the pressure (1.8), we obtain a system of
three partial differential equations, repectively for the mass conservation, the momentum conservation, and the
behaviour of the prefect fluid, namely


∂th+ ∂x(hU) = 0 (3.8)

∂t(hU) + ∂x

(
h2

2Fr2
+
(
h− δ̄δ1(1 +

1

H
)
)
u2
e

)
= − hf

′
b

Fr2
− δ ueα2

δ1
ϕ′(0) (3.9)

∂tue + ue∂xue = − 1

Fr2
(∂xh+ f ′b) (3.10)

Propositions 3.5 and 3.6 show that there are two equivalent possibilities to compute δ1 in order to close the
system. The first one consists in adding the algebraic relation (2.12), which gives somewhat an equation of
state:

hU = (h− δ̄δ1)ue. (3.11)

The second one makes use of the von Kármán equation, so that δ1 appears as another conserved quantity

∂t(ueδ1) + ueδ1∂xue + ∂x(
u2
eδ1
H

) =
ueα2

δ1
ϕ′(0). (3.12)

The relations between h, U , ue and δ1 through the displacement thickness (2.12) and (2.13) directly imply
the following expressions for the momentum flux∫ η

fb

u2 dy = (h− δ̄(δ1 + δ2))u2
e =

(
h− δ(δ1 + δ2)

)
U2

(1− δδ1/h)2
= hU2 + δ(δ1 − δ2 − δδ2

1/h)u2
e. (3.13)

The last one, which can be rewritten as a ratio of fluxes:

h
∫
u2 dy

(
∫
u2 dy)2

= 1 + δ
(δ1 − δ2 − δδ2

1/h)u2
e

hU2
, (3.14)
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enhances the extension of the classical shallow water model without friction: taking abruptly δ = 0 in these
equations, the first two equations are decoupled from the last one and we recover the classical momentum
equation (1.19) (with a ratio equal to one). On the other hand, as soon as viscosity effects arise, that is δ > 0,
we have not only the friction term on the right-hand side but also a correction of order one in δ to the hydrostatic
pressure. This is consistent with the order of magnitude of the friction term. In [14] a similar correction in the
flux of the shallow water system is proposed to improve the study of roll-waves.

In the following, we choose to compute the model with the equations (3.8), (3.9), (3.10) and (3.12) instead
of (3.8), (3.9), (3.10) and (3.11). Indeed the equation (3.12) gives more information about the evolution of the
displacement thickness (see part 4). Furthermore this choice is more stable for the illustrations in Section 5.

From now, we limit ourselves to a constant shape for the velocity profile in the viscous layer (piecewise linear
or parabolic, see table 1) which expresses by the form parameter H and the shear stress ϕ′(0) constants in the
equations (3.9) and (3.12).

Remark 3.7. An aerodynamic type approach would not conserve the equation (3.9) but instead (3.8), (3.10),
(3.11) and (3.12). Equation (3.9) is the important point of this work which combines the aerodynamic approach
and the shallow water one. Furthermore, this approach is known as “Interactive Boundary Layer” or “Viscous
Inviscid Interaction” in aerodynamics [24].

4 Examples of explicit solutions

We present in this section several analytical solutions which can be used for testing the numerical methods. First
we provide two solutions to the von Kármán equation, for short and long times, then a solution to the complete
linearized problem. The few simulations of the ESW model in this part are obtained with the numerical scheme
presented in Section 5.

4.1 Blasius solution to the von Kármán equation

In this part, we consider the von Kármán equation in the following configuration, also studied by Stewartson
[31, Sec. 3]:

• ue is constant,

• fb = 0,

• H, ϕ′(0) are constant.

Consequently the von Kármán equation (3.12) can be rewritten

∂t(δ
2
1) +

ue
H
∂x(δ2

1) = 2α2ϕ
′(0), x ∈ R+, t ∈ R+, (4.1)

and it has to be complemented with the following initial and boundary value conditions:

δ2
1(0, x) = b0(x), x ∈ R+, δ2

1(t, 0) = b1(t), t ∈ R+. (4.2)

The solution is readily obtained by the method of characteristics:

δ1(t, x) =

{√
b1(t− H

ue
x) + 2α2H

ue
ϕ′(0)x if x ≤ uet

H√
b0(x− ue

H t) + 2α2ϕ′(0)t if x > uet
H

(4.3)

