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Abstract 

Background:  Genomic estimated breeding values (GEBV) based on single nucleotide polymorphism (SNP) geno-
types are widely used in animal improvement programs. It is typically assumed that the larger the number of animals 
is in the training set, the higher is the prediction accuracy of GEBV. The aim of this study was to quantify genomic 
prediction accuracy depending on the number of ancestral generations included in the training set, and to determine 
the optimal number of training generations for different traits in an elite layer breeding line.

Methods:  Phenotypic records for 16 traits on 17,793 birds were used. All parents and some selection candidates from 
nine non-overlapping generations were genotyped for 23,098 segregating SNPs. An animal model with pedigree 
relationships (PBLUP) and the BayesB genomic prediction model were applied to predict EBV or GEBV at each valida-
tion generation (progeny of the most recent training generation) based on varying numbers of immediately pre-
ceding ancestral generations. Prediction accuracy of EBV or GEBV was assessed as the correlation between EBV and 
phenotypes adjusted for fixed effects, divided by the square root of trait heritability. The optimal number of training 
generations that resulted in the greatest prediction accuracy of GEBV was determined for each trait. The relationship 
between optimal number of training generations and heritability was investigated.

Results:  On average, accuracies were higher with the BayesB model than with PBLUP. Prediction accuracies of GEBV 
increased as the number of closely-related ancestral generations included in the training set increased, but reached 
an asymptote or slightly decreased when distant ancestral generations were used in the training set. The optimal 
number of training generations was 4 or more for high heritability traits but less than that for low heritability traits. For 
less heritable traits, limiting the training datasets to individuals closely related to the validation population resulted in 
the best predictions.

Conclusions:  The effect of adding distant ancestral generations in the training set on prediction accuracy differed 
between traits and the optimal number of necessary training generations is associated with the heritability of traits.

© 2016 Weng et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genomic prediction in domestic animals is rapidly 
becoming the preferred method to evaluate individual 
genetic merit with advances in technology for massively 
parallel genotyping of SNPs (single nucleotide polymor-
phisms). Genomic selection is considered a promising 

approach, since it can yield higher rates of genetic gain 
and lower rates of inbreeding per generation than ped-
igree-based best linear unbiased prediction (PBLUP) [1, 
2], which is the traditional approach for calculating esti-
mated breeding values (EBV) based on phenotype and 
pedigree information [3]. Simulated and real data analy-
ses have shown that accuracies of both genomic predic-
tion and PBLUP can be influenced by the heritability of 
the trait, the nature of the fixed effects, and the extent 
of additive genetic relationships between phenotyped 
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individuals and selection candidates [4]. Genomic pre-
diction accuracies are affected by marker density [5], 
number of animals in the training population [6, 7], 
size and number of quantitative trait loci (QTL) [8, 9], 
and amount of linkage disequilibrium (LD) or linkage 
between markers and QTL [10]. Collectively, the latter 
two factors characterize the genomic architecture of the 
trait.

Based on simplistic theory, the larger is the number 
of animals used in training, the greater is the expected 
accuracy of genomic prediction [6, 7]. Inclusion of data 
on animals from past generations will increase the size of 
the training data set. As briefly described below, another 
reason for using data from all past generations is to avoid 
selection bias [11, 12]. Under random mating, the joint 
distribution between phenotypic and breeding values can 
be specified using the theory of covariance between rela-
tives. This joint distribution is used to predict breeding 
values from phenotypes. In a population that is under 
selection, this joint distribution is altered in a way that 
depends on the type and intensity of selection and thus, 
prediction of breeding values becomes difficult. However, 
when inference is based on conditional distributions and 
conditioning is on data that includes all the information 
used for selection, it has been shown that the selection 
process can be ignored [12–14]. Pedigree-based additive 
genetic covariance between a candidate and its direct 
ancestor is halved by each additional generation. Thus, 
in PBLUP, under random mating, data from distant gen-
erations contribute little to the accuracy of prediction. 
In a simulated population under selection, it has been 
shown that using the data from the last two generations 
compared to that of the full pedigree resulted in the same 
response to selection [15]. This should be examined in 
a real population under selection. In contrast to PBLUP, 
in genomic BLUP (GBLUP), given the high LD between 
markers and QTL, even distant generations are expected 
to contribute to prediction accuracy [16]. Lourenco et al. 
[17] evaluated the benefit of past generations on the 
accuracy of GEBV using single-step GBLUP, where the 
genomic relationship matrix was blended with the pedi-
gree-based relationship matrix. Using one set of individ-
uals for validation, they found a small effect of pedigree 
depth on the accuracy of GEBV [17].

