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in the arbovirus vector midge, Culicoides
brevitarsis (Diptera: Ceratopogonidae), using
multi-locus DNA microsatellites

Maria G Onyango1,2, Nigel W Beebe3,4, David Gopurenko5,6, Glenn Bellis7, Adrian Nicholas6, Moses Ogugo8,
Appolinaire Djikeng8,9, Steve Kemp8, Peter J Walker1 and Jean-Bernard Duchemin1*
Abstract

Bluetongue virus (BTV) is a major pathogen of ruminants that is transmitted by biting midges (Culicoides spp.).
Australian BTV serotypes have origins in Asia and are distributed across the continent into two distinct episystems, one
in the north and another in the east. Culicoides brevitarsis is the major vector of BTV in Australia and is distributed across
the entire geographic range of the virus. Here, we describe the isolation and use of DNA microsatellites and
gauge their ability to determine population genetic connectivity of C. brevitarsis within Australia and with
countries to the north. Eleven DNA microsatellite markers were isolated using a novel genomic enrichment
method and identified as useful for genetic analyses of sampled populations in Australia, northern Papua New
Guinea (PNG) and Timor-Leste. Significant (P < 0.05) population genetic subdivision was observed between all
paired regions, though the highest levels of genetic sub-division involved pair-wise tests with PNG (PNG vs.
Australia (FST = 0.120) and PNG vs. Timor-Leste (FST = 0.095)). Analysis of multi-locus allelic distributions using
STRUCTURE identified a most probable two-cluster population model, which separated PNG specimens from a
cluster containing specimens from Timor-Leste and Australia. The source of incursions of this species in Australia is
more likely to be Timor-Leste than PNG. Future incursions of BTV positive C. brevitarsis into Australia may be genetically
identified to their source populations using these microsatellite loci. The vector’s panmictic genetic structure within
Australia cannot explain the differential geographic distribution of BTV serotypes.
Introduction
Bluetongue (BT) is an economically important viral dis-
ease throughout tropical and temperate regions of the
world, posing a threat to the livestock industries, through
production losses and negative impacts on trade [1]. The
disease affects primarily sheep and goats. Cattle can also
be infected but rarely show signs of disease [2]. Biting
midges (Culicoides spp.) are vectors of bluetongue virus
(BTV). In Australia, C. actoni Smith, C. brevitarsis Kieffer,
C. fulvus Sen and Das Gupta are proven vectors of BTV
and several others including C. brevipalpis Delfinado, C.
dumdumi Sen and Das Gupta C. oxystoma Kieffer, C.
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peregrinus Kieffer and C. wadai Kitaoka are regarded as
potential vectors [3,4]. Of these species, C. brevitarsis is
the most widely distributed throughout northern and east-
ern parts of the continent [5,6], and is considered to be
the major vector, employing cattle and buffalo dung as
breeding sites [4,7].
BTV appears to have been introduced to Australia

from Southeast Asia on multiple occasions by infected
wind-borne vectors [8,9]. Indeed, 10 of the 26 known
BTV serotypes have been detected in Australia through
intensive surveillance during the past 30 years and there
is evidence that at least four of these serotypes were in-
troduced since the surveillance programme commenced
[10]. The absence of clinical bluetongue disease in
Australia, despite evidence of widespread infection in
cattle, has been attributed to the limited distribution of
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C. brevitarsis to non-sheep breeding regions, primarily
in the south of the continent and the relatively low
pathogenicity of Australian BTV serotypes. Surveillance
has indicated that the distribution of BTV serotypes in
Australia is asymmetric with all 10 serotypes detected in
the far northern region and only two serotypes (BTV-1
and BTV-21) enzootic in the southern portions of the
eastern states. The factors influencing the distribution of
serotypes are unknown and there is concern that intro-
ductions of exotic BTV strains from Southeast Asia via
windborne Culicoides could destabilize the current situ-
ation [9]. A recent study of long-distance dispersal of
Culicoides midges using an aerial migration model, indi-
cated that migration of Culicoides into northern
Australia from Timor-Leste (TL) and Papua New Guinea
(PNG) is possible with Timor considered the most likely
source of incursions [11]. Recent phylogeographic ana-
lyses [12,13] generally support those contentions and
further indicate C. brevitarsis likely entered Australia
and PNG separately from independent southeast Asian
sources, in recent historical times [13]. Results of those
prior genetic studies were based on analyses of a single
maternally inherited gene and are potentially biased by a
variety of evolutionary, demographic and sampling pro-
cesses [14,15]. Additional population genetic analyses
using multiple independent loci are needed to test hy-
potheses concerning the origins of recent arrivals of
midge species in Australia.
The first aim of this study was to develop a technical

