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Abstract 

Background: Genomic selection is still to be evaluated and optimized in many species. Mathematical modeling of 
selection schemes prior to their implementation is a classical and useful tool for that purpose. These models include 
formalization of a number of entities including the precision of the estimated breeding value. To model genomic 
selection schemes, equations that predict this reliability as a function of factors such as the size of the reference 
population, its diversity, its genetic distance from the group of selection candidates genotyped, number of markers 
and strength of linkage disequilibrium are needed. The present paper aims at exploring new approximations of this 
reliability.

Results: Two alternative approximations are proposed for the estimation of the reliability of genomic estimated 
breeding values (GEBV) in the case of non‑independence between candidate and reference populations. Both 
were derived from the Taylor series heuristic approach suggested by Goddard in 2009. A numerical exploration of 
their properties showed that the series were not equivalent in terms of convergence to the exact reliability, that the 
approximations may overestimate the precision of GEBV and that they converged towards their theoretical expecta‑
tions. Formulae derived for these approximations were simple to handle in the case of independent markers. A few 
parameters that describe the markers’ genotypic variability (allele frequencies, linkage disequilibrium) can be esti‑
mated from genomic data corresponding to the population of interest or after making assumptions about their dis‑
tribution. When markers are not in linkage equilibrium, replacing the real number of markers and QTL by the “effective 
number of independent loci”, as proposed earlier is a practical solution. In this paper, we considered an alternative, i.e. 
an “equivalent number of independent loci” which would give a GEBV reliability for unrelated individuals by consider‑
ing a sub‑set of independent markers that is identical to the reliability obtained by considering the full set of markers.

Conclusions: This paper is a further step towards the development of deterministic models that describe breeding 
plans based on the use of genomic information. Such deterministic models carry low computational burden, which 
allows design optimization through intensive numerical exploration.

© 2016 Elsen. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The effectiveness of genomic selection comes from the 
possibility of predicting breeding values on un-pheno-
typed and young animals [1]. Genomic selection prom-
ised and proved to be extremely efficient and beneficial 

for dairy cattle (e.g. [2–7]), but debate continues for other 
species and production sectors (e.g. [8–12]). A key cri-
terion to decide whether or not selection schemes 
(also referred to here as breeding plans) should include 
genomic information is the reliability of the genomic pre-
dictor. It was clearly shown that this reliability depends 
on the structure of the reference population and on the 
characteristics of the marker set used. The size of this 
reference population, its diversity, the genetic distance 
between the reference and the group of selection candi-
dates genotyped, the number of markers, and the degree 
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or strength of the linkage disequilibrium are the main 
factors that influence this reliability [13–23].

An extensive literature exists on the mathematical 
modeling of selection schemes prior to their implemen-
tation, in order, for instance, to optimize their design, 
or to evaluate the usefulness of new technologies such 
as embryo transfer, sperm selection, DNA markers and 
others (e.g. [24] for a review). These models account for 
factors such as selection intensities and maintenance or 
loss of genetic variability. Among these parameters, the 
precision of breeding value estimates is central. To model 
genomic selection schemes, equations that predict this 
reliability as a function of the factors cited above are 
needed (e.g. [6, 25, 26]).

The quantitative influence of these factors (size of the 
reference population, its diversity, etc.) was assessed by 
simulation studies [18–21, 27, 28]. An equation that pre-
dicts the reliability of genomic evaluation in the very sim-
ple situation of independent quantitative trait loci (QTL), 
that are perfectly marked by single nucleotide polymor-
phisms (SNPs) and populations (reference and candidates) 
of unrelated individuals was derived [13]. This approach 
was extended to the case when only a part of the genetic 
variability is imperfectly marked by SNPs [16, 19], and the 
situation of non-independence between reference and can-
didate populations was explored [17]. It was demonstrated 
that genomic information captures historical linkage dise-
quilibrium, short-term linkage between QTL and markers 
and additive relationships between reference and candi-
date individuals, the equation of the reliability accounting 
for these three phenomena being derived in a very simple 
case of one QTL marked by a single SNP [22].

A Taylor expansion of a matrix inverse involved in the 
reliability formula was suggested [18], which led to the 
algebraic development of an approximation. This approx-
imation seems to work well in the simple situation but 
lacks generality. In this paper, an alternative approxima-
tion is proposed, opening a way to include non-inde-
pendence between reference and candidate populations, 
and between markers.

After a formalization of the genomic selection context, 
the principles that underlie these approximations are 
presented and their properties are compared by using a 
simple example. Then, the new approximation is derived 
when reference and candidate animals are related. This is 
illustrated by some numerical examples. Finally, the exten-
sion to the linkage disequilibrium situation is described.

Methods
General framework
Although the prediction equations derived below were 
based on a number of simplifying assumptions, it is 
important to first draw a complete description of the 

biological framework, as a basis to subsequently simplify 
the discussion.

The SNP effects are estimated in a reference popula-
tion, Pr, comprising nr individuals. The genomic esti-
mated breeding values (GEBV) are calculated for a 
population of candidates for selection and used in breed-
ing, Pc, comprising nc individuals.

Let P = (Pr ,Pc) the population structure (including 
pedigree relationships between individuals and marker 
allele frequencies, but not including genotypes and 
phenotypes).

Individuals are characterized by their genotypes at nM 
markers (observed) and at nQ QTL (unknown). Alleles 
will be noted Am and Bm for the marker m and Aq and Bq 
for the QTL q. Let atim ∊ {0, 1, 2} and atiq ∊ {0, 1, 2} be the 
numbers of Bm (and respectively, Bq) alleles that an indi-
vidual i from population Pt (Pr or Pc) carries at marker m 
(respectively, QTL q). Let ptm and ptq be the frequencies 
of alleles Bm and Bq in Pt.

Genotypic values will be assigned to the different 
markers and QTL genotypes. Following [18], genotypes 
will be coded as xtim = atim − 2ptm and wtiq = atiq − 2ptq. 
Different codifications can be proposed [15]. In particular, 
as described for instance in [29], genotypic values 
may be standardized, i.e. xtim  =  (atim  −  2ptm)/σtm and 
wtiq = (atiq −2ptq)/σtq, with variances σtm

2  = 2ptm(1 − ptm) and 
σtq

2 = 2ptq(1 − ptq). Most of the following developments are 
given with the first codification here, and the results with 
the second codification are described in a specific section.

These genotypic values are assembled in 
matrices X (dim  (X)  =  (nr  +  nc)  ×  nM) and W 
(dim (W) = (nr + nc) × nQ). Sub-matrices corresponding 
to sub-populations will be noted in the following way: 
X′ = (Xr

′ , Xc
′ ) and W′ = (Wr

′ , Wc
′ ).

The genetic model assumes additivity of QTL effects. 
The additive genetic value of an individual is described as 
gti =

∑nQ
q=1 wtiqαq and, in general, g = Wα. The pheno-

typic values when observed are y = g + ɛ.
A statistical model describes the performances in the 

reference population as random variables for which the 
expectations are linear combinations of SNP effects: 
yri =

∑nS
m=1 Xrimβm + eri and, in general, y = Xβ + e.

In these models, the SNP (or QTL) effects may be con-
sidered as fixed, or random. Since the number of SNPs 
is much bigger than the number of individuals (nM ≫ nr) 
the second solution is generally chosen in the statistical 
model (but not always see [1, 13]).

In the random model, a distribution L
(

θβ,Vβ

)

 (respec-
tively L(θα,Vα)) of the SNP (respectively QTL) effects 
is assumed, with θβ (respectively, θα) being the vector of 
expectations and Vβ (respectively, Vα) being the matrix 
of variances. For a full description of the variability, the 
Vβ and Vα matrices are each subdivided into four blocks 
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corresponding to the reference and candidate populations 
and their covariances. Covariances between the α and β 
vectors have also to be considered. Most generally, the SNP 
(QTL) effects are supposed i.i.d. giving Vβ = Iσβ

2 (Vα = Iσα
2). 