The objective of our study was to examine the effect 
of including successive generations in the training data-
set on accuracy of genomic prediction across different 
validation sets and to assess the optimal number of train-
ing generations for routinely recorded traits. Using data 
from an elite line of layer chickens, genomic predictions 
were obtained by using the BayesB genomic prediction 
method [5] and PBLUP, and the resulting predictions 
were compared.

Methods
Phenotypes and genotypes
Data included phenotypic records for 17,793 birds from 
an experimental brown-egg laying population, represent-
ing 11 generations that hatched between 2002 and 2011. 
Among those, 5108 birds (including all parents used 
for breeding) from the most recent nine generations 
(from G3 to G11) were genotyped with a custom 40  K 
SNP panel (Illumina, San Diego, CA). Only genotyped 
females (~2260) with their own phenotypic records were 
used in the prediction analyses. A total of 23,098 seg-
regating SNPs across 28 chromosomes remained after 
removing SNPs with a call rate lower than 0.95 (1121 
SNPs), a minor allele frequency lower than 0.025 (10,770 
SNPs), or a Mendelian inconsistency rate between par-
ent-offspring higher than 0.05 (1467 SNPs). The fol-
lowing 16 traits were analyzed: early and late albumen 
height (eAH, lAH, mm), shell color of the first three eggs 
(eC3, index units), weight of the first three eggs (eE3, g), 
early and late egg color (eCO, lCO, index units), early 
and late average egg weight (eEW, lEW, g), early and late 
egg production rate (ePD, lPD), early and late shell punc-
ture score (ePS, lPS, g/s), early and late yolk weight (eYW, 
lYW, g), body weight (lBW, kg) and age at sexual matu-
rity (eSM, d). Measurements of early and late traits were 
taken at 26–28 and 42–46 weeks, respectively, except for 
eC3 and eE3, which were measured when hens reached 
sexual maturity. In total, there were 136,243 and 45,242 
phenotypic records for early and late traits, respectively. 
The pedigree-based heritability (narrow-sense heritabil-
ity h2) for each trait was estimated by using a single-trait 
animal model fitted in ASREML [18] for all phenotyped 
animals. In this selection program, genomic informa-
tion was used since 2009 (G7, generation 7), after many 
generations of conventional multiple-trait selection 
based on an index of EBV [19]. Three hundred and sixty 
females and 120 males (out of ~2000 birds) were selected 
per generation during conventional selection, whereas 
when genomic selection started, 50 animals of each sex 
(out of ~600 birds) were selected from G7 to G11. The 
basic description of the collected phenotypic records is 
in Table 1.

Statistical models
The following two single-trait models were used to pre-
dict EBV or GEBV:

(1)	 PBLUP: a single-trait animal model using pedigree 
relationships and all available phenotype records was 
fitted using ASREML3.0 [18]. The model equation 
was:	

y = Xβ+ Za + e,
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where y is the vector of phenotypes for each trait in the 
training set, β represents the vector of fixed class effects 
(hatch within generation), a is the vector of animal breed-
ing values with Var(a) = Aσ 2

a , where A is the pedigree 
relationship matrix and σ 2

a  is the additive genetic variance 
estimated using ASREML, X and Z are design matrices, 
and e is the vector of residual effects with Var(e) = Iσ 2

e ,  
where σ 2

e  is the residual variance estimated using 
ASREML. In the pedigree-based analyses, the relation-
ship matrix was calculated from either the full pedigree 
including all animals from 11 generations, or from trun-
cated pedigrees that only included ancestors that were 
born within two generations prior to the training set. 