workflow for identifying DNA microsatellite markers de
novo from small organisms such as Culicoides from
which limited quantities of genomic DNA can be ex-
tracted. The second aim was to identify and compare
allelic diversity of microsatellite loci among C. brevitar-
sis in Australia and neighbouring countries (PNG and
TL) that are suspected sources of Culicoides spp. enter-
ing Australia. In this latter aim, we also sought to deter-
mine the levels of population genetic connectivity
among the regions and infer the likely source(s) of
midges in Australia during historical and current times.

Materials and methods
Insect sampling and DNA preparation
A total of 141 samples were collected using light trap
or sweep net, preserved in 70% ethanol and identified
from sites in the Northern Territory (NT), Queens-
land (QLD), New South Wales (NSW), PNG and TL
(Figure 1A) as described by Gopurenko et al. [13].
Species identification was verified using genetic methods
reported in [16,17] to ensure morphologically related spe-
cies of Culicoides were not included in analyses. After spe-
cies identification, total genomic DNA was extracted from
single specimens of C. brevitarsis using the DNeasy blood
and tissue kit (Qiagen) according to the manufacturer’s
protocol and by a non-destructive genomic DNA extrac-
tion method [16]. The genomic DNA was quantified using
a Qubit fluorometer (Life Technologies, Invitrogen).

Whole genome amplification of C. brevitarsis
To improve the amount of genomic DNA yield from
singleton Culicoides for downstream manipulations,
multiple displacement amplification-based (MDA) whole
genome amplification (WGA) using Repli-g ultrafast
mini kit (QIAGEN) was conducted on specimen DNA
according to the manufacturers’ protocol. To assess the
differences in yield of amplification from a range of
starting amounts of genomic DNA and according to two
different denaturing procedures, 10.7 ng and 0.215 ng of
DNA were denatured either by heat (95 °C for 3 min) and
or by adding denaturing solution (buffer D1; QIAGEN)
and then amplified using the REPLI-g ultrafast mini kit
at 30 °C for 1.5 h followed by polymerase inactivation
at 65 °C for 3 min. Water was used as a negative con-
trol. The resulting DNA was quantified using a Qubit
fluorometer and qualitatively assessed by electrophor-
esis (1% agarose gel (Invitrogen) at 7.40 V/cm) in the pres-
ence of 1 kb DNA ladder and staining/UV visualisation.

Quality check of whole genome amplified DNA
To evaluate the quality of the whole genome ampli-
fied DNA, the products of the previous amplification
(together with the negative control) were used as
templates to PCR amplify a 600 bp housekeeper gene
(actin). Each 20 μL reaction included 1 μL template
DNA (approximately 20 ng), BSA (400 ng/μL), 5 μm
each forward and reverse primer (Act-2 F and Act-8R)
[18] and 15 μL Platinum PCR supermix high fidelity (Life
Technologies). The cycling profile was 94 °C for 2 min,
35 cycles of 94 °C for 30 s, 58 °C for 30 s, 72 °C for 30 s
and a final elongation at 72 °C for 5 min [18]. The PCR
products were assessed for size by electrophoresis as de-
scribed earlier.