It is clear on this formula that for t large enough the initial value of δ1 has no influence on the solution. Figure
3 illustrates the creation and development of the viscous layer, with initial and boundary values b0 ≡ b1 ≡ 0

and ue ≡ 1. When time evolves, δ1(t, x) captures indeed the Blasius solution
√

2α2H
ue

ϕ′(0)x. Notice that this

solution of the von Kármán equation with constant ue creates an unbounded viscous layer, without regards of
the limitation of the water depth. Hence it is clearly physically not valid for large x or t. In this context, a final
time T = 3 is enough to get the profile all over the domain [0, 1].
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Figure 3 – Time evolution of δ1. Linear velocity profile (α2 = 1
2 , H = 3, ϕ′(0) = 1), ue ≡ 1, final time

T = 3; δ̄ = 10−
9
2

4.2 Steady state for the von Kármán equation

We turn now to the study of the von Kármán equation with the aerodynamic point of view (see remark 3.7) for
large times. More precisely we assume that δ1 is stationary, similar to the Interactive Boundary Layer in [5].
Then equation (3.12) becomes

∂xδ1 + (2 +H)
∂xue
ue

δ1 =
Hα2ϕ

′(0)

ueδ1
.

If we assume in addition that both h and U are constant, combined with the relation ue = hU
h−δ̄δ1

, we recover

∂xue = ue
δ̄∂xδ1
h− δ̄δ1

.

Then, the large time von Kármán equation is an ordinary differential equation in δ1:

∂xδ1 =
Hα2ϕ

′(0)(h− δ̄δ1)

hUδ1[1 + (2 +H) δ̄δ1
h−δ̄δ1

]
. (4.4)

Equation (4.4) is consistent with the the Blasius solution (4.3) when δ goes to 0 and ue = U . This corresponds
to a small value of the effective displacement thickness δδ1, hence to small values of x. Figure 4 displays the
three solutions we have at hand, and clearly evidences this behaviour.

On the other hand, equation (4.4) exhibits a stationary solution δδ1 = h, and we observe indeed a saturation
for large values of x, see Figure 5. Notice also that the smaller δ is, the larger is the domain size required to
reach the stationary state. Hence computing the stationary solution with the complete ESW model may be very
difficult. Moreover it is not clear that actual solutions to the complete ESW system satisfy h and U constant
for large x, so that, even if such saturation behaviour is physically plausible, this solution definitely might not
be caught by the extended model, which can explain the difference in Figure 4.

4.3 Stationary solution on a flat ground

The previous section evidences a steady solution for the displacement thickness for any parameter δ̄ with the
assumption that h and U are constant. In this part, we look for a steady form for all the unknowns on a flat
ground. This steady form, depending on δ̄, is an explicit non constant solution. It is actually a solution to the
linearized system of equations, over a particular steady state.
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Figure 5 – The displacement thickness δ̄δ1 computed as a solution of (4.4). Linear profile (α2 = 1
2 ,

H = 3, ϕ′(0) = 1), δ̄ = 0.1, h = 1 and U = 1.

For any unknown function g, we look for an expansion g = g0 +δg1 + · · · , and drop all terms of order greater
than 2. We start from the steady equations, in their aerodynamics-like form (see remark 3.7):

∂x(hU) = 0 (4.5)

ueδ1∂xue + ∂x(u2
e

δ1
H

) =
ueα2ϕ

′(0)

δ1
= τ (4.6)

ue∂xue = − 1

Fr2
∂xh (4.7)

hU = (h− δ̄δ1)ue (4.8)

First we notice the decomposition of the two following terms:

hU = h0U0 + δ̄(h1U0 + h0U1)
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(h− δ̄δ1)ue = h0u0
e + δ̄(h1u0

e + h0u1
e − δ0

1u
0
e).

4.3.1 Order 0 term

This provides us with the required steady state.

1. Thanks to the relation (4.8), u0
e = U0;

2. the equations (4.5) and (4.7), written only with h0 and u0
e, imply that h0 and u0

e are constants (and so
U0 too);

3. consequently, equation (4.6) becomes

(u0
e)

2 1

H
∂x(δ0

1) = τ, (4.9)

which readily gives δ0
1 :

δ0
1 =

√
2α2H

u0
e

ϕ′(0)
√
x.

Notice that this expression is valid only if H ≥ 0 and ϕ′(0) ≥ 0, which is ensured by the choice of the profile ϕ.