By solving the following mixed model equation [11], the 
EBV of individuals in the validation population, whose 
phenotypes were masked, were obtained:

where � = σ 2
e /σ

2
a , β̂ is the vector of estimates of fixed class 

effects, and â is the vector of EBV of animals included in 
the full or truncated pedigrees.

(2)	 Genomic prediction model BayesB [5, 20] was applied 
using only records on genotyped individuals that had 
their own phenotypic records (i.e. only females) and 

[

X′X X′Z

Z′X Z′Z+ A−1
�

][

β̂
â

]

=

[

X′y
Z′y

]

,

Table 1  Summary statistics of the phenotypes available for 16 traitsa in each generation (G)

a  Early (e) and late (l) CO (egg color, index units), EW (average weight of 3 to 5 eggs, g), C3 (color of first 3 eggs, index units), E3 (weight of first 3 eggs, g), AH (albumen 
height, mm), PD (egg production rate), PS (puncture score, g/s), and YW (yolk weight, g); eSM (age at sexual maturity, d); lBW (body weight, kg)

Gen eCO eEW eC3 eE3 eSM eAH eYW ePD ePS lCO lEW lBW lAH lYW lPD lPS

G1 N 436 436 410 410 440 436 0 440 436 414 414 440 414 0 414 411

Mean 70.9 56.3 69.0 45.4 153.6 7.3 0 81.1 1604.9 59.4 62.1 2.1 5.6 0 67.5 1383.5

SD 9.1 4.5 9.1 4.7 11.1 0.8 0 12.9 49.4 10.1 4.9 0.3 0.9 0 14.3 30.6

G2 N 1669 1669 1667 1667 1669 1667 1657 1669 1668 588 588 588 586 582 588 588

Mean 69.6 55.2 70.6 44.3 151.9 7.1 14.9 81.6 1509.0 66.4 60.5 2.0 6.5 17.9 77.7 1601

SD 8.5 4.8 8.6 4.7 8.5 0.9 1.7 12.4 93.2 8.5 4.7 0.3 0.9 1.5 14.5 59.2

G3 N 2738 2737 2729 2729 2738 2737 2728 2738 2738 649 649 647 649 646 635 649

Mean 73.3 56.8 74.6 43.6 149.3 7.1 15.2 80.9 1425.0 72.4 61.5 2.0 6.6 17.8 77.3 1435.4

SD 7.7 4.6 7.9 4.5 7.4 1.0 1.1 11.3 38.4 7.6 4.6 0.3 0.9 1.2 12.1 25.0

G4 N 2771 2772 2753 2752 2772 2771 2736 2772 2770 794 794 793 794 793 784 794

Mean 71.4 57.5 74.4 46.7 156.3 7.5 15.1 82.4 1388.3 66.9 62.2 2.0 7.2 17.8 80.6 1399.8

SD 8.2 4.8 7.7 5.1 9.9 1.0 1.1 11.3 39.9 9.3 4.5 0.2 0.9 1.3 12.1 40.6

G5 N 2964 2964 2952 2951 2964 2963 2958 2965 2964 782 782 781 782 781 778 782

Mean 76.1 58.0 75.4 47.3 159.8 7.4 15.3 84.9 1494.9 72.9 63.5 2.0 7.2 18.1 82.4 1508.6

SD 7.5 4.9 7.9 4.6 6.2 1.0 1.2 9.8 42.5 7.9 4.7 0.3 0.9 1.4 11 36.4

G6 N 2117 2117 2103 2103 2117 2116 2115 2117 2115 769 768 759 769 768 755 769

Mean 77.2 57.2 78.1 45.2 147.6 7.4 15.1 83.3 1459.9 70.9 62.7 1.8 6.9 18.1 80.0 1496.1

SD 7.7 4.9 7.9 4.7 7.8 1.0 1.2 10.3 42.8 8.6 4.8 0.3 0.9 1.4 11.0 36.6

G7 N 290 290 278 278 290 290 290 290 289 280 280 277 280 275 274 280

Mean 78.1 59.2 80.2 45.0 148.9 7.7 15.4 83.1 1492.6 71.6 63.3 1.8 7.5 17.9 77.4 1487.8