Isolation and screening of microsatellite repeats and
primer design
To isolate DNA microsatellite markers, 1 μL of a pooled
specimen DNA (n = 7 New South Wales, n = 8 Northern
Territory) was whole genome-amplified. The amplified
whole genomic DNA was sequenced on 1/8 plate Roche
454 Genome Sequencer FLX plus by an external contrac-
tor (Macrogen, Geumchun-gu, Seoul). The raw sequence
reads of amplified whole genomic DNA were screened
directly for di-, tri- and tetranucleotides using MSAT-
COMMANDER v0.8.2 [19]. Primers were designed to the
flanking regions of the microsatellite repeats using the
Primer 3 program [20]. The primers were checked for
similarities amongst each other and were blasted against
the NCBI database using BLASTN to determine if the



Figure 1 Sites of collections of C. brevitarsis and plot of the genetic structure in this study. A STRUCTURE plot results (K = 2) integrated
into a map showing the locations of the study area. B The Q matrix derived from STRUCTURE clustering analysis show the inferred ancestry
membership proportions of each individual in each cluster (K = 2). Each individual is represented by a single vertical line, partitioned into K
colored segments that represent the individual’s estimated membership fraction in each of the K inferred clusters. The X-axis corresponds to
the pre-defined populations (TL, PNG, QLD, NT and NSW) and the Y-axis represents the proportional estimates of the estimated membership
in clusters, which add up to one.
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target sequences were derived from microorganisms and
or other contaminants. Primers that were found to be
unique i.e. neither homologous to sequences from other
organisms in the database nor similar to each other were
subsequently compared to our sequenced C. brevitarsis
raw reads. The primer pairs that were predicted to anneal
to more than one read were aligned to those reads after
reverse-complementing the reverse primer.

Microsatellite validation
Initially, 38 primer pairs flanking dinucleotide repeats
were selected for validation. Each primer pair was tested
on 10 individuals. Twelve of the primer pairs that amp-
lified 100% of the sub-set of samples (Table 1) were
used to amplify DNA from 141 individuals (one indi-
vidual acting as the positive control and reference allele
size) sampled from three regions in Australia (Northern
Territory; southeast Queensland and New South Wales)
as well as from northern Papua New Guinea and
Timor-Leste (Figure 1A). Each 25 μL PCR reaction in-
cluded 1.0 μL template DNA (20 ng), 0.2 μmol (each)
forward and reverse fluorescently labeled primer (Applied
Biosystems, USA), 18 μL (0.396 U) of Platinum PCR
supermix high fidelity (Life Technologies) and 2.75 μL



Table 1 Microsatellite loci and primers developed in this study. Locus G7B17 excluded from population genetic due to
evidence of significant (P < 0.05) linkage to locus GO2AH