4.3.2 Order 1 term

We turn now to the order 1 perturbation of the above steady state.

1. With the equation (4.7), we get a relation between u1
e and h1:

u0
e∂xu

1
e = − 1

Fr2
∂xh

1; (4.10)

2. the combination of the relation (4.8) and the equation (4.5) we have

u0
e∂xh

1 + h0∂xu
1
e − u0

e∂xδ
0
1 = 0.

Introducing in this expression the relation (4.10), we get

∂xu
1
e =

u0
e

h0 − (u0
e)

2Fr2
∂xδ

0
1 .

Integrating in x, we get an explicit form for u1
e in terms of δ0

1 :

u1
e =

u0
e

h0

1

1− Fr2
0

δ0
1 .

where Fr0 is the local Froude number defined by U0√
1

Fr2
h0

.

3. Thanks to the equation (4.10) we have

h1 =
u0
eFr

2

h0

1

Fr2
0 − 1

δ0
1 .

As
u0
eFr

2

h0 = Fr2
0, we finally get

h1 =
Fr2

0

Fr2
0 − 1

δ0
1 .

4. Exploiting the equation (4.5) with h and U , we obtain from the above relation

U1 =
U0

h0

Fr2
0

1− Fr2
0

δ0
1 .
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So, we have state a linearized non constant solution for the steady system (4.5)-(4.7):
δ0
1 =

√
2α2H
ue

ϕ′(0)
√
x

ue = u0
e + δU

0

h0
1

1−Fr20
δ0
1

h = h0 + δ
Fr20
Fr20−1

δ0
1

U = U0 + δU
0

h0

Fr20
1−Fr20

δ0
1 .

(4.11)

5 Numerical illustrations

The aim of this last part is to illustrate in a simple way the behaviours of the different variables of the ESW
system. We are aware that more accurate analysis is mandatory to study the system. In a first step, we briefly
present the numerical scheme we use. A second step will be devoted to a comparison between the ESW solutions
and those of the classical shallow water system (SW). Finally we will observe the evolution of the displacement
thickness and the friction term with different parameters of the calculation.

5.1 Numerical scheme

We recall and fix some notations in the general framework of a system of nonlinear conservation laws in the form

∂tV + ∂xG(V ) = S(t, x, V ),

where G is the flux and S the source term. Recall that the aim of this part is not to establish a sharp
discretization, but merely to illustrate some interesting features of the ESW system. We apply a standard finite
volume method with time splitting for the source terms. As regard the conservative equation without the source
term we use a first-order explicit three points scheme ([6]):

V n+1
i = V ni −

∆t

∆x
(Fi+ 1

2
− Fi− 1

2
)

where Fi+ 1
2

= F (V ni , V
n
i+1). The choice of the numerical flux F determines the scheme. We choose here a HLL

scheme. If we denote by λi the eigenvalues of DVG(V ), the flux F , in our notations, is defined by:

F (Vl, Vr) =


G(Vl) if c1 > 0
c2G(Vl)−c1G(Vr)+c1c2(Vr−Vl)

c2−c1 if c1 ≤ 0 ≤ c2
G(Vr) if c2 < 0

with c1 = min
V=Vl,Vr

(min
i
λi(V )) and c2 = max

V=Vl,Vr

(max
i
λi(V )).

The pressure term in the equation (3.10) contains a spatial derivate of the water height h. To fully respect the
formulation above, this term should be included in DVG(V ). However this leads to a matrix whose eigenvalues
are not known and so this complicates the computation. In the following we treat all the pressure term in equation

(3.10) as a source term. With this choice and the flux presented in (3.13),

∫ η

fb

u2 dy = hU2 + δ̄(δ1− δ2−
δ̄δ2

1

h
)u2
e,

DVG(V ) is a block diagonal matrix whose four eigenvalues can be computed and are comparable with the
classical eigenvalues of the shallow water system:

U +

√
h

Fr2
+

(
δ̄δ1ue
h

)2

, U −

√
h

Fr2
+

(
δ̄δ1ue
h

)2

, ue,
ue
H
. (5.1)

The HLL scheme could be computed in this state. Nevertheless, we have not the means to propose an equivalence
of the classical hydrostatic reconstruction in order to match the usual simulations when δ̄ ' 0. As the block
diagonal form inspires a possible splitting of the equations without denaturing the global bahavior, we choose
to do the computation of the flux in several steps all the while conserving the information of the eigenvalues as
regards the speeds used in the HLL scheme.