SD 7.3 4.8 7.6 4.5 7.8 1.1 1.1 9.2 41.7 8.6 4.9 0.3 0.9 1.4 11.7 35.0

G8 N 251 252 275 275 272 252 250 263 249 270 270 271 270 263 262 268

Mean 80.5 56.8 79.8 44.2 142.0 7.9 15.2 80.8 1451.6 71.7 61.2 1.8 7.4 17.8 76.9 1423.9

SD 7.5 4.9 7.5 4.6 5.6 1.1 1.35 8.0 39.8 8.1 4.9 0.3 1.1 1.5 11.0 35.9

G9 N 300 300 299 299 302 300 296 302 300 292 292 294 292 285 291 292

Mean 79.2 59.1 82.5 44.1 141.9 8.4 15.9 83.2 1498.6 78.8 61.8 2.0 8.1 17.4 78.8 1519.2

SD 7.7 4.5 7.7 4.7 7.6 1.0 1.18 10.1 37.6 8.3 5.1 0.2 1.1 1.5 10.1 39.1

G10 N 724 724 828 828 850 723 708 850 723 835 829 850 835 828 826 832

Mean 83.3 58.6 79.3 46.2 146.5 8.0 14.9 87.9 1474.9 75.8 62.8 2.0 8 17.5 80.0 1471.6

SD 8.0 4.4 7.8 5.0 7.9 1.1 1.19 9.4 45.9 7.8 4.5 0.2 1.1 1.3 11.7 49.4

G11 N 899 899 891 891 899 899 898 899 896 856 856 867 856 850 899 855

Mean 83.3 56.4 82.7 44.7 139.2 8.6 14.3 81.7 1514.1 77.8 61.0 2.0 7.7 17.3 77.6 1403.2

SD 8.2 4.5 7.2 4.7 7.8 0.9 1.1 10.0 19.2 8.9 4.5 0.2 0.9 1.3 9.5 27.3
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was performed using the GenSel4.4 software [20, 21]. 
Method BayesB assumes that a fraction π of SNPs 
have zero effects and 1-π SNP effects have a univari-
ate-t distribution with a mean of 0, va degrees of free-
dom, and a scale parameter S2a. This prior assumption 
of SNP effects is equivalent to assuming that each 
SNP effect has a univariate normal distribution with 
a mean of 0 and a SNP-specific variance [22]. Each 
SNP-specific variance has a scaled inverse Chi square 
prior distribution with vj  =  4.2 degrees of freedom 
and a scale parameter S2j  derived from 

σ̃ 2
j (vj−2)

vj
, where 

σ̃ 2
j  is the variance of the additive effect for a ran-

domly sampled SNP calculated as σ̃ 2
s

(1−π)
∑k

j=1 2pj(1−pj)
 , 

where σ̃ 2
s  is the additive genetic variance explained 

by SNPs, and pj is the allele frequency of SNP j [22]. 
The priors for the genetic and residual variances for 
each trait were obtained from the single-trait pedi-
gree-based ASREML analyses. Markov chain Monte 
Carlo (MCMC) sampling with 55,000 iterations, of 
which the first 5000 were discarded as burn-in, was 
used to estimate the posterior means of SNP effects. 
The convergence of MCMC samples for genetic vari-
ance, residual variance, and marker heritability were 
assessed by using the Heidelberger and Welch test 
[23] in R/coda package [24]. The model equation used 
for BayesB is:

where yim is the phenotype for genotyped individual i in 
the training set in hatch within generation class m, βm 
is the effect of hatch within generation class m, k is the 
number of SNPs, zij is the allele at SNP j in genotyped 
individual i coded 0, 1 and 2, uj is the random effect of 
SNP j distributed as uj ∼ N

(

0, σ 2
j

)

 with probabil-
ity 1− π, and 0 otherwise, where σ 2

j  is the variance of 
the additive effect for SNP j, and ei is the residual effect 
distributed as ei ∼ N

(

0, σ 2
e

)

, where σ 2
e  is the residual 

variance. The assumed value of π was 0.95. The GEBV 
of individual i (GEBVi) in the validation population was 
derived as:

where zij is the allele at SNP j of the genotyped individual 
i, and ûj is the posterior mean of the substitution effect of 
SNP j estimated over 50,000 post burn-in samples.