Locus Motif type Range of sizes NA Left primer Right primer #PROBEDB_ACC

HH82P (AC)^13 400–422 13 CACCTCTGAGAAATCCAACCG AGTTGGTCAGCACCTCAAG Pr032367671

GU21Z (GT)^14 210–222 6 TGAGTTCGTATGGCAAGGC ACAGCGAAATGTTCATACGTG Pr032367668

G7B17 (CA)^11 204–208 3 ATGGGCGAACAAATCGAGG AACATTCGTCTTCGCTGCC Pr032367664

HIIUN (GT)^12 314–328 8 ATCCGGGAATACCTGCGAG AAGTGTTGCCGTCGATTTC Pr032367672

HNBZE (CA)^9 328–344 9 GTGTCCGTAGCGAGTAGCC AGCACGATTGAAACCGACAG Pr032367673

G9WRZ (GT)^8 400–412 6 GCTACTGGAGCGATCTAACG ATTAGTGTGCCGCCTTCAG Pr032367665

G5L7G (AC)^9 398–412 8 AGCATGATGAAATGTCCCGC TCAACTACTGCTGCCCGAG Pr032367663

GO2AH (GT)^8 178–194 8 TGGCTGCGAGTCGAGATG GCCGTCGATAAGAATTAAGGTAAAC Pr032367666

GONNE (CGG)^8 304–316 4 TGATGCCCGTCCAAGATCC GTTGCTCCGTAGTCGAACG Pr032367667

G1FMO (AC)^11 300–322 7 GCGTCATCAGTGCCAAGAC GGAACTACACGGAGCAAGC Pr032367662

HBCQD (GT)^10 368–386 9 GCATTTGCGTTTGGCGATG GAAGGCGTCATTCGATTTGC Pr032367670

GU6HJ (AG)^8 190–194 3 GGCGATGACGATAACGAGC ACATGACTTTGAAATTGAATCTGCC Pr032367669
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de-ionized water (Life Technologies). The amplification
was carried out under the following conditions: initial
denaturation of 94 °C for 3 min, then 15 cycles of 94 °C
for 30 s, 60 °C for 30 s with a gradient decrease of 1 °C/
cycle, 72 °C for 30 s followed by 30 cycles of 94 °C for
30 s, 45 °C for 30 s, 72 °C for 30 s and a final elongation
step of 72 °C for 7 min. Amplified PCR products were
fragment-sized by an external contractor (Macrogen,
Geumchun-gu, Seoul). The fragment lengths were ana-
lyzed and corrected manually using Genemapper v4.0
(Applied Biosystems). A fraction of the original sample
size (6% of specimens) was re-run using touchdown
PCR conditions (annealing temperature reduced to 40 °C)
as a validation of initial allelic scores.

Data analysis
Genepop [21] was used to test for linkage disequilibrium
between each pair of loci and across regions (Fischer’s
method) and to estimate allelic diversity and the coeffi-
cient of inbreeding (FIS) at individual loci within popula-
tions. Microchecker [22] was used to check for putative
null alleles, large allele dropout or stutter peaks.
Deviations from the Hardy-Weinberg equilibrium was

estimated by using Arlequin v3.0 [23]. The observed
numbers of heterozygotes and homozygotes at loci in
each population were tested against the expected num-
bers using a chi-square test.
To infer population structure from the microsatellite

data, multilocus genetic distance [24] and fixation
index (Fst) [25] estimates were calculated between
population pairs using Genepop, Arlequin and GenA-
lex v6.5 [21,23,26]. Permutation tests (100 replications)
were used to determine significance of the population
structure estimates.
A Bayesian clustering approach implemented in STRUC-

TURE v2.3.4 [27] was used to provide probabilistic
estimates of population structure based on unlinked multi-
locus genotype distributions. Individuals are assigned prob-
abilistically to (K, where K may be unknown) populations
or jointly to two or more populations if their genotypes in-
dicate they are admixed. The model doesn’t assume a par-
ticular mutation process [27].
To generate a matrix of individual membership co-

efficient and population ancestry components, the follow-
ing parameter set was applied: burnin period of 100 000,
Markov chain Monte Carlo (MCMC) repeats of 100 000,
ancestry model of admixture of LOCPRIOR model and a K
value range from 1–10 with an iteration of 22.
STRUCTURE HARVESTER v0.6.94 [28] was used to

infer the most likely number of genetic clusters (K)
present using both the Evanno and Delta K methods
while CLUMPAK [29] was used to collate the data into a
single matrix for all the K values.
Results
WGA of heat and D1 buffer-denatured DNA and quality
assessment of whole genome amplified DNA
The DNA yield from WGA DNA of both heat-denatured
and denaturing solution (buffer D1) denatured DNA was
compared. The D1 buffer-denatured DNA yielded more
WGA product than the heat-denatured DNA (data not
shown). This suggests the superiority of the D1 buffer
over heat as a denaturing agent in WGA. Tests using
low concentration DNA sample template (0.215 ng) re-
sulted in higher yield of WGA products compared to
yield using higher concentration DNA template (10.7 ng).
The size of WGA DNA smears was from >10 kb with a
smear extended down to ~1 kb. The negative control
reaction did not amplify. Positive controls based on
actin gene amplification were successful in both the
whole genome amplified heat and D1 buffer-denatured
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DNA. The negative control reaction from the same
WGA reaction did not amplify.