18



1. The ideal velocity is firstly computed thanks to the equation (3.10) with only a centered difference for the
source term:

(ue)
n+1
i =(ue)

n
i −

∆t

∆x

[
Fue

((ue)
n
i , (ue)

n
i+1)− Fue

((ue)
n
i−1, (ue)

n
i ) +

1

2Fr2
(hni+1 − hni−1 + (fb)i+1 − (fb)i−1)

]
.

where Fue
is linked to Gue

(v) = v2

2

2. Let w = ueδ1. The von Kármán equation (3.12) gives:

wn+1
i = wni −

∆t

∆x

(
FV K(wni , w

n
i+1)− FV K(wni−1, w

n
i ) +

wni
2

((ue)
n+1
i+1 − (ue)

n+1
i−1 )

)
+ ∆t

((ue)
n+1
i )2α2ϕ

′(0)

wni

with FV K associated to GV K(w) = ue

H w.

3. Let V =

(
h
hU

)
. The two equations of conservation (3.8)-(3.9) are rewritten in the form:

∂tV + ∂x(GHR(V )) + ∂x

(
0

δ̄u2
eδ1(1− 1

H )− (δ̄ueδ1)2

V1

)
=

(
0

− V1

Fr2 f
′
b − δ

ueα2ϕ
′(0)

δ1

)

where GHR(V ) =

(
V2

V 2
2

V1
+

V 2
1

2Fr2

)
. Firstly, we concentrate only on the GHR part which gives the classical

Shallow Water equations and apply the (first-order) hydrostatic reconstruction. As the method is fully
described in the literature (see e.g. [6, 2, 10]) and is not specific to our case, we just set we construct
V n+1
i for the shallow water part thanks to this way. The last step concerns only hU :

(hU)n+1
i = (hU)n+1

i − ∆t

∆x

[
F (V ni , V

n
i+1)− F (V ni−1, V

n
i )
]
−∆tδ

((ue)
n+1
i )2α2ϕ

′(0)

wn+1
i

where F is obtained from G(V ) = δ̄u2
eδ1(1− 1

H )− (δ̄ueδ1)2

V1
.

To conclude the presentation of the used code, we precise that we take an uniformly discretized space
[a, b] where the cell length ∆x is got thanks to J the number of points for the space mesh. As regards the time
discretization, we use an adaptive cell length ∆t calculated at each time step with a CFL condition ∆t = nCFL∆x

c .
The speed propagation c is estimated with the four eigenvalues of the block diagonal matrix (5.1).

Remark 5.1. As said previously, the velocity profile is fixed in the computations. The choice (linear or parabolic)
is indicated in the captions of the figures.

Remark 5.2. The quantities are made non dimensional with say meters, seconds... so that g = 9.81. Examples,
except those with transcritical phenomena, are subcritical (Fr < 1).

5.2 Shallow water system without friction vs ESW system

As we saw before, theoretically the ESW model includes the shallow water model if the effective Reynolds
number εRe is infinite. So the first numerical verification is to check the concordance between the two models.
To illustrate this point, we present three cases: a subcritical flow over a Gaussian bump, and two transcritical
flows, one without shock and one with shock [17]. Notice that analytic solutions exist for these three academic
examples, see [12]. However, we choose here to discretize the shallow water model with the same finite volume
scheme as the ESW system.

5.2.1 Subcritical flow

In this case, the ground is a Gaussian bump fb(x) = 1
50 exp(− (x−0.5)2

2(0.05)2 ).

Initial conditions are taken equal to

V0 =


h
U
δ1
ue

 =


1− fb

1
0.01

1
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and for the boundary conditions 
upstream:


h

U

δ1

ue

 = V0

downstream: free.

On figure 6, we plotted the results for the shallow water model without friction and for the ESW system.
The simulation for εRe = 108 answers our expectation since the shallow water curves are the same as those of
ESW for the heights and velocities. Therefore we can observe that for a lower Reynolds number, εRe = 104,
the shallow water velocity is higher than the ESW velocity. Since a lower Reynolds number expresses a larger
viscosity, hence higher friction, this phenomenon is expected: the flow slows down. We complement the figures
for the two Reynolds number by simulations of the displacement thickness δ1.
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ESW, δ̄ = 10−4

Ground

Figure 6 – Subcritical flows–Heights in the top left corner , velocities in the top right corner for
ESW model and SW without friction, displacement thickness at the bottom–Simulations with T = 3,

J = 800, fb(x) = 1
50 exp(− (x−0.5)2

2(0.05)2
), linear profile. The SW curve and the ESW one for δ̄ = 10−4 are

superposed, but distinguish themselves for δ̄ = 10−2.