The interpretation of these QTL effects is nicely debated in 
Gianola et al. [30]. In the frequentist view, we simply have 
to imagine that QTL effects are randomly sampled from 
a distribution with a σα

2 variance. In the Bayesian context, 
the prior variability of the SNP effects was most generally 
described as heteroskedastic or even coming from mixtures 
of SNPs with or without an effect on the trait.

The expectations θβ(θα) are generally assumed equal to 
zero, but when information about population history is 
available (in particular, when we know it is a mixed popu-
lation), non-zero values should be considered.

The vector q = Xβ is a quantity similar but not equal to 
the genetic value g. Its element qti is the molecular score 
of individual i in population t. This vector may be seg-
mented in two parts: q′ =

(

q′
r,q

′
c

)

.
Since the variances may be defined within a 

population, we have v(qr|X) = XrVβrX
′
r, and 

v(qc|X) =  XcVβcXc
′ . The residual variance is v(e) =  Iσe

2. 
Assuming that the distribution of marker effects is cen-
tered (θβ = 0) and i.i.d. (Vβr = Iσ 2

βr andVβc = Iσ 2
βc ), 

and extending Gianola et  al. [30], we have 
v(qri) = EX[v(qri|X)] = σ 2

βr

∑

m 2pmr(1− pmr) = σ 2
βr

∑

m

σ 2
mr = σ 2

βrτr in the reference population, and v(qci) = σ2
βcτc 

in the candidate population. Assuming that the distribu-
tion of the marker effects and genotypes are the same 
in Pr and Pc, i.e. prm = pcm = pm, prq = pcq = pq, thus 
τr = τC = τ and σβr

2 = σβc
2 = σβ

2, we define σq
2 = τσβ

2. Thus, 
v(q|X) = 1

τ
XX′σ 2

q  . These equations hold even if the 
markers are in linkage disequilibrium (LD) as shown in 
Eq. A2 from Gianola et al. [30].

We note σ2 as the total phenotypic variance, i.e. 
σ2 =  σq

2 +  σe
2, and ν2 as the proportion of this variance 

explained by the molecular score 
(

ν2 = σ 2
q

σ 2

)

. The ratio σ
2
q

σ 2
e
 

will be noted γ.
The SNP effects β may be estimated in different ways. 

The genomic best linear unbiased prediction (BLUP) will 
only be considered here, with β̂ = cov

(

β, y
)

var
(

y
)−1

y . 
Classically, this equation becomes β̂ = σ 2

βX
′
r

[

σ 2
β

(

XrX
′
r + I�β

)

]−1

y =
(

X′
rXr + I�β

)−1
X′
ry with λβ  =   

σe
2/σβ

2. The linear combination q̂c = Xc β̂ is the GBLUP 
vector for candidates in Pc. It must be emphasized that 
these estimations and predictions are conditional on the 
genotypic structures defined by X (Xr and Xc).

Given X, the reliability of the GBLUP is 
r2
(

gci, q̂ci|X
)

= cov2(gci ,q̂ci|X)
v(gci|X)v(q̂ci|X).

In [16], the reliability is described (Eq.  6 in [16]) as 
r
(

gci, q̂ci
)

= r
(

gci, qci
)

× r
(

qci, q̂ci
)

, by ignoring the 
conditioning on X. In Goddard et  al. [18], the reli-
ability is described as r2gci ,q̂ci =

v(q̂ci)
v(gci)

= v(qci)

v(gci)
v(q̂ci)
v(qci)

 . In 
this formulation, v(qci)

v(gci)
 is the proportion of the genetic 

variance explained by the markers and v(q̂ci)v(qci)
 is the accu-

racy of estimated marker effects. This is similar to 
the qr

Q̂
 reported by Dekkers et  al. [25]. All these reli-

ability formulae are approximations since cov2
(

gci, q̂ci
)

= 
 cov2

(

∑

wciqαq ,
∑

xcisβ̂s

)

�= v
(

q̂ci
)

= v
(

∑

xcisβ̂s

)

 , in 
general.

Situation analyzed in this paper
In the following, ignoring the difficulty that was 
mentioned above, we will assume r2

(

qci, q̂ci|X
)

=

cov2(qci ,q̂ci|X)
v(qci|X)v(q̂ci|X)

=
v(q̂ci|X)
v(qci|X)

. We are interested in a single can-

didate in Pc with a xc vector of marker genotypes.
Formulae were simplified in two ways. (1) the i index 

of the candidate was omitted in the following develop-
ments: the genetic value of the candidate is noted qc, 

estimated by q̂c = cov
(

qc, y
)

v
(

y
)−1

y, and its precision 

is r2
(

qc, q̂c|X
)

= v(q̂c|X)
v(qc|X), with v(qc|X) = σ 2

β xcx
′
c and 

v
(

q̂c|X
)

= σ 2
β xcX

′
r

(

XrX
′
r + I�β

)−1
Xrx

′
c (where xc is a 

row vector); (2) the r indices of reference individuals were 
most often omitted, which resulted in yi for their pheno-
types and qi for their molecular scores.

In fact, our objective was to estimate the expectation of 
this precision across the variation domain of Xr and xc given 
the pedigree structure (Pr ,Pc) : EX

[

r2
(

qc, q̂c|X
)

|P
]

.  
It will be noted E

[

r2
qc,q̂c

]

.
The following approximation was made: 

E
[

r2
qc,q̂c

]

= EX[v(q̂c|X)]
EX[v(qc|X)] =

E[v(q̂c)]
E[v(qc)]

.
Let A be the pedigree relationship matrix between 

individuals in P. Its blocks are A =
(

acc Acr

Arc Arr

)

 . 

Let G∗ = XX′ =
(

xcx
′ xcX

′
r

Xrx
′
c XrX

′
r

)

, which results in 

V = 1
τ
G∗σ 2

q + Iσ 2
e . It must be noted that the σe

2 term in 
the diagonal of the V submatrix corresponding to the 
candidate population is artificial since candidates are not 
phenotyped.

We have E[G*]  =  Aτ. The limits of this equal-
ity will be discussed below. As indicated above, the 
denominator of the expected reliability EX[v(qc|X)],  
is τσβ

2  =  σq
2. Approximating E

[

v
(

q̂c
)]

 by E[cov(qc, 
y)]E[v(y)]−1E[cov(y, qc)] is useless because it makes 
an oversimplification of the relationships between the 
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reference and the candidate population: it consid-
ers separately the marginal distributions of xcXr

′ and 
(XrXr

′  +  Iλβ)−1, while these random matrices are cor-
related. Estimating directly E[cov(qc, y)v(y)−1cov(y, 
qc)] seems impossible in the general case. The  
approach of Goddard et al. [18] avoids this difficulty, i.e. 
the variance v

(

q̂c|X
)

= σ 2
β xcx

′
c + σ 2

e − 1

{V−1}cc , and V−1 
is approximated by a second degree Taylor expansion 
(V−1 ∼ �(X)), giving v

(

q̂c|X
)

∼ σ 2
β xcx

′
c + σ 2

e − 1
�cc(xc ,Xr)

.

Alternative approximations of the reliability
Extension of Goddard’s formula
In their “heuristic approximation for V*−1”, Goddard et al. 
[18] considered the situation where unrelated individuals 
are included in the reference and candidate populations, 
that is E[G*]  =  Iτ and G∗ = Iτ + E, with E, a “noise” 
matrix centered on the null matrix 0. A direct extension 
of their development would be the following. The matrix 
V = 1

τ
G∗σ 2

q + Iσ 2
e  can be written as: 

V = σe
2(I + Aγ)[I + Dγ],

with D = (I+ Aγ )−1
(

1
τ
G∗ − A

)

= T
(

1
τ
G∗ − A

)

,

and γ = σ 2
q

σ 2
e
. Thus, V−1 = 1

σ 2
e
[I+Dγ ]−1T. 