Isolation and screening of microsatellite repeats and
primer design
A total of 120 005 reads of 414 average read length was
obtained after sequencing the amplified whole genomic
DNA. The maximum theoretical genome coverage ob-
tained in this study was ~0.25 X (no. of reads X average
read length/size of genome) of the approximately 200 MB
Culicoides genome [30]. A total of 2091 reads were found
to contain putative microsatellite repeats. From the reads
that contained putative repeats, 2594 putative microsatel-
lite repeats were isolated (2361 dinucleotide repeats, 90
trinucleotide repeats and 98 tetranucleotides repeats). We
detected approximately 52 microsatellite repeats per MB
of the genome with most primers flanking AC and GT re-
peats (Figure 2).
A total of 526 primers were designed to the flanking

regions of the microsatellite repeats. From these, 420
primers were either found to be similar to each other
or homologous to sequences from other organisms in
the database, while 106 primers were unique and were
not homologous to anything in the NCBI database.
After comparing the 106 unique primers against the se-
quenced reads, 93 primer pairs (Additional file 1) were
predicted to anneal to a single unique read while 13
primer pairs were predicted to anneal to more than one
read or to more than one site on a single read. High
Figure 2 The distribution pattern of primers across the
different microsatellite repeats in Culicoides brevitarsis genome.
Considerable variation was observed among the 12 validated
microsatellite loci. Exact tests for linkage disequilibrium identified
significant association between locus G7B17 and GO2AH. Subsequently
locus G7B17, which was less polymorphic than GO2AH was
excluded from downstream analysis. The number of alleles per
locus ranged from 3–13 and 78 alleles were scored across the
11 loci.
conservation between the primer pairs and the reads was
evident upon aligning them to the reads. These particular
primer pairs were excluded from the study to avoid
multi copy amplification that may complicate the ana-
lysis procedures downstream. A subset of 38 primers
was used to amplify ten individuals. Twelve of these
primer pairs PCR amplified in 100% of the individuals.
The remainders amplified inconsistently and were not
used further (Additional file 2).

Allele frequencies distribution, heterozygosity,
Hardy-Weinberg equilibrium and linkage disequilibrium
Considerable variation was observed among the 12 vali-
dated microsatellite loci (Table 1 and Additional file 3).
Exact tests for linkage disequilibrium identified signifi-
cant association between locus G7B17 and GO2AH.
Subsequently locus G7B17, which was less polymorphic
than GO2AH (Table 1) was excluded from downstream
analysis. A summary of genetic diversity within the five
regional populations was calculated for the remaining 11
loci (Additional file 3). The number of alleles per locus
ranged from 3–13 (Table 1) and 78 alleles were scored
across the 11 loci. Expected gene diversity (He) varied
from 0.01–0.89 and in 96% of comparisons was higher
than the observed heterozygosity (Ho) with a range of
0–0.88. The inbreeding coefficient (FIS) was significantly
different from zero in an average of eight loci per popu-
lation. Estimates of FIS differed between populations
such that NT and NSW had a higher frequency of loci
showing significant inbreeding compared to the other
populations. Locus HBCQD was monomorphic in TL,
PNG and QLD but polymorphic in NT and NSW. Global
tests by locus revealed departure from Hardy-Weinberg
equilibrium for most loci among all the populations.
While putative null alleles were identified at some loci in
some populations using Microchecker, the null alleles
were not locus specific (Additional file 3) and a large pro-
portion (73%) of data of repeated PCRs were congruent
with the initial results.

Population genetic structure
Statistically significant genetic differentiation was dem-
onstrated between the northern PNG population and
the other populations in three tests employed. Both the
Nei genetic distance and FST estimates indicated pres-
ence of population structure among all three regions.
Nei’s genetic distance varied from 0.03–0.31 while the
FST estimates varied from 0.01–0.19 (Table 2). Permuta-
tion tests in all cases indicated that genetic structure
between paired regions was significant (P < 0.05). Paired
region FST estimates indicated the highest levels of sub-
division between PNG and Australia (FST = 0.12) and
between PNG and Timor-Leste (FST = 0.095). In contrast,
FST between Australia and Timor-Leste (0.03) was lower