The effect of using different training generations, 
including animals with phenotypes and genotypes (~300 

yim = βm +

k
∑

j=1

zijuj + ei,

GEBVi =

k
∑

j=1

zijûj ,

per generation), was assessed for generations G5–G11. 
The training sets consisted of animals from successive 
ancestral generations immediately prior to the validation 
generation. Additional file 1: Table S1 uses an example to 
illustrate the assignment of validation and training sets. 
Different validation sets (from G5 to G11) with different 
numbers of training generations were assessed. If only 
G11 was used for validation, spurious environmental 
effects, such as heat stress in a particular year, would be 
confounded with the distance between the training and 
validation generations, which could bias results. Thus, 
different validation generations were used to avoid this 
confounding. The maximum numbers of training gen-
erations for pedigree-based and marker-based analyses 
were 10 and 8, respectively. The numbers of phenotypic 
records within each generation are in Table 1. Additional 
file  1: Table S2 gives the average number of available 
genotyped individuals with early and late traits for each 
generation. Predictive performance of each model was 
evaluated by prediction accuracy, which was determined 
in the validation generation based on the correlation 
between EBV and phenotypes adjusted for fixed effects, 
standardized by dividing by the square root of trait herit-
ability [25, 26].

In order to separate the impact of size of the training 
data set and number of training generations on predic-
tion accuracy of GEBV, additional training scenarios 
were considered for one of the analyzed traits as an 
example (eEW) using the BayesB model (Table  2). In 
that analysis, G10 was used as the validation set and dif-
ferent numbers of genotyped animals (125 or 250) were 
randomly sampled from one to six training generations 
(G4–G9). The training scenarios differed in total number 
of animals and number of generations that contributed 
to the training set. Some scenarios had the same size of 
training set but differed in the number of generations 
that contributed to the training set. For example, sce-
narios 1 and 5 had 250 genotyped animals in the training 
set, but in scenario 1, all these 250 animals were from 
G9, whereas in scenario 5, 125 animals were from G8 
and the remaining 125 animals were from G9. Each sce-
nario was repeated five times in order to avoid sample 
bias.

Optimal number of training generations
The optimal number of training generations to maxi-
mize prediction accuracy was derived for each trait and 
method as the maximum from a second-order polyno-
mial regression fitted to all the prediction accuracies that 
were obtained for that method for that trait, using the 
following model:

yik = aik
2
+ bik + ci + eik ,
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where yik is the prediction accuracy of GEBV obtained 
using BayesB for trait i with k ancestral generations 
included in the training set, ai and bi are regression coef-
ficients, ci is the intercept, and eik is the residual. Signifi-
cance of regression coefficients was tested for each trait. 
For all traits, except eCO, eC3, eSM, lAH, lYW, and lPS, 
the second-order polynomial regression coefficients were 
significantly (p  <  0.01) different from zero. The optimal 
number of training generations was then derived as min 
(

−
b̂i
2âi

, 8

)

 because the dataset included at most eight 
generations.

Marker‑based heritability
Marker-based heritability (h2q) was defined as the genetic 
variance explained by the markers divided by the total 
phenotypic variance. Genomic prediction method 
BayesC with π =  0 implemented in the GenSel4.4 soft-
ware [20, 21] was used to estimate h2q, which assumes that 
all the SNPs have non-zero effects, and each SNP effect is 
drawn from a normal distribution with a common vari-
ance. This BayesC0 model is equivalent to GBLUP [27], 
except that genetic and residual variances are treated 
as unknown with given priors, instead of being fixed in 
GBLUP. The priors for the genetic and residual variance 
components were obtained from the single-trait pedi-
gree-based ASREML analysis for each trait. MCMC sam-
pling with 55,000 iterations (discarding the first 5000 as 
burn-in) was used to make inference on h2q.

Results and discussion
Prediction accuracy in progeny
Differences between prediction methods
Figure  1 shows boxplots of the prediction accuracies of 
PBLUP and BayesB for different training generations. 
Prediction accuracies of PBLUP quickly reached a pla-
teau as the number of training generations increased. 