5.2.2 Transcritical flows

For the two transcritical flows, the studied topography is the one studied in [17]:

fb(x) =
[
0.2− 0.05(x− 10)2

]
1I[8,12](x) x ∈ [0, 25].

Usually the initial conditions are a lake at rest. Due to the naive computation of the ESW, ue = 0 and δ1 = 0
is not allowed. For initial conditions of h and U we take the usual ones as in [17], and we choose small values
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for ue and δ1. In each case (see figure 7 for the transcritical without shock case and figure 8 for the transcritical
with shock one), the simulations give a behavior of the surface η and the velocity U not disturbed on the bump
for the two Reynolds number in comparison with the Shallow Water curves but some changes on the flat parts
of the ground appear for the smallest Reynolds number presented. We find also this result for the displacement
thickness δ1.

• Transcritical flow without shock

The transcritical flow without shock (see figure 7) illustrates a subcritical upstream flow which becomes
supercritical at the top of the bump. The initial conditions are :

h
U
δ1
ue

 =


0.66− fb

0
0.01
0.01

 .

For the boundary conditions, we choose:{
upstream: hU = 1.53, ue = 1.53

h , ueδ1 = (0.01)2,

downstream: h = 0.66 while the flow is subcritical.

• Transcritical flow with shock. In this part, we keep the same parabolic bump but we change the flow
conditions so that the flow becomes supercritical on the top of the bump and then fluvial again after a
hydraulic jump. Compared to computations using the Shallow Water model, we recover the hydraulic
jump at a position which is consistent with the classical SW model, but slightly depends on the value of
δ̄, see Figure 8, top. However, the stabilization of δ1 after the shock is not ensured for “large” values of δ̄,
see Figure 8, bottom. Actually, we observe some time instability after the hydraulic jump for these values
of δ̄, see Figure 9. This can question both the model and the numerical resolution. Indeed concerning
numerics, we are faced for δ1 with an equation where the transport operator contains a discontinuous
velocity field, which can induce stability problems. On the other hand, we also reach the limits of the
model itself since most likely some recirculation phenomena occur after the jump, and this is not accounted
for in this model.

Initial conditions: 
h
U
δ1
ue

 =


0.33− fb

0
0.01
0.01

 .

For the boundary conditions, we choose:{
upstream: hU = 0.18, ue = 0.18

h , ueδ1 = (0.01)2,

downstream: h = 0.33.

5.3 Stationary solution on a flat ground

In part 4.3, we established, on a flat ground, a stationary solution for our system linearized with respect to δ̄:δ0
1 =

√
2α2H
ue

ϕ′(0)
√
x, ue = u0

e + δU
0

h0
1

1−Fr20
δ0
1

h = h0 + δ
Fr20
Fr20−1

δ0
1 , U = U0 + δU

0

h0

Fr20
1−Fr20

δ0
1 ,

where h0, U0, u0
e are constants and u0

e = U0. To be satisfying, the numerical scheme presented in this section
must be consistent with it. On the figure 10, we can observe the analytic linearized solution and the computed
solutions for two values of δ̄. The entrance boundary condition is not sophisticated enough and so there is an
initial difference which appears. Nevertheless, we can observe a very good similitude for the value δ̄ = 10−4. On
the other way, for δ̄ = 10−2 the computed solution gets away from the analytic one with especially a different
behaviour in space. This observation is consistent with the steady state for the von Kármán equation presented
in the section 4.2.
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Figure 7 – Transcritical without shock flows–Surface η = h + fb in the top left corner , velocities in
the top right corner for ESW model and SW without friction, displacement thickness at the bottom–
Simulations with J = 800, T = 150, linear profile and the vertical dashed draws represent the key
points of the ground. ESW curve for δ̄ = 10−4 and the SW one are superposed. The ESW one for
δ̄ = 10−2 distinguishes itself from the others on the flat areas of the topography, which can be explained
by the behavior of the displacement thickness.