Table 2 Estimated genetic distance

TL PNG QLD NT NSW

TL 0.17 0.14 0.1 0.09

PNG 0.09(0.0 + - 0.0) 0.31 0.27 0.26

QLD 0.08(0.0 + - 0.0) 0.19(0.0 + - 0.0) 0.1 0.08

NT 0.04(0.0 + - 0.0) 0.12(0.0 + - 0.0) 0.06(0.0 + - 0.0) 0.03

NSW 0.03(0.0 + - 0.0) 0.13(0.0 + - 0.0) 0.04(0.06 + -0.02) 0.01(0.08 + -0.03)

Nei genetic distance values (above diagonal) and pair-wise fixation index (FST) values (below diagonal) for sampled Australasian populations of C. brevitarsis.
Significance level = 0.05.
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(Table 3). There was no evidence of any significant popula-
tion structure between Australian populations (Table 2).
Evanno and Delta methods identified a most prob-

able clustering value of K = 2, for defining population
group structure analysed under STRUCTURE. The
clustering analysis (Figure 1B) identified inferred an-
cestry membership proportional probabilities of each
specimen, in the optimal two cluster arrangement
(Additional file 4). The posterior probability values indi-
cate individuals from regions in Australia (NT, NSW and
QLD) are of admixed ancestry with the largest proportion
of their ancestry assigned to cluster 2. Timor-Leste popu-
lation ancestry on the other hand is derived almost equally
between cluster 1 and 2. The PNG population is almost
exclusively assigned to cluster 1.

Discussion
Microsatellite loci are regarded as powerful molecular
markers because of their high mutability, co-dominance,
abundance in the genome and relative ease of scoring
[31,32] and have been employed to study vectors of
medical and economic importance [33–37]. However,
isolation of microsatellite markers from tiny and non-
cultivable organisms has been hampered by the limited
quantity of available genomic DNA. Recently, a study by
Mardulyn et al. [37] successfully isolated 10 microsatel-
lite markers from C. imicola (1–5 mm) using recombin-
ant approaches as described by Glenn et al. [38] and
utilized the microsatellites to better understand the
mechanism responsible for the northward spread of
bluetongue in the Mediterranean region. In contrast, the
present study isolated microsatellite markers from C.
brevitarsis by initially increasing the amount of genomic
DNA by whole genome amplification (MDA technique)
Table 3 Estimated genetic distance

Timor PNG AUS

0.177 0.082 Timor

0.10 (0.0 + -0.0) 0.251 PNG

0.03 (0.0 + -0.0) 0.12(0.0 + -0.0) AUS

Nei genetic distance values (above diagonal) and pair-wise fixation index (FST)
values (below diagonal) for sampled regional populations of C. brevitarsis.
Significance level = 0.05.
and subsequently sequencing the whole genome ampli-
fied DNA on an eighth of a lane of a 454 GS FLX se-
quencer. To the best of our knowledge, this is the first
study that has isolated microsatellite markers de novo
from WGA DNA for any organism. The MDA-based
whole genome amplification procedure provides an ideal
method of isolating microsatellite markers from limited
amounts of genomic DNA. This gave rise to 120 005
raw reads from which 93 primer pairs that are unique to
a single read (and not the products of contamination)
were isolated. The abundance of microsatellite repeats
may be skewed due to a potential unbalanced represen-
tation of the genome during whole genome sequencing.
A selected number of markers flanking the repeats were
successfully validated and utilized to study Australasian
populations of C. brevitarsis.
Aerial arthropod dispersal modeling studies have

assessed the possible routes of introduction of BTV vec-
tors into Australia from neighboring countries including
Timor-Leste and PNG. The models predict stronger
pathways of dispersal from Timor-Leste to Australia,
than from PNG [8,11,39]. Mitochondrial DNA (mtDNA)
evidence indicates several Southeast Asian Culicoides
species have entered northern Australia from both
Timor-Leste and PNG [12]. More recent mtDNA evi-
dence indicates historical pathways of dispersal by C.
brevitarsis to northern Australia are less certain. Based
on their study of COI haplotypes, Gopurenko et al. [13]
found evidence of multiple independent range expan-
sions of the species into Australasia, with evidence of
separate expansions of the species into north Australia
and PNG from independent Southeast Asia sources.
They also identified moderate levels of gene flow in di-
rections contrary to expectations of the historical disper-
sal of the species based on growth of the cattle industry
in Australasia. The authors concede that gene flow esti-
mates in their study were historical and likely influenced
by migrations to the region from unsampled Southeast
Asian sources.
So far, no genetic studies have used multi locus