The inverse matrix [I + Dγ]−1 will be approximated 
using a Taylor series. It must be emphasized that the 
Taylor series I − Dγ + (Dγ)2 − (Dγ)3 + ··· converges 
towards [I + Dγ]−1 only if the highest Eigen value of 
Dγ is smaller than 1, i.e. if (Dγ )t → 0 when t → ∞.

The second order approximation of V−1 is 
equal to 1

σ 2
e

(

I−Dγ +D2γ 2
)

T. As E[D]  =  0 and  

E
[

D2
]

= T
(

1
τ 2
E
[

G∗TG∗]− ATA
)

, its expectation  

E[�] = 1
σ 2
e

(

I− E[D]γ + E
[

D2
]

γ 2
)

T  

i.e. E[�] = 1
σ 2
e

(

I− γ 2TATA + γ 2

τ 2
E
[

TG∗TG∗]
)

T.
Finally, the reliability of the candidate GBLUP is 

approximated by:

A difficulty with this approximation comes from the T 
term. As an example, consider a reference population com-
posed of nr half-sibs of the candidate, T = ξI+ψJ with 
ξ = 4

4+3γ . As Tt = ξtI+
[

ntrξ
t + · · ·

]

J, the J coefficient will 
tend to ∞ as soon as nrξ = 4nr

4+3γ > 1, a very realistic situa-
tion. Thus, the convergence of the Taylor series will be a bal-
ance between the increase of Tt and decrease of [Dγ ]t.

(1)

Ẽ

[

r2qc,q̂c

]

∼ 1

ν2
− 1

γTcc − γ 3{TATAT}cc + γ 3

τ 2

{

TE
[

G∗TG∗]
T
}

cc

.

Another approximation of the reliability
Principle 
Using the classical matrix inversion lemma, the vari-
ance v

(

q̂c|xc,Xr

)

= σ 2
β xcX

′
r

(

XrX
′
r + I�β

)−1
Xrx

′
c may  

also be defined as v
(

q̂c|xc,Xr

)

= σ 2
β xcx

′
c − σ 2

e xc
(

X′
rXr + I�β

)−1
x′c.

X′
rXr is a very large matrix (nM × nM) that describes 

the LD between markers: its elements tend to be smaller 
when they are more distant from the diagonal.

Elements of E[Xr
′ Xr] are the following: E

[

X′
rXr

]

ml
=

E

[

∑

i (aim − 2pm)(ail − 2pl)

]

= 2nr�ml , with �ml the 

LD between loci m and l.

E[Xr
′ Xr]mm  =  E[  ∑  i(aim  −  2pm)2]  =  nrσm

2 . Let 

C = I�β + nrdiag
[

σ 2
1 , . . . , σ

2
nM

]

, the Xr
′ Xr  +  Iλβ matrix 

may be written as:

X′
rXr + I�β =

[(

X′
rXr − nrdiag

[

σ 2
1 , . . . , σ

2
nM

])

C−1 + I
]

C ,

which results in:

Xr
′ Xr + Iλβ = [I + B]C.

The convergence of the Taylor series 
I − B + B2 − B3 + ··· to (I + B)−1 depends on the struc-
ture of the B matrix, which varies depending on the sample. 
However, we can examine the case of its expectation E[B].

E[B]mm =  0 and E[B]ml = 2nr�ml

�β+nrσ
2
l

. The ratio λβ is pro-

portional to the number of markers (�β = nM
σ̄ 2
mσ 2

e

σ 2
q

) and 

dominates the denominator when nM  ≫  nr. The (m, l) 

term in E[B]2, i.e. E[B]2ml =
∑

k
4n2r�mk�kl

(

�β+nrσ
2
k

)(

�β+nrσ
2
l

), is of 

order 1
nM

. Thus, we expect the Taylor series to converge to 

(I + E[B])−1.

First order approximation 
At the first order, v

(

q̂c|xc,Xr

)

∼ σ 2
β xcx

′
c − σ 2

e xc
C−1(I− B)x′c and the expectation of the reli-
ability of the candidate GBLUP is approximated by 
˜̃
E

[

r2
qc,q̂c

]

= 1− σ 2
e E[xcC

−1(I−B)x′c]
σ 2
β E[xcx

′
c]

. 

 Using xcC−1X′
r =

(

∑

m
xcmXr1m

�β+nrσ 2
m

· · ·
∑

m
xcmXrnrm

�β+nrσ 2
m

)

, the 

last term is: 
∑

i

(

∑

m
xcmXrim

�β+nrσ 2
m

)2
. Finally, the expectation is: 

xcC
−1(I− B)x′c =

∑

m

x2cm
�β + nrσ 2

m

+ nr
∑

m

σ 2
mx

2
cm

(

�β + nrσ 2
m

)2

− xcC
−1

(

X′
rXr

)

C−1x′c.
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(2)

˜̃
E
[

r2qc,q̂c

]

= 1− �β

τ

{

∑

m

[

σ 2
m

�β + nrσ 2
m

+ nrσ
4
m

(

�β + nrσ 2
m

)2

]

−
∑

i

∑

m

[

E
[

x2cmX
2
rim

]

(

�β + nrσ 2
m

)2
+

∑

l �=m

E[xcmXrimxclXril]
(

�β + nrσ 2
m

)(

�β + nrσ
2
l

)

]}

.

corresponding exponents are summed (e.g. αiiil
1111 = αil

31).
The resulting Xim moments are in Table 2.

Second approximation

The expectations E[x2cmx2rim] and E
[

x2cmxrimxclxril
]

are also obtained from the coefficients in Table  1, i.e.: 
E
[

x2cmx
2
rim

]

= 1
2σ

2
mα

22
ci − 1

4σ
4
mγ

22
ci  and, when markers 

are independent, E[xcmXrimxclXril]  =  E[xcmXrim].E[xclXril]   

=  4a2
ciσ2

mσl
2. Let ρm = nrσ

2
m

�β+nrσ 2
m

. After some algebra, it 
appears that: 

where ā2ci, ᾱ
22
ci  and γ̄ 22

ci  are the means of the correspond-
ing coefficients, considering all possible i reference 
individuals.

Parameter estimation
The parameters τ = ∑mσm

2 and τ2 = ∑mσm
4 that appear in 

the first approximation, and the parameters 
∑

m ρm, ∑mρm
2 

and 
∑

m
ρ2m
σ 2
m

 that appear in the second approximation, are 

(3)

˜̃
E
�

r2qc,q̂c

�

=1− �β

nrτ

��

�

m

ρm

�

+
�

�

m

ρ2
m

�

�

1+ 4ā2ci +
1

4
γ̄ 22
ci

�

−
�

�

m

ρm

�2
�

4ā2ci

�

−
�

�

m

ρ2
m

σ 2
m

�

�

1

2
ᾱ22
ci

�







Table 1 Coefficients describing the genotypes’ distributions moments when  using the relation 

E

[

X
di
im
X
dj
jm

· · ·X
dK
Km

]

= pm(1− pm)α
didj ···dK
ij···K

−
[

pm(1− pm)
]2
γ
didj ···dK
ij···K

 from Additional file 1

δs are the 15 classical identity states probabilities between two individuals [33–35]

Coefficients of expectations E
[

XiXjX
2
k

]

 and E[Xi Xj Xk Xl] involve IBD status between three or four different individuals and are explained in Additional file 1

E[Xim] α1
i = 0

γ 1
i = 0

E[Xim
2 ] α2

i = 2

γ 2
i = 0

E[Xim
4 ] α4

i = 2

γ 4
i = 0

E[XimXjm] α11
ij = 4δ1 + 2[δ2 + δ3 + δ4 + δ5 + δ9 + δ12]+ δ10 + δ11 + δ13 + δ14 = 4aij

γ 11
ij = 0

E[XimXjm
3 ] α13

ij = 16δ1 + 2(δ2 + δ3)+ 8(δ4 + δ5)+ 2(δ9 + δ12)+ δ10 + δ11 + δ13 + δ14

γ 13
ij = 24δ1 + 12(δ4 + δ5)

E[Xim
2 Xjm

2 ] α22
ij = 16δ1 + 4(δ2 + δ3 + δ4 + δ5)+ 2(δ9 + δ12)+ δ10 + δ11 + δ13 + δ14

γ 22
ij = 48δ1 + 8(δ2 + δ3 + δ4 + δ5)− 4δ15 − 16δ6 − 8(δ7 + δ8)

Results
Application in the case of independent markers
This situation either assumes low density marker infor-
mation, or corresponds to the idea of an effective num-
ber of loci that was developed by Goddard [16, 31]. In 
the first case, the proportion of the genetic variance 
explained by the markers v(qci)

v(gci)
 is small and this quan-

tity should be considered when estimating the genomic 
precision.