5.4 ESW over a Gaussian bump

The concordance observed between the shallow water model without friction and the ESW system, we will now
observe more precisely the behavior of the displacement thickness as well of the friction term in response to a
parametrized bump.

For the following simulations, we choose for the ground a Gaussian profile:

fb(x) = A exp(− (x−m)2

2σ2
).

The initial conditions, by default, are on the form V0 =


h
U
δ1
ue

 =


1− fb

1
0.01

1

. The considered flow is subcritical,
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Figure 8 – Surface η = h + fb (top left), velocity U (top right) and displacement thickness (bottom)
for transcritical flow with shock for the Shallow Water model (SW) and two values of δ̄ for the ESW
model –J = 800, T = 590, linear profile. Differences between the SW model and the ESW model are
especially seen on the flat parts of the ground, even if there is also a difference on the amplitude at
the end of the bump.

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25

Surface for transcritical flow with shock

ESW T = 590
ESW T = 1000
ESW T = 2000

SW

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25

Displacement thickness for transcritical flow with shock

ESW T = 590
ESW T = 1000
ESW T = 2000

Figure 9 – Time evolution of surface η = h+fb (left) and displacement thickness (right) for transcritical
flow with shock for the Shallow Water model (SW) with δ̄ = 10−5/2. Instability is clearly evidenced
after the jump position.
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Figure 10 – Analytic displacement thickness for two values of δ̄, J = 2000, T = 30, flat ground, linear
profile. The theoretical solution does not depend of δ̄ and so all the solutions can be plotted on the
same figure. For δ̄ = 10−2 and for a longer space, the computed solution does not follow the Blasius
solution but slows down.

and as regards the boundary conditions we consider
upstream:


h

U

δ1

ue

 = V0

downstream: free

.

The following illustrations place themselves in case where the displacement thickness is developing. Even if a
Gaussian bump locates in the middle of the simulation, the behavior for the displacement thickness stays the
Blasius solution 4.3 which will be more or less disturbed by the bump as seen in the figure 11. This global
growing shape may interfere with the local observations of the effects (especially for the friction term τ because
of large first values). To rectify this, we will present as well some figures rescaled by the Blasius solution. Due to
the monoticity of the rescaling functions, the local extrema observed will be moved downstream in comparison
with the displacement thickness or friction term without the rescaling.

Remark 5.3. The plotted bump in the following figures is just an indicative one. The width is respected but not
the amplitude nor the ordinate.

5.4.1 Improved friction term

The shallow water theory already allows to treat a viscosity effect thanks to added terms in the momentum
equation (see 1.3). However they do not fit with the expectations, that is to say a friction more significant just
before the top of the bump as in [22]. In this part, we will observe more in details the local extrema observed
in the previous figure 11. Then we will compare with the laminar friction in the SW model.

The figure 12 is only a zoom of figure 11 where the extrema are evidenced. We can observe that the local
minimum for the displacement thickness is located before the top of the bump. Even if the abscissa of the
maximum of τ is moved on the right (due to the growing of ue which compensate the decrease of 1/δ1), the local
maximum is reached upstream the top of the bump.

The comparison between SW with friction and ESW models brings out an issue as the level of friction are
different. The Poiseuille-shallow water (see section 1.3) gives a friction term in δ̄2 whereas the ESW one is in δ̄.

The difference does not allow to plot the friction terms in the same window. Also, in place of 3δ̄2U
h , we choose to

take the laminar friction term for the shallow water model on the form Cl
U
h where the coefficient Cl is adapted

by hand. We fix Cl = 0.00068 to fit the velocities between SW and ESW simulations when δ̄ = 0.001 (recall
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Figure 11 – Displacement thickness δ1 and friction term τ over a Gaussian bump– fb(x) =
1
50 exp(−(x−0.5)

2

2(0.04)2
), T = 3, J = 800, δ̄ = 10−3, linear profile. The displacement thickness thins down un-

der the bump influence in spite of the global Blasius shape. Consequently the friction term τ = ueα2ϕ′(0)
δ1

presents a growing near the bump.
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Figure 12 – Displacement thickness and friction term over a bump– fb(x) = 1
50 exp(− (x−0.5)2

2(0.04)2
), δ̄ = 10−3,

T = 3, J = 800, linear profile. Maximum of friction term is in advance from the top of the bump.

that ESW friction is δ̄τ). The consequence on the friction terms is presented in the figure 13. The laminar SW
term has its maximum at the top of the bump which is not physically expected. Due to the only dependence in
the velocity and the height (the two unknowns of the shallow water equations), other patterns would have the
same defect.