markers to examine population structure of this spe-
cies. The current study applied 11 newly isolated
microsatellite markers to determine the population
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genetic structure of C. brevitarsis in Timor-Leste,
Australia and northern PNG.
The results here indicate populations of C. brevitarsis

in Australia are more similar to those in Timor-Leste
than in northern PNG. This is particularly evident in
STRUCTURE analyses, which have assigned Australia
and Timor-Leste specimens to a population cluster sep-
arate from a single PNG cluster. Pairwise FST tests indi-
cate significant structure exist between Australia and its
northern neighbors, but the level of FST structure evi-
denced between these two regions is less than that in
pair-wise comparisons with PNG. The results demonstrate
that C. brevitarsis in Australia was potentially introduced
into NT from Timor-Leste or from neighboring islands in
Indonesia (less likely from PNG) consistent with previous
spatial modeling studies that indicated the islands of
Timor and Sumba in the Indonesian Archipelago were
the likely principal sources of Culicoides dispersal into
northern Australia [8,11,39]. The gene flow barriers
between northern PNG and other Australasian popula-
tions would mainly be geographic. High mountain ridges
characterize PNG spatial geographical features with sharp
narrow crests separated by deeply incised V-shaped val-
leys. The main geographical barrier to gene flow from
northern PNG to Australia would be the Central and
Owen Stanley Range of PNG highlands that span a dis-
tance of 200 km from the central cordillera and with an
altitude of 4000 m above sea level [40]. The high peaks
would result in a rough terrain that has been shown to
act as an airflow barrier, which would slow dispersal of
Culicoides on land [41]. In contrast, the relatively low
plateau geography of Australia is likely to have given
rise to the genetically homogenous population across
the continent [10].
Genetic sampling of C. brevitarsis from northeastern

Australia and southern PNG was not conducted in this
study and future genetic work is required to examine
levels of population connectivity between the two re-
gions and to test the possibility of separate entry of BTV
infected midges into northeastern Australia from the
southern PNG region. The movement of other species of
Culicoides from southern PNG into northern QLD has
been documented [12] so movement of C. brevitarsis ap-
pears likely. Our starting working hypothesis was to
highlight the potential larger genetic difference between
the most distant NT and NSW regions and we placed
more emphasis in the sampling of these two regions ra-
ther than the intermediate Queensland area. This has
lead to a weaker significance of these last samples over
the rest of the individuals.
Furthermore, both STRUCTURE analysis and conven-

tional FST estimates of population subdivision indicate
C. brevitarsis populations are genetically panmictic in
Australia and display no evidence of genetic separation
or structure between northern and eastern sampled pop-
ulations. This result suggests that the presence of the
two BTV episystems in Australia (northern and eastern)
as demonstrated by the distribution of BTV serotypes is
not as a result of genetic structuring of this vector and is
due to other factors for example, the presence of other
vector species in northern Australia that are absent from
southeastern Australia.
The 11 loci isolated and validated in this study were

polymorphic with number of alleles ranging from 3 to
13. Departure from Hardy-Weinberg equilibrium result-
ing from excessive homozygote presence in one or more
sampled populations was evident at all 11 loci. Severe in-
breeding can cause an excess of homozygotes across loci,
however, this would involve substantial and or ongoing
bottlenecking of populations down to few breeding
adults [42]. Substantial population bottlenecks would
however have greater and immediate effect on haploid
genetic markers such as maternally inherited mtDNA
[43]. MtDNA evidence obtained by Gopurenko et al.
[13] indicated moderate to high levels of mtDNA diver-
sity among C. brevitarsis populations in the same re-
gions examined in the present study and further their
modeled estimates of effective maternal population size
in contemporary populations was in the order of hun-
dreds of thousands of individuals. Alternatively, null al-
lele presence, caused by mutations at locus specific
primer annealing sites which retard PCR amplification
efficiency of particular alleles, can result in excesses of
homozygotes scored at loci and hence significant devi-
ation from Hardy-Weinberg Equilibrium in populations
[44]. Allelic dropout in PCR caused by a variety of in-
hibitory causes can result in similar outcomes [45].
To validate the levels of potential allelic and geno-