First approximation
Using the notation X′ = (xc

′ , Xr
′), the (i, j) element of G∗TG∗ is: 

{

XX′TXX′}
ij
=

∑

l

∑

k tkl
(
∑

m XimXkm

)(
∑

m XjmXlm

)

. 
Thus, elements of E[XX′TXX′] will involve expectations 
of fourth level moments of Xim within m joint distribu-

tions: E[E
[

X2
imXjmXkm

]

, E
[

X2
imX

2
jm

]

, E
[

X3
imXjm

]

XimXjmXk-

mXlm],  and E[Xim
4]. Defining and τ2 =

∑

m[2pm(1− pm)]2

aij the coancestry coefficient between individuals i and j, 

we found that [See Additional file 1]: 
{

E
[

XX
′
TXX

′]}
ij
=

∑

l

∑

k tkl

(

1
2
τα1111

ijkl − 1

4
τ2γ

1111
ijkl + 4aikajl

[

τ 2 − τ2
]

)

, 

where parameters αdidj ···dK
ij···K  and γ didj ···dK

ij···K  are functions of 
the probabilities of the identity states between gametes of 
ij · · ·K  individuals at marker m (Table 1). In the summa-
tions above, when individuals are repeated (e.g. i = j), the 
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unknown. Their expectations can be derived by making 
assumptions about the distribution of the marker allele 
frequencies. They were derived assuming either a uniform 
distribution of allele frequencies or the U-shaped distri-
bution of allelic frequencies proposed by Goddard [16]: 
f (p) = k

/

2p(1− p) with the constant k estimated as 1/
log2Ne, Ne being the effective size of the reference popu-
lation. The expectations of the parameters are in Table 3. 
The corresponding algebra is detailed in Additional file 2.

The parameters τ and τ2 are linked to the number Me 
of independent segments. This quantity Me was defined 
by Goddard [16] as the number of independent chro-
mosomal segments which would give the same vari-
ance of genomic covariances cij between individuals i 
and j as that observed, i.e. when LD exists. Conditional 
on the genotypic observation, the genomic covariance 
between two individuals is cov(qi,qj|X) =  σβ

2∑qXiqXjq = 
cij. Thus, vX(cij) =  σβ

4v[∑qXiqXjq], or vX(cij) =  σβ
4(∑qv(Xiq

Xjq)  +  ∑q∑q′≠qcov(XiqXjq,Xiq′Xjq′)). When the markers 
are in linkage equilibrium, the covariance term is null, 
and vX

(

cij
)

= σ 4
β

[

1
2τα

22
ij − 1

4 τ2γ
22
ij − 1

4 a
2
ijτ2

]

. If individ-
uals are unrelated, αij

22 =  0, γic
22 = −4 and aij =  0. Thus, 

vX(cij)  =  σβ
4τ2. As σq

2  =  σβ
2τ, vX

(

cij
)

= σ 4
q
τ2
τ 2

. From the 
appendix in the paper of Goddard [16], this variance is 
vX(cij) = σq

4/Me. Thus: 

 It must be emphasized that Me, which depends on the 
variability of allele frequencies, is not the number of 
markers nM.

The case of unrelated individuals
The first approximation gives results similar to God-
dard et  al. [18] when individuals are not related. In this 
case, A  =  I then T = 1

1+γ
I = σ 2

e

σ 2
q+σ 2

e
I = σ 2

e

σ 2 I. The ratio 
γ

1+γ
= σ 2

q

σ 2 = ν2 is the proportion of the phenotypic vari-
ance explained by the molecular score. 

T being diagonal, this equation simplifies to 
{

E
[

G
∗
TG

∗]}
cc

=
∑

k tkk

(

1

2
τα22

ck − 1
4
τ2γ

22
ck + 4a2ck

[

τ 2 − τ2
]

)

, 
with tkk = 1

1+γ
, α22

ck = 0 and γ 22
ck = −4 if c �= k,  

α22
cc = α4

c = 2 and γ 4
c = 0, acc = akk = 1

2 and ack  =  0. 
Hence 

{

E
[

G∗TG∗]}
cc

= 1
1+γ

{

τ + τ 2 − τ2 + nrτ2
}

 , and  

E[�cc] = 1
σ 2
e

{

1
1+γ

+ γ 2

(1+γ )3

(

1
τ
+ (nr − 1) τ2

τ 2

)}

 . 
 
 
 

E
[

v
(

q̂c
)]

= E
[

V
∗
cc

]

− 1

E[�cc]

= σ 2 − σ 2 1

1+ ν4
(

1
τ
+ nr−1

Me

)

= σ 2
ν4
(

1

τ
+ nr−1

Me

)

1+ ν4
(

1

τ
+ nr−1

Me

) .

  
 
 
 
If we neglect 1

τ
− 1

Me
 and use ν2 = σ 2

q

σ 2, we get 

E
[

v
(

q̂c
)]

= σ 2
q

ν2 nr
Me

1+ν4 nr
Me

, which is similar but not identical 

to the equation in Goddard et al. [18] (σ 2
q

ν2 nr
Me

1+ν2 nr
Me

). Finally, 
the precision is estimated as: 

In this situation of unrelatedness between the 
candidate and the reference population, the second 

approximation simplifies to ˜̃
E
[

r2
qc, q̂c

]

= 1− �β
E[

∑

m ρm]
nrτ

 . 

(4)Me = τ 2/τ2.

E[�cc] =
1

σ 2
e

{

Tcc − γ 2{TATAT}cc +
γ 2

τ 2

{

TE
[

G
∗
TG

∗]
T
}

cc

}

= 1

σ 2
e

{

1

1+ γ
− γ 2

(1+ γ )3
+ γ 2

τ 2(1+ γ )2
E
[

G
∗
TG

∗]
cc

}

{

E
[

G
∗
TG

∗]}
cc

=
∑

l

∑

k
tkl

(

1

2
τα1111

cckl − 1

4
τ2γ

1111
cckl + 4ackacl

[

τ 2 − τ2

]

)

(5)Ẽ
[

r2qc,q̂c

]

=
ν2 nr

Me

1+ ν4 nr
Me

.