5.4.2 Influence of δ̄

The parameter δ̄ = 1√
εReh

controls the thickness of the viscous layer. It is the key point of the ESW model.

Also, we will observe here the influence of its value for the shape of the displacement thickness δ1 and the friction
τ . The physical values are δ̄δ1 and δ̄τ , but to compare them we plot only δ1 and τ . On the flat ground before
the bump, the displacement thickness is nearly conserved as we can see in the figure 14, excepted for δ̄ = 0.1
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Figure 13 – Friction terms: on the left we have the Poiseuille-shallow water friction and on the right
a comparison between a laminar shallow water friction scaled by hand and the ESW friction– x ∈
[0.35, 0.65] ; fb(x) = 1

50 exp(− (x−0.5)2
2(0.05)2

) ; J = 800 ; T = 3 ; δ̄ = 10−3 ; linear profile.

which is explained by the limitation of the scheme. Around the bump a net difference appears even if it is
more noticeable on the right of the bump. Anyway δ1 gets down with the growing of δ̄ but conserves its shape
and the local minimum abscissa for δ1 is not influenced by δ̄. This statement holds as far as δ̄ is not big since
δ̄ = 0.1 begins to show a significantly disruption from the beginning. Taking a huger value for δ̄ leads to great
instabilities and the scheme not hold.
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Figure 14 – Influence of δ̄ on displacement thickness δ1 (left) and friction term τ (right) – fb(x) =
1
50 exp(− (x−0.5)2

2(0.05)2
), J = 800, T = 3, linear profile. The local extrema are not displaced by the variation

of δ̄, except for δ̄ = 0.1.

5.4.3 Influence of the bump shape (Fr < 1)

Bump amplitude. Not very surprisingly, the bump amplitude has a direct influence on the amplitude of
variation of δ1 and τ . On the one hand, as it is seen in figure 15, the smaller the amplitude, the closer δ1 is to
the Blasius solution. On the other hand, it can be observed that the solution departs from the Blasius one after
the bump when the amplitude increases. This phenomenon becomes important for large values of the amplitude
(see Figure 17), and might be bound with the boundary layer separation when the downstream slope of the
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bump becomes too high (see for instance [24]). We can not, with the chosen profiles here compute boundary
layer separation.
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Figure 15 – Bump amplitude: displacement thickness δ1 (left) and zoom on the friction term τ (right)

– fb(x) = A exp(−(x−0.5)
2

2(0.05)2
), T = 3, J = 800, δ̄ = 10−3, linear profile.
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Figure 16 – Bump amplitude: displacement thickness δ1 (left) and zoom on the friction term τ (right)

with a rescaling by the Blasius solution– fb(x) = A exp(−(x−0.5)
2

2(0.05)2
), T = 3, J = 800, δ̄ = 10−3, linear

profile.

Remark 5.4. The figure 15 illustrates the limitation of the local extrema observation due to the square root
shape (or inverse of a square root for the friction term τ). When the amplitude tends to zero, an inflection
point stays but it is difficult to locate the precise abscissa. Even if the rescaled outline moves the abscissa of the
extrema to the right, the figure 16 allows to observe quantitatively the amplitude influence on δ1 and τ .

The variation of the bump amplitude brings out another property for the displacement thickness. As far the
amplitude is sufficient, the displacement thickness catches up always the same curve around the bump and that,
for different initial values. In all the previous examples, δ1 was initialized by δ1 = 0.01. This choice of a small
value for δ1 was intended to observe the development of the viscous layer. Starting with a constant value not
morally equal to zero is interpreted as an established viscous flow in entry. In the figure 18, this initial value
varies with a given bump. Even if the Blasius behavior described by the equation 4.3 begins at different values,
around the bump the four curves are gathered. So there is an independence of the solution around the bump
with respect to the initial value for the displacement thickness, even if the phenomenon can not be observed for
every entrance and is limited by the bump amplitude choice.
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Figure 17 – Bump amplitude: displacement thickness δ1–fb(x) = A exp(−(x−0.5)
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) ; J = 800 ; T = 3 ;

δ̄ = 10−3, linear profile. High bump leads to a disruption downstream the bump of the Blasius behavior
of δ1.
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Figure 18 – Influence of the initial data for the displacement thickness δ1 – fb(x) = 1
3 exp(−(x−0.5)
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) ;

J = 800 ; δ̄ = 10−3 ; T = 3, linear profile.