typic miss-scores caused by a variety of PCR processes
including PCR dropout and primer redundancy, a total
of 86 DNA samples initially identified either as homo-
zygous at one or more loci or had failed to amplify were
re-amplified at one or more of the 11 markers using a
touchdown PCR program. Three percent of samples
initially identified as homozygous were scored as het-
erozygotes in the repeat PCRs, 17% of samples that
failed to amplify previously were successfully re-
amplified, 7% of samples that had been amplified before
failed to amplify during this re-amplification experi-
ment and 73% were unchanged.
The effects of null allele on test for HWE have been

reported earlier [46]. The effects of null allele on genetic
test of population structure vary according to the sever-
ity of the null allele presence and the type of test being
used. Carlsson [47] examined effects of null allele on
population structure estimated by FST and also popula-
tion assignment testing (as employed in STRUCTURE)
and they identified significant but small upwards biases
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to FST (FST increased between 0.003 and 0.004) and
slight reduction in the power of STRUCTURE to cor-
rectly assign individuals to populations (0.2 and 1.0%
units). With these caveats, we argue the likely slight up-
ward biases to our pairwise estimates of FST as well as
some effects on specimen cluster assignment using
STRUCTURE, which would not drastically change the
results of our study.
We have demonstrated that whole genome amplifica-

tion of the genomic DNA and subsequent whole genome
sequencing resulted in a successful de novo isolation of
microsatellite markers from C. brevitarsis. These micro-
satellite markers are likely to be very useful for genetic-
ally typing population origins of C. brevitarsis detected
in the future. They can also be applied to carry out a
broader analysis of gene flow in Australasian and South-
east Asian populations of C. brevitarsis.

Additional files

Additional file 1: A summary file of the total number of primers
designed to the flanking regions of the microsatellite repeats. From
the total primers isolated, 420 primers were either found to be similar to
each other or blasted to sequences from other organisms in the database,
while 106 primers were unique and did not blast to anything in the NCBI
database. After blasting the 106 unique primers against the sequenced
reads, 93 primer pairs were predicted to anneal to a single unique read
while 13 primer pairs were predicted to anneal to more than one read
or to more than one site on a single read. (XLS 36 kb)

Additional file 2: C. brevitarsis primer optimization. A subset of 38
primers was used to amplify 10 individuals. Twelve of these primer
pairs PCR amplified 100% of the individuals. The remainders amplified
inconsistently and were not used further. (XLS 28 kb)

Additional file 3: Summary of allelic variation in 11 microsatellite
loci. Allelic variation among N = 141 [Timor-Leste (N = 24), Papua New
Guinea (N = 24), Queensland (N = 8), Northern Territory (N = 40) and New
South Wales (N = 45)] C. brevitarsis specimens sampled from regional
populations. Nallele- Null allele,

m - monomorphic locus, observed (Ho)
and expected (He) heterozygosity, probability of deviation from
Hardy-Weinberg Equilibrium (PHWE) and inbreeding co-efficient (FIS)
as described. Significantly deviated FIS values (P < 0.05) highlighted
in BOLD type. (XLS 38 kb)

Additional file 4: Probability values of population assignments for
samples K = 2. The population Q matrix derived from STRUCTURE
clustering analysis show the inferred ancestry membership proportions of
each individual, in each cluster. Each individual is represented by a single
vertical line, partitioned into K colored segments that represents that
individual’s estimated membership fraction in each of the K inferred
clusters. The X axis corresponds to the pre-defined populations (TL, PNG,
QLD, NT and NSW) and the Y axis represents the proportional estimates of
the estimated membership in clusters which add up to one. (TXT 11 kb)
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