Table 2 Moments of  genotypes’ distributions depending 
on genotype codification

Expectations Genotype codification

xtim = atim − 2ptm xtim = (atim − 2ptm)/σtm

E[Xim] 0 0

E[Xim
2 ] σm

2 1

E[Xim
4 ] σm

2 1/σm
2

E[XimXjm] 2aijσm
2 2aij

E[XimXjm
3 ] 1

2
α13
ij σ

2
m − 1

4
γ 13
ij σ 4

m
1
2
α13
ij /σ

2
m − 1

4
γ 13
ij

E[Xim
2 Xjm

2 ] 1
2
α22
ij σ

2
m − 1

4
γ 22
ij σ 4

m
1
2
α22
ij /σ

2
m − 1

4
γ 22
ij

Table 3 Expectation of elements involved in precision for-
mulae when  a uniform (f (p) = 1) or a U shaped distribu-
tion of allelic frequencies is assumed 

(

f (p) = k
/

2p(1− p)
)

A large effective size Ne of the population was assumed to make 1/Ne negligible 
θ = log

(∣

∣

∣

1+ω
1−ω

∣

∣

∣

)

,ω =
√
1+ 4h h = �β

/

2nr , �β = σ 2
e

/

σ 2
β

Element Expectation

Uniform U shaped

E[σm
2 ] 1/3 k

E[σm
4 ] 2/15 k/3

E[ρm] 1− 2 h
ω
θ k

ω
θ

E[ρm
2 ] (

4θ
ω

+ 2
h

)(

1+h
1+4h

)2

− 4θh
ω

k
ω2

[

θ

(

ω − 2h
ω

)

− 1

]

E[ρm
2 /σm

2 ] 1

ω2

[

θ

(

ω − 2h
ω

)

− 1

]

k
2ω3

{

2θ + ω
h

}
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From Table  3, we have E
[
∑

m ρm
]

= nM
k
ω
θ with 

θ = log
(∣

∣

∣

1+ω
1−ω

∣

∣

∣

)

,ω =
√
1+ 4h, h = �β

/

2nr and 

k = 1/ log 2Ne. As λβ = τ/γ, we found: 

Non‑independence between reference and candidate 
population, a simple example
We consider the situation of a candidate that is the son 
of one of the nr individuals in Pr (say the first in the 
list) while still assuming that reference individuals are 
unrelated. In this situation, the pedigree relationship 

matrix is 





1 0.5
0.5 1

0

0 Inr−1



, which results in a T matrix  





a b
b a

0

0 1
1+γ

Inr−1



 with γ = σ 2
q

σ 2
e
, a = 1+γ

(1+γ )2−1
/

4γ 2 and 

b = − γ / 2
(1+γ )2−1/ 4γ

. Applications of formulae (2) and 

(3) are described in Additional file  3. The expected 
approximate precision with the first approach is:

where c1 = (a+ b)3 +
(

a2 + b2
)

1
2a, c2 = 1

4 a
(

b2 − a2
)

 
and c3 = a2 + b2 + 1

2ab. And with the second approach:

Alternative genotypes codification
In all the previous developments, genotypes were 
coded xtim  =  atim  −  2ptm and wtiq  =  atiq  −  2ptq. 
Alternatively, we could define xtim  =  (atim  −  2ptm)/σtm 
and wtiq  =  (atiq  −  2ptq)/σtq. The relation between 
genetic and marker variances becomes σq

2  =  nMσβ
2 and 

the relation between pedigree and genomic matrices 
becomes E[G*] =  AnM. Thus, formulae (1) and (2) are 
still valid when replacing τ by nM. The E

[

X
di
imX

dj
jm · · ·XdK

Km

]

 
elements derived in Additional file 1, need to be divided 
by σ di+dj+···+dK

m . Table  2 gives the expectations with 
this alternative codification of genotypes. The quantity 
{E[XX′TXX′]}ij has to be changed, using ζ = 1

nM

∑

m
1
σ 2
m

. 

We have: 
∑

m E
[

XimXkmXjmXlm

]

= nM
2 ζα1111

ijkl − nM
4 γ 1111

ijkl  , 

(6)
˜̃
E
[

r2qc,q̂c

]

= 1− nMkθ

γnrω
.

(7)

Ẽ
[

r2qc,q̂c

]

∼ 1

ν2
− 1

γ a+ γ 3 τ−τ2
τ 2

c1+ γ 3 τ2
τ 2

[

c2+ nr−1
1+γ

c3
] ,

(8)

˜̃
E
[

r2qc,q̂c

]

= 1− nMkθ

γnrω

− nMk

4γn2rω
2

(

5θω − (10h+ 2)θ

ω
− 5− nMkθ2 − 1

h

)

.

∑mE[XimXkm] =  2nMaik, and ∑m(E[XimXkm]E[XjmXlm]) =   
4nMaikajl. Thus: 

When applied to the case of unrelated individuals and no 
LD, i.e. when tkk = 1

1+γ
, α22

ck = 0 and γ 22
ck = −4 if c �= k, 

α22
cc = α4

c = 2 and γ 4
c = 0, acc = akk = 1

2 and ack = 0, we 
have:

which gives:

 i.e. E[�cc] = 1
σ 2

{

1+ ν4
(

ζ+nR−1
nM

)}

 and Ẽ

[

r2
qc,q̂c

]

=

ν2
ζ+nR−1

nM

1+ν4
ζ+nR−1

nM

.

Based on Additional file  2, the expectation of ζ 
parameter is k

4

[

2 log (Ne − 1)+ 2Ne(Ne−2)
Ne−1

]

 for a 

U-shaped distribution of alleles frequencies and 

log (Ne − 1) for a uniform distribution.

The case of markers in linkage disequilibrium
So far, following Goddard [16], we considered the situa-
tion of nM independent segments that each carries a sin-
gle QTL in LD with a single marker. More typically, the 
genomic information consists of a large number of non-
independent markers. This non-independence comes 
from long-term effects due to bottlenecks, mutations, 
migrations, etc. and short-term effects due to family 
structure.

Effective and equivalent numbers of independent loci
We based our developments on the very fruitful con-
cept of the effective number of loci that Goddard defined 
as “the number of independent loci that gives the same 
variance of realized relationships as that obtained in 
the more realistic situation” (Goddard [16] appen-
dix). Since our objective was to predict the reliability of 
GEBV, we now suggest the alternative definition of an 
“equivalent number of independent loci” which would 
give the reliability of GEBV for unrelated individuals 

{

E
[

XX
′
TXX

′]}
ij

=
∑

l

∑

k
tkl

(nM

2
ζα1111

ijkl − nM

4
γ 1111
ijkl + 4nM(nM − 1)aikajl

)

.

E[�cc] =
1

σ 2
e

{

1

1+ γ
− γ 2

(1+ γ )3
+ γ 2

n2M(1+ γ )2
.

∑

k

1

1+ γ

(nM

2
ζα1111

cckk − nM

4
γ 1111
cckk + 4nM(nM − 1)ackack

)

}

,

E[�cc] =
1

σ 2
e (1+ γ )

{

1− γ 2

(1+ γ )2

(

1− ζ + nR + nM − 1

nM

)}
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when considering a sub-set of independent markers 
that would be identical to the reliability obtained when 
considering the full set of markers. From the derivation 
of the reliability given previously, defining xc

i and Xi
r as 

the genotype matrices of the independent loci, we need 
Exc ,Xr

[

v
(

q̂c|xc,Xr

)]

= Exic,Xi
r

[

v
(

q̂c|xic,Xi
r

)]

. With a few 
simplifying assumptions (identical distribution of geno-
types in the reference and candidate populations and 
equal genotypic variance at all loci) a simple formula can 
be derived [see Additional file 4]: 

where tr[M] is the trace of matrix M.
Once marker allele frequencies and between-marker 

LD are estimated in a population of interest, the equiva-
lent number of independent loci which can be estimated 
from formula (9) and this parameter can be used in mod-
els that predict the genetic gain expected from a genomic 
selection scheme applied to this population.

In the more general situation, prior to the obser-
vation of the Xr matrix, a simple approximation for 
nMi is obtained assuming equal variances σm

2  =  s2, and 
using the relation between expected LD and effec-
tive population size Ne as derived by Sved [32]: 
E[2�ml] = σmσl

/

√

1+ 4Nedlm with dlm the dis-
tance between ordered loci l and m, such that 
dlm =

∣

∣l −m
∣

∣L
/

nM with L the genome length in Mor-
gan. With those hypotheses, let U = tr[(γnRR + nMI)−1] 
with Rml =

√

nM
/(

nM + 4Ne

∣

∣l −m
∣

∣L
)

.
In this simplified situation, the equivalent number of 

loci is [See Additional file 4]: 

(9)

nMi = nM
1+ γ

γ

(

1− tr
[

(

E
[

X′
rXr

]

+ �βI
)−1

]

∑

m σ 2
m/nM

γ

)

,

(10)nMi = nM
nRγ (1− U)

nRγ − nM(1−U)
.