The slight fluctuations in prediction accuracies of PBLUP 
might be due to genetic drift. Prediction accuracies of 
PBLUP using a truncated pedigree (PBLUP_T, including 
animals in the training and validating sets, and their rela-
tives that were traced two generations back) were very 
similar compared to the full pedigree (PBLUP_F, includ-
ing all animals from 11 generations) across validation 
generations. These results indicate that using a truncated 
or full pedigree to construct the pedigree-based relation-
ship matrix has no significant effect on the accuracy of 
PBLUP in terms of ranking the current cohort of can-
didates in this population, which was under selection. 
Mehrabani-Yeganeh et  al. [15] reported that using only 
the last two generations compared to the full pedigree 
resulted in the same response to selection in a simu-
lated closed nucleus broiler line. Lourenco et al. [17] also 
found that depth of pedigree had a very small impact on 
the accuracy of PBLUB evaluations in US dairy cattle and 
pig data. They observed the same result for accuracies of 
GEBV using single-step GBLUP.

In our data, the advantage of genomic evaluations using 
BayesB over the pedigree-based EBV was obvious (Fig. 1) 
and can explained by the fact that genomic prediction 
uses LD between markers and QTL, as well as pedigree 
relationships [16]. Prediction accuracies obtained from 
PBLUP reached a plateau much more quickly as the num-
ber of training generations increased than those obtained 
from BayesB, because pedigree-based relationships decay 
faster than genomic relationships [4, 16].

In this study, MCMC samples from BayesB for genetic 
variance, residual variance, and marker-based herit-
ability had converged based on Heidelberger and Welch 
diagnostics. A fixed π (0.95) was used in the BayesB 
analyses for all traits. Although using π estimated with 
the Bayes Cπ method [22] may result in different pre-
diction for some analyses, using a fixed π in the BayesB 
analysis is not expected to affect the comparison of 

Table 2  Mean accuracy (±SD) of genomic predictions over 5 replicates obtained with different training setsa for eEWb

a  In this analysis, G10 was used as the validation generation and training individuals were randomly sampled from G4 to G9
b  eEW, early average weight of 3–5 eggs

Scenario Distribution of training animals 
across generations

Number of  
generations in training

Number of  
animals in training

Prediction 
accuracy (±SD)

1 G9 = 250 1 250 0.46 ± 0.089

2 G9 = G8 = 250 2 500 0.60 ± 0.019

3 G9 = G8 = G7 = 250 3 750 0.64 ± 0.017

4 G9 = 125 1 125 0.23 ± 0.021

5 G9 = G8 = 125 2 250 0.45 ± 0.088

6 G9 = G8 = G7 = 125 3 375 0.57 ± 0.038

7 G9 = G8 = G7 = G6 = 125 4 500 0.57 ± 0.021

8 G9 = G8 = G7 = G6 = G5 = 125 5 625 0.58 ± 0.010

9 G9 = G8 = G7 = G6 = G5 = G4 = 125 6 750 0.58 ± 0.013
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results within a trait. The BayesB method used in this 
study uses only animals with known phenotypes and 
genotypes. In contrast, single-step GBLUP uses pedi-
gree relationships to include phenotypes of non-geno-
typed individuals.

Differences between traits and training generations
In general, for the first few training generations, predic-
tion accuracies of PBLUP and BayesB increased and 
then plateaued or dropped slightly when adding more 
distant ancestral generations (Fig. 2). The impact of add-
ing ancestor generations in the training set on prediction 
accuracy of GEBV differed between traits. These differ-
ences might be caused by differences in heritabilities, 
genetic architecture, and the number of available geno-
types or phenotypes. For some traits (e.g. eAH), predic-
tion accuracy continued to increase as the number of 
training generations increased, while for other traits 
accuracies decreased slightly as the number of distant 
generations in training set increased (e.g. eEW).

In this population, data from distant generations (more 
than four training generations back) contributed little 
to prediction accuracy of PBLUP. For most traits, dis-
tant ancestral generations continued to contribute to the 
accuracy of genomic prediction but their contributions 
were smaller than those of generations that were close 

to the validation generation. For the same population, 
Wolc et  al. [28] reported that decreasing the genomic 
relationships between pairs of individuals when the pedi-
gree relationship was less than 0.45, effectively reduced 
the impact of distant relatives, and increased prediction 
accuracy for egg production in laying hens when using 
GBLUP.