Bump width. The bump width is quantified by the standard deviation σ in the Gaussian profile. Increasing
the width of the bump increases as well the extent of the response of both δ1 and τ , see figures 19 and 20.
The amplitude is also slightly decreased. But the most interesting phenomenon is that the local maximum of
the friction moves upstream from the top of the bump. Nevertheless, since the response of the displacement
thickness spreads with the bump width, a too much broad bump leads only to an inflection point. Rescaling
functions in Figures 19 and 20 are more appropriated to observe the phenomenon.

5.4.4 Velocity profile

As we have seen in the section 2.3, a key role for the ESW model is played by the velocity profile ϕ. Several
choices can be made for a better answer when the viscous velocity significantly varies. A refined way would be an
adjustable profile to react faster over a bump (see [24]). Once again, in this paper we will restrict to the easiest
computations: the linear and parabolic profiles. Table 1 references the resultant values for α2, H and ϕ′(0) the
three parameters encountered in the system. In the following figures 21 and 22, we plotted the displacement
thickness δ1 and the friction term τ for these two profiles. The parabolic profile presents an advanced reaction, in
relation to the top of the bump, compared to the linear profile. The phenomenon is clearer for the displacement
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2σ2 ); J = 800; T = 3; δ̄ = 10−3, linear profile. The abscissa of the local extrema
depends on the width of the bump.
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Figure 20 – Influence of the bump width with rescaling by the Blasius solutions: displacement thickness

on the left and friction term on the right – fb(x) = 1
50 exp(− (x−0.5)2

2σ2 ); J = 800; T = 3; δ̄ = 10−3,
linear profile. The abscissa of the local extrema depends on the width of the bump.

thickness than the friction term. This difference is explained by the expression of τ = ueα2ϕ
′(0)

δ1
. ϕ′(0) and α2

are constant for these profiles but ue, which is growing in this zone, plays a determinant role in the position of
the local maximum.

6 Conclusion

This paper concerns a shallow water model with an improved description in the long wave and large Reynolds
limit of the flow and the parietal friction. This model consists of a system of four equations (3.8), (3.9), (3.10)
and (3.12): two are similar to shallow water system (mass and momentum conservation) with a supplementary
term describing momentum flux, one ideal fluid equation and the von Kármán equation to describe the viscous
layer development. The boundary layer acts as a new topography for the model (Eq. 3.11). This model is an
example of “Interactive Boundary Layer” or “Viscous Inviscid Interaction”. The flux in the momentum equation
(3.9) contains not only the hydrostatic pressure term h2/(2Fr) but an additional correction term of the same
order of magnitude as the friction. The friction term is no longer a combination of velocity and depth (as in
usual laws such as Darcy or Manning) but the result of a viscous boundary layer like approach (Eq. (3.12)).
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Figure 22 – Friction terms for two different profiles ϕ on the left and the velocity ue on the right–

x ∈ [0.375, 0.625]; fb(x) = 1
50 exp(− (x−0.5)2

2(0.05)2
); J = 800; T = 3; δ̄ = 10−3. The variations of ue explain

that local maximums for the friction get closer in abscissa (these ones are figured on the plot) in
comparison with the local minimums for the displacement thickness seen in the figure 21.

As it is, it actually depends on the topography, as evidenced by the examples provided in the last part of the
work. In particular its maximum is reached before the summit of a bump. This effect is limited here, and it is a
limitation of this work, because the velocity profiles used lead to constant shape and friction coefficients. As a
consequence, possible boundary layer separation with recirculation downstream of the bump cannot be observed.
Imposing a family of adjustable profiles will be the next step, this should enhance the effects of topography.
Results from [5, 22, 23] in case of flows in pipes, and preliminary comparisons with multilayer shallow water [3]
make us confident. The main drawback of this model is the viscous layer/ideal fluid decomposition, which forbids
the viscous layer to fill all the water depth far downstream of the bump. Extra modelling in this direction and
more examples have now to be worked out and tested, an effort has to be done as well to improve the numerical
method. Finally, even thoug this approach is restricted here to laminar flows, the ideas developed here can be
extended with little modifications to mean turbulent profiles.
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