Towards an exact treatment of linkage disequilibrium
For a complete treatment of the LD situation, it is 
necessary to estimate the expectations of the product 
of four genetic values. For instance, with the second 
approximation [formula (2)], we need to compute 
E[xcmXrimxclXril]. Let Xim = gimf + gimd, where gimf 
and gimd are the “values” of the alleles transmitted 
to individual i by its father and its dam, with gimf 
and gimd = (0 or 1)− pm. They will be called allelic 
values in the following. Equivalent terms are defined 
for xcl,xcm and Xil. The random variable Mcls is the 
allele of individual c received from s at locus l

(

f or d
)

. 
Mcmt ,Milu andMimv are defined similarly. 

For the candidate c as for the reference individual i,  
the pair of genetic values may originate from the same 
parent (and coded on the same chromosome) or not, 
giving four types of 

(

gcls, gcmt , gilu,gimv

)

 vectors. In type 1 
(s = t and u = v), both alleles (belonging to loci m and l ) 
of each pair of loci (one for  c and one for i) are on the 
same chromosome (may be from the two fathers, the 
two dams, c’s father and i’s dam or i’s father and c’s dam). 
In type 2 (s = t and u �= v), both alleles (belonging to 
loci m and l) of the candidate  are on the same chromo-
some, while alleles of the reference individual i are not 
on the same chromosome.Type 3 (s �= t and u = v) is the 
reverse from type 2. In type 4 (s �= t and u �= v), alleles 
of loci m and l of both individuals  and i are on different 
chromosomes.

For each of these situations, the identity by descent 
(IBD) status between alleles at locus m on chromosomes 
ct and iv, and at locus l on chromosomes cs and iu are 
considered. There are four, as follows:

(11)

E[xclxcmXilXim]

=
∑

s∈{f ,d}

∑

t∈{f ,d}

∑

u∈{f ,d}

∑

v∈{f ,d}
E[gclsgcmtgilugimv].
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Thus, 16 terms involved in E[xclxcmXilXim] are given by:

As described in Additional file  5, only seven 
E[gclsgcmtgilugimv|Sk ] are non-null (Table  4). Principles 
on which the probabilities φk

stuv are estimated and basic 
examples are described in Additional file 5.

As an illustration, we consider again the situation of a 
candidate (c), that is the son of one of the nr individuals 
in Pr and assume that c’sdam is unrelated to the sire. In 
formula (2), the summation over the reference individu-
als i comprises a single term for the sire of the candidate 
and nr − 1 terms for the individual that are unrelated to 
the c members of this reference population.

Based on Additional files 1 and 5, expectations involved 
in the precision formulae (2) are:

E[xcm
2  Xrim

2   ] = pm(1 − pm), and
 

 
E[xclxcmXilXim]

= (1− pm)(1− pl)pmpl +�lm(1− 2pl)(1− 2pm)

+ 2�2
lm

[

rml

(

p3m + (1− pm)
3

pm(1− pm)
+

p3l + (1− pl)
3

pl(1− pl)

)

+(1− rml)(1− 2pm)(1− 2pl)],

  
 
 
 
when i is the sire of c; and E[xcm

2 Xrim
2 ] = 4[pm(1 − pm)]2 

and E[xclxcmXilXim] = 4�2
lm(1− 2pm)(1− 2pl), when i 

and c are unrelated.

Numerical evaluation
Simulation of allele frequencies
In the following numerical evaluation of the formulae 
derived above, allele frequencies were simulated 

(12)

following an inverse transform sampling (e.g. [32]): 
nM allele frequency cumulative distribution function 
values um were simulated in a uniform U(0, 1), and 
corresponding allele frequencies pm, i.e. such as 
um =

∫ pm
1/2nr

f (p)dp , computed by pm = (2nr−1)(2um−1)

1+(2nr−1)(2um−1).

Basic situation: no LD and unrelated individuals
Convergence of Taylor series and quality of expectation 
of the reliability approximations were tested for different 
population sizes (nr = 500, 1000, 1500 and 2500), numbers  
of markers (nM = 50, 100, 250, 1000, 1500, 2000 and 2500)  
and proportions of the phenotypic variance explained by 
the molecular score (ν2 = 0.1, 0.4 and 0.7). Given the set 
of allele frequencies pm(m = 1 . . . nM), genotypes X of 
nr  +  1 individuals were generated and the G matrix 
was built. The reliability of the candidate individual 
GEBV, r2 = v(q̂c|X)

v(qc|X) was computed as described in the 
section «Situation analyzed»  , as well as approximations 
considering 1–10 elements in the Taylor series 
I −  Dγ +  D2γ2 −  D3γ3··· The convergence of the series 
as predicted by the value (lower or higher than 1)  
of the matrix’s largest eigenvalue was checked 
numerically, by estimating the mean of this largest 
eigenvalue from five simulations in each case studied 
(nr = 200 to 1000; nM = 100 to 2000 and ν2 = 0.1, 0.4, 0.7).

 This limited number of replications was chosen 
after observation of a very limited variance of this 
eigenvalue. Finally, the asymptotic values of the 
suggested approximations [formulae (5) and (6)] were 
computed using the number of independent segments 
as described by [4]. The process was repeated 50 
times and the means of those exact or approximated 
reliabilities computed.

Figure 1a and b illustrates the convergence of the Tay-
lor series when 2000 markers are used, and Tables 5 and 
6 give the results for both approximations when ν2 = 0.4. 
The Taylor series converged when the proportion ν2 of 
the phenotypic variance explained by the molecular score 
was low, with oscillations and divergence observed when 
ν2 = 0.4 or 0.7 with the first approximation and ν2 = 0.7 
with the second approximation. These observations were 
in accordance with the deviation to one of the largest 
eigenvalue of the matrix involved in the series (Fig. 2a, b). 
When the series converged, the approximations rapidly 
reached a plateau, at the 3rd (respectively, 2nd) order for 
the first (respectively, second) approximation.

Table 6 shows that the second Taylor series converges 
always when ν2 = 0.4. The proposed approximation 
was generally biased upwards. This over-estimation of 
the precision was generally limited but increased as the 
number of markers and the reference population size 
decreased. The maximum over-estimation observed was 

Table 4 Expectations of  products of  four allelic values 
received by  two individuals at  two loci depending on  the 
IBD status and parental origins of the alleles

Only non-null terms are given

pm and pl are the frequencies of the most frequent alleles at loci m and l. �lm is 
the linkage disequilibrium measure between m and l

gcls = (0 or 1)− pl is the allelic value the candidate received from its parent s at 
locus l etc

Sml means c and i genes are IBD at m and l,  only at m etc

S T E
[

gclsgcmtgilugimv |S& T
]

Sml s = t and u = v (1− pm)(1− pl)pmpl +�lm(1− 2pl)(1− 2pm)

s = t and u �= v (1− pm)(1− pl)pmpl +�lm(1− 2pl)(1− 2pm)

s �= t and u = v (1− pm)(1− pl)pmpl +�lm(1− 2pl)(1− 2pm)

s �= t and u �= v (1 − pm) (1 − pl)pmpl

s = t and u = v �2
lm ×

[

p3m + (1− pm)
3
]/ [

pm(1− pm)
]

s = t and u = v �2
lm ×

[

p3l + (1− pl)
3
]/ [

pl(1− pl)
]

s = t and u = v �2
lm × (1− 2pm)(1− 2pl)
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37.5  % (0.22 instead of 0.16 with a standard error less 
than 0.02). Based on the results in Table  5, it appears 
that when the first Taylor series converges, the proposed 

approximation is also slightly over-estimated. The 
expectation of the approximations, as given in formulae 
(5) and (6) are very close to the observations.

Fig. 1 Convergence of the Taylor series as a function of heritability and reference population size (nM = 2000). a First approximation. b Second 
approximation
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No LD and non‑independence between reference 
and candidate population
The quality of the approximation was tested as above, by 
considering the case of a candidate having one of its par-
ents in the reference population and all other individu-
als being unrelated. Tables 7 and 8, which summarize the 
results of the simulation, show that the second approxi-
mation is still the most efficient (systematic convergence 
of the Taylor series and consistency between first order 
approximation and its expectation). Again, an overestima-
tion of about 20 % is observed with this approximation.