To avoid confounding between environmental effects 
(e.g. heat stress) that can cause animals to re-rank 
and that might be specific to a particular generation, 
different validation sets were used in this study. We 
observed fluctuations in prediction accuracies over 
training generations, which could be due to variation 
in environmental effects, distinct population struc-
tures, different genomic relationships between train-
ing and validation sets, genetic drift, or interactions 
between genotype and environment. For example, in 
Additional file  2: Figure S1, the prediction accuracies 
of eEW ranged from 0.39 to 0.69 for different com-
binations of training and validation sets that were all 
characterized by having four generations included in 
the training set.

In this study, the size of the validation set, number of 
generations, and density of the SNP panel were limited 
by available data. Further analyses are needed to vali-
date the effect on genomic prediction accuracy of adding 
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Fig. 1  Prediction accuracies of EBV over different numbers of training generations across all traits and all validation sets using genomic prediction 
(BayesB) or pedigree-based BLUP with a truncated (PBLUP_T), or full pedigree (PBLUP_F). The full pedigree included all animals from 11 generations; 
the truncated pedigree included training and validation animals and their relatives traced two generations back. The bar within each box represents 
the median of prediction accuracies
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distant ancestral generations in the training set. A larger 
population could allow the impact of these factors to be 
characterized and to better identify the contribution of 
each ancestral generation.

Size and composition of training set
Table  2 presents the prediction accuracies for eEW for 
eight scenarios that differed in the total number of train-
ing animals and the number of generations that con-
tributed to the training set. As expected, for the same 
number of training generations, prediction accuracies 
increased with the size of the training set [6, 7]. For 

example, when the number of training animals from the 
same generation increased from 125 (scenario 4) to 250 
(scenario 1), prediction accuracy of GEBV for the valida-
tion animals (G10) increased from 0.23 to 0.46.

Although the numbers of animals in the training set 
were the same between scenarios 2 and 7, prediction 
accuracy was greater in scenario 2 than in scenario 7 
(Table 2). This difference was more obvious when the size 
of the training set became larger (comparing scenarios 3 
and 9). In scenario 3, all 750 training animals were from 
the three preceding generations, whereas in scenario 9, 
50 % of the animals were from more distant generations. 
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Fig. 2  Prediction accuracies of EBV across different validation sets using pedigree BLUP with ancestors traced back two generations (PBLUP_T) 
and genomic prediction over different numbers of training generations for each trait. The bar within each box represents the median of prediction 
accuracies
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Individuals from closely-related generations can better 
predict GEBV of validation animals compared to animals 
from more distant generations [16, 28]. Similar phenom-
ena were observed for the 15 other traits (See Additional 
file 1: Table S3), except for ePD and lYW, for which pre-
diction accuracy actually decreased as more animals 
from ancestral generations were added in the training set.

The number of genotyped animals per generation is 
limited in livestock species. Although increasing the 
number of training generations is not equivalent to 
increasing the size of the training set, including data 
from successive ancestral generations is an alternative 
approach to enlarge the size of the training population. 
However, the impact of including such ancestral genera-
tions in the training set on genomic prediction accuracies 
can differ between traits.

Relationship between optimal number of training 
generations and heritability
Table  3 presents estimates of pedigree-based heritabil-
ity and marker-based heritability for each trait. Marker-
based heritabilities were smaller than pedigree-based 
heritabilities because markers did not capture all genetic 
variation.

Figure 3 shows the number of training generations that 
generated the highest accuracy of GEBV for each trait 
using BayesB. Traits were sorted by pedigree-based herit-
ability estimates, from low (lPS) to high (eCO). The blue 
line in Fig. 3 shows the linear relationship between opti-
mal training generation and pedigree-based heritabil-
ity. The correlation between optimal number of training 
generations and pedigree-based heritability was equal to 
0.65, whereas the correlation between optimal number 
of training generations and marker-based heritability 
was equal to 0.55. Additional file  2: Figure S1 shows in 
detail the regression of prediction accuracy on the num-
ber of training generations for each trait. In general, and 

somewhat surprisingly, the highly heritable traits had a 
larger optimal number of training generations than the 
lowly heritable traits.

Estimates of optimal number of training generations 
may vary according to assumptions of the statistical 
model and/or the density and location of SNPs. For some 
traits, if assumptions of the statistical model are not valid, 
the model may not capture the effects of QTL, even if the 
size of the training population increases. In a simulation 
study, Sun [29] showed that modeling co-segregation can 
improve prediction accuracy when the LD between SNPs 
and QTL is low in a training population that consisted 
of multiple families and generations. In the case where 
a causal variant or QTL is included in the SNP panel, 
adding data from more distant generations in the train-
ing set is expected to increase the accuracy of genomic 
prediction until the prediction accuracy reaches a pla-
teau. When QTL mutations are not on the SNP panel, 
a high-density panel is likely to achieve higher LD since 
some SNPs will be closer to the QTL than would be the 
case with a low-density panel. Thus, when the dataset is 
sufficiently large and genotyped with high-density pan-
els, the accuracy of genomic prediction is not expected to 
decrease when distant generations are used for the train-
ing set.

Based on this study, for highly heritable traits, predic-
tion accuracy of GEBV was highest when the number of 
generations in the training set was larger than 4. In con-
trast, for lowly heritable traits, it was better to include 
in the training dataset only the individuals that were the 
most closely-related to the validation individuals. We 
suggest two strategies that may be useful for populations 
with multi-trait selection programs: (1) changing the 
number of training generations for each trait analyzed; 
or (2) obtaining a weighted optimal number of training 
generations based on results for all traits in the breeding 
objective. The weight for each trait could be determined 

Table 3  Estimates of  pedigree-based and  marker-based heritabilities (±SE) for  the 16 traitsa from  univariate animal 
models

a  Early (e) and late (l) CO (egg color, index units), EW (average weight of 3–5 eggs, g), C3 (color of first 3 eggs, index units), E3 (weight of first 3 eggs, g), AH (albumen 
height, mm), PD (egg production rate), PS (puncture score, g/s), and YW (yolk weight, g); eSM (age at sexual maturity, d); lBW (body weight, kg)
b  SE standard error

Early traits eCO eEW eC3 eE3 eSM eAH eYW ePD ePS

Pedigree-hb 0.71 ± 0.017 0.69 ± 0.017 0.65 ± 0.018 0.61 ± 0.018 0.54 ± 0.018 0.51 ± 0.018 0.46 ± 0.019 0.34 ± 0.019 0.21 ± 0.015

Marker-hb 0.55 ± 0.013 0.53 ± 0.013 0.47 ± 0.015 0.44 ± 0.014 0.31 ± 0.015 0.36 ± 0.015 0.30 ± 0.017 0.16 ± 0.017 0.15 ± 0.018

Late traits lCO lEW lBW lAH lYW lPD lPS

Pedigree-hb 0.68 ± 0.025 0.61 ± 0.026 0.56 ± 0.026 0.48 ± 0.027 0.46 ± 0.028 0.25 ± 0.025 0.20 ± 0.028

Marker-hb 0.58 ± 0.019 0.50 ± 0.018 0.48 ± 0.020 0.34 ± 0.021 0.37 ± 0.020 0.19 ± 0.021 0.10 ± 0.024
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by its relative economic importance in the breeding 
program.

Conclusions
The effect of increasing the number of training genera-
tions on accuracy of genomic prediction differs between 
traits. The optimal number of training generations in 

genomic prediction is influenced by the heritability of a 
trait. For the data used in this study, traits with a lower 
heritability had a smaller optimal number of training 
generations than traits with a higher heritability. In prac-
tice, the optimal number of training generations to be 
used in a multi-trait selection population could be based 
on the importance of the traits in the breeding program.
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Fig. 3  Optimal number of training generations for genomic prediction for each trait. Traits were sorted by pedigree-based heritability estimates. 
The blue line is the regression of the optimal number of training generations on heritability
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