Example of the use of the second approach
As an illustration of formula (3) different situations that 
differ in the relationships between the candidate and 
reference populations were compared. Coefficients of 

formula (3) were estimated using the elements in Table 3. 
An effective reference population size of 200, the geno-
typing of 10,000 markers and a heritability of 0.4 were 
assumed. Scenarios included no individuals related to 
the candidate in the reference population, its sire, both 
parents, 1–10 half-sibs (or uncles), and a combination of 
parental and half-sib information.

The results are in Fig. 3. The linearity of the precision 
increases with the number of half-sibs, which is consist-
ent with the approximation, but unsatisfactory, as dis-
cussed below.

Equivalent number of independent loci
This number was computed using formula (8), for 
various effective population sizes (Ne = 100 to 1000 ), 
heritabilities (h2 = 0.1 to 0.5), total numbers of loci 

Table 5 Performances of the first approximation 
(

r̃2
qc,q̂c

)

 for an unrelated reference population as a function of the num-

ber of markers (nM) and reference population size (nR), assuming ν2 = 0.4

The convergence criterion is the value of the Taylor series at order 10

E
[

r̂2
qc ,q̂c

]

  is the expectation of the first approximation across the distribution of allele frequencies as given in Goddard [16]

nM nR True value 
(

r2
qc,q̂c

)

Approximation 
(

r̂2
qc,q̂c

)

Convergence criteria E

[

r̂2
qc,q̂c

]

50 500 0.92 2.14 2.74 2.05

50 1000 0.96 2.30 2.62 2.23

50 1500 0.96 2.31 2.57 2.28

50 2000 0.97 2.43 2.60 2.37

100 500 0.85 1.71 2.58 1.69

100 1000 0.90 2.01 2.49 2.05

100 1500 0.95 2.21 2.58 2.18

100 2000 0.96 2.31 2.60 2.26

250 500 0.67 1.09 2.53 1.09

250 1000 0.81 1.56 2.53 1.55

250 1500 0.85 1.72 2.54 1.72

250 2000 0.89 1.96 2.53 1.97

1000 500 0.32 0.39 0.61 0.38

1000 1000 0.52 0.72 2.45 0.73

1000 1500 0.64 0.99 2.51 0.99

1000 2000 0.71 1.18 2.51 1.18

1500 500 0.25 0.28 0.27 0.28

1500 1000 0.42 0.54 1.88 0.54

1500 1500 0.54 0.76 2.49 0.76

1500 2000 0.61 0.91 2.50 0.91

2000 500 0.20 0.22 0.20 0.22

2000 1000 0.35 0.43 0.95 0.43

2000 1500 0.46 0.61 2.28 0.61

2000 2000 0.54 0.76 2.48 0.76

2500 500 0.16 0.17 0.16 0.17

2500 1000 0.30 0.35 0.44 0.35

2500 1500 0.40 0.50 1.61 0.50

2500 2000 0.49 0.65 2.40 0.66
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(nM = 1000 to 10, 000) and reference population sizes 
(nR = 1000 to 2500).

Figure 4 shows how equivalent numbers of independent 
loci (nMi) vary with the total number of markers (nM) 
and reference population size (nR). As nM increases, the 
number nMi rapidly converges to a value which strongly 
depends on the size of the reference population size. 
This dependence on nR of the equivalent number of 
independent loci does not exist in the Goddard’s effective 
number of loci and clearly shows the difference in nature 
between these concepts. Three phenomena, observed 
when considering the extreme case of two markers (see 
Additional file 5), explain this behavior:

(1) The trace T of (E[Xr
′Xr]  +  λβI)−1 is a decreasing 

function of nr: as a consequence, the larger is the 
population size, the smaller is T, which is propor-
tional to the marker effects conditional variances 
v(β)− cov

(

β , y
)

v(y)−1cov(y,β)) and the higher 
is the variance of the estimated molecular score 
(v
(

qc|y
)

= xccov
(

β , y
)

v(y)−1cov
(

y,β
)

x′c).
(2) The trace T is always higher in the situation of LD 

than for independent markers (TLD > TLE).
(3) The rate of decrease is higher for TLD than for TLE. 

On the whole, the reliability for a given number 
of observed markers corresponds to the reliability 
that is reached with a larger number of independ-
ent loci when the size of the reference population 
is larger.

Figure  5 indicates that the equivalent number of 
independent loci increases with heritability and effec-
tive population size. This last observation was expected 
since with larger effective population sizes, the LD 
between two loci decreases and this increases the effec-
tive number of loci. The effect of heritability is less 
direct.

Discussion
The objective of this paper was to explore approxima-
tions of the precision of genomic selection when the 
selection candidate has relatives in the reference popula-
tion. Two approximations were developed and numeri-
cally compared.

These approximations were based on Taylor expan-
sions of a matrix inverse M−1. In both cases, the initial 
matrix is the sum of the identity matrix and a perturba-
tion (M = I + E). Convergence of these series is not guar-
anteed and depends on the behavior of the perturbation 
(I − E + E2 − E3 → (I + E)−1 if Et → 0 when t → ∞). 
With the first approximation, derived from the appendix 
in [18], this convergence failed when the number of mak-
ers was too small (less than 1500 in our example) or the 
heritability was greater than 0.1. This was only observed 
when ν2  =  0.7 with the second approximation. This is 
fully consistent with the deviation to one of the largest 
eigenvalue of the E matrix.

The expectation of the proposed approximation, when 
data were simulated with the model corresponding to the 
hypotheses underlying their algebraic development, was 
very close to the mean value after 50 simulations. Thus, 
extremely fast estimation of the precision is possible, 
which allows intensive optimization and comparison of 
selection schemes.

When individuals are unrelated and markers are in link-
age equilibrium, we obtain an estimation of the GEBV 
accuracy which differs from that of Goddard et  al. [18]. 

Table 6 Performances of  the second approximation 
(

r̃2
qc,q̂c

)

 for an unrelated reference population as a function 

of  the number of  markers (nM) and  reference population 
size (nR), assuming ν2 = 0.4

The convergence criterion is the value of the Taylor series at order 10

E
[

r̃2
qc ,q̂c

]

 is the expectation of the second approximation across the distribution 

of allele frequencies as given in Goddard [16]

nM nR True value 
(

r2
qc,q̂c

)

Approximation 
(

r̃2
qc,q̂c

)

10th order 
approximation

E

[

r̃2
qc,q̂c

]

50 500 0.92 0.91 0.91 0.91

50 1000 0.96 0.95 0.94 0.95

50 1500 0.96 0.97 0.97 0.96

50 2000 0.97 0.97 0.97 0.97

100 500 0.85 0.83 0.82 0.83

100 1000 0.90 0.91 0.90 0.91

100 1500 0.95 0.94 0.94 0.94

100 2000 0.96 0.95 0.95 0.95

250 500 0.67 0.71 0.67 0.71

250 1000 0.81 0.83 0.81 0.82

250 1500 0.85 0.88 0.87 0.88

250 2000 0.89 0.90 0.90 0.90

1000 500 0.32 0.41 0.31 0.40

1000 1000 0.52 0.59 0.52 0.57

1000 1500 0.62 0.68 0.64 0.67

1000 2000 0.69 0.73 0.70 0.73

1500 500 0.24 0.32 0.23 0.31

1500 1000 0.42 0.50 0.42 0.48

1500 1500 0.52 0.60 0.53 0.59

1500 2000 0.60 0.66 0.61 0.67

2000 500 0.19 0.26 0.17 0.28

2000 1000 0.34 0.43 0.33 0.44

2000 1500 0.46 0.53 0.46 0.53

2000 2000 0.53 0.60 0.54 0.61

2500 500 0.16 0.22 0.14 0.23

2500 1000 0.30 0.38 0.28 0.38

2500 1500 0.40 0.48 0.39 0.47

2500 2000 0.47 0.55 0.48 0.56
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This is surprising since that approach was said to be 
based on the Taylor approximation used here. Their for-
mula may be obtained in a simpler way [see Additional 

file  6]. However, relaxing the assumption of “absence of 
between-individual relationship” is not straightforward 
using this approach.

Fig. 2 Largest Eigen value of the noise matrix Dγ involved in the Taylor expansion of the phenotypic variances matrix V as a function of heritability, 
reference population size and number of markers. a First approximation. b Second approximation
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A strong limit of our new approximation comes from 
the limitation to the first order term of the Taylor series. 
Deriving algebra was only possible at this stage. The side 
effect is that no genotypic covariance terms between ref-
erence individuals appear in this approximation. As a con-
sequence, only the direct relationships between candidate 
and reference individuals play a role in the estimation, but 
not the structure within the reference population. This is 
unfortunate, because accuracies of genomic prediction 
are obviously affected by the construction of the reference 
population. Our last numerical example, in which there 
is a linear trend with the number of half-sibs, reveals this 
drawback: two half-sibs of the candidates are treated as 
unrelated and the information that they carry is just the 
double of that of a single half-sib. Future developments 
should focus on this limitation, for instance to derive the 
expectation of the xcC−1B2xc

′ term.
The U-shaped density function f (p) of allele frequen-

cies was defined as in [16]. A Beta distribution B(φa,φb) 
for the allele frequencies was assumed by Gianola et  al. 
[30], following Wright [34]. Assuming that the frequency 
distribution is centered on 0.5, i.e. Φa =  Φb =  Φ, this 
quantity Φ can be adjusted to fit the distribution of God-
dard. Using the Chi2 test as a fitting option, we observed 
that the adjusted φ̂ rapidly decreased as the population 

size increased (Fig. 6), with a slower and slower evolution 
as the population size grew larger (with nr = 200, 000 
the adjusted φ̂ is 0.9750000). Using a Beta distribution 
could give more generality to the results. If the expec-
tation of τ and τ2 are easily derived from the moments 
generating function of Beta distribution (E[τ ] = nra

2a+1 

Table 7 Performances of  the first approximation 
(

r̂2
qc,q̂c

)

 

when  the parents of  candidate belong to  the reference 
population as  a function of  the number of  markers (nM) 
and reference population size (nR), assuming ν2 = 0.4

The convergence criterion is the value of the Taylor series at order 10

E
[

r̂2
qc ,q̂c

]

 is the expectation of the first approximation across the distribution of 

allele frequencies as given in Goddard [16]

nM nR True value  
(

r2
qc,q̂c

)

Approximation 
(

r̂2
qc,q̂c

)

10th order 
approximation

E

[

r̂2
qc,q̂c

]

1000 500 0.37 0.42 0.58 0.47

1000 1000 0.56 0.73 2.47 0.82

1000 1500 0.65 0.95 2.50 1.04

1000 2000 0.72 1.17 2.52 1.26

1500 500 0.31 0.34 0.33 0.37

1500 1000 0.46 0.56 1.87 0.63

1500 1500 0.56 0.73 2.44 0.81

1500 2000 0.62 0.87 2.50 0.96

2000 500 0.27 0.29 0.27 0.32

2000 1000 0.40 0.46 0.89 0.52

2000 1500 0.50 0.62 2.24 0.69

2000 2000 0.57 0.76 2.48 0.84

2500 500 0.24 0.25 0.24 0.27

2500 1000 0.36 0.40 0.49 0.45

2500 1500 0.46 0.55 1.79 0.61

2500 2000 0.52 0.67 2.35 0.74

Table 8 Performances of the second approximation 
(

r̃2
qc,q̂c

)

  

when  the parents of  the candidates belong to  the refer-
ence population as  a function of  the number of  markers 
(nM) and reference population size (nR), assuming ν2 = 0.4

The convergence criterion is the value of the Taylor series at order 10

E
[

r̃2
qc ,q̂c

]

 is the expectation of the second approximation across the distribution 

of allele frequencies as given in Goddard [16]

nM nR True value 
(

r2
qc,q̂c

)

Approximation 
(

r̃2
qc,q̂c

)

10th order 
approximation

E

[

r̃2
qc,q̂c

]

1000 500 0.37 0.46 0.35 0.46

1000 1000 0.53 0.60 0.54 0.61

1000 1500 0.64 0.70 0.65 0.69

1000 2000 0.71 0.75 0.72 0.75

1500 500 0.30 0.39 0.26 0.40

1500 1000 0.47 0.55 0.46 0.51

1500 1500 0.56 0.63 0.56 0.61

1500 2000 0.63 0.69 0.64 0.68

2000 500 0.27 0.36 0.22 0.35

2000 1000 0.40 0.49 0.38 0.48

2000 1500 0.50 0.58 0.50 0.56

2000 2000 0.57 0.64 0.57 0.62

2500 500 0.24 0.33 0.20 0.32

2500 1000 0.34 0.44 0.31 0.45

2500 1500 0.44 0.53 0.43 0.53

2500 2000 0.37 0.46 0.35 0.46

Pr
ec

isi
on

Number of Half sibs

no related

sire only

both parents

HS

sire + HS

parents +HS

Fig. 3 Example of approximated precision [from Eq. (3)] correspond‑
ing to various relations between the candidate and reference popula‑
tions. (nR = 1000; nM = 10, 000; ν2 = 0.4)
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Fig. 4 Number of equivalent markers [from Eq. (8)] as a function of the total number of markers (nM) and reference population size (nR). 
(Ne = 200; ν2 = 0.4)

Fig. 5 Number of equivalent markers [from Eq. (8)] as a function of the effective population size (Ne) and heritability (v2) (nM = 5000; nR = 2000)
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and E[τ2] = nr
4a2+16a+18
4a2+8a+3

), deriving the expectation of 
parameters 

∑

m ρm, ∑mρm
2 and 

∑

m
ρ2m
σ 2
m

 is not simple. How-
ever, these quantities are quite easily obtained by numeri-
cal integration. Thus, adjusting a Beta distribution to 
observed allele frequencies and numerically computing 
formula (3) parameters would be a feasible and more ver-
satile implementation of our second genomic precision 
approximation.

Our work focused on the BLUP precision of the molec-
ular score r2

(

qci, q̂ci|X
)

= v(q̂ci)
v(qci)

 but left aside the pro-
portion of the genetic variance that is captured by the 
markers 

(

v(qci)
v(gci)

)

. This last term could be treated as in God-
dard et al. [18]: v(qci)v(gci)

= b = nM
nM+Me

 with Me the number 
of independent segments. As noted in the section on the 
general framework, the quantity v(q̂ci)v(gci)

= b× r(qci, q̂ci|X) 
is only an approximation of these GEBV reliabilities i.e. 
r2
(

gci, q̂ci|X
)

= cov2(gci ,q̂ci|X)
v(gci|X)v(q̂ci|X). Equality between those 

quantities is obtained when X = W(identity between 
statistical and genetical models), a condition assumed in 
Goddard [16] where markers and QTL are modeled as a 
series of uncorrelated pairs.

All the developments shown in this paper are based 
on the hypothesis that the reliability of GEBV based on 
non-independent markers for a trait controlled by nQ 
QTL that are in incomplete LD with the markers can be 
approached by the reliability of GEBV when there are 
nM independent segments that carry a single QTL in 
LD with a single marker. A few difficulties arose when 
applying this approach proposed by Goddard [16]. How 

many independent markers should be considered? The 
reasoning in Goddard [16] was based on the idea of an 
effective number of loci (Me) corresponding to a given 
variance of realized relationships. Here, we proposed 
the alternative equivalent number of independent loci 
(Mi) which corresponds to a given reliability. We showed 
that this Mi number depends on the size of the reference 
population and on heritability, a dependence that does 
not occur with Me. If we invert the argument, controlling 
the level of realized relationships variance with the 
effective number of loci (Me) does not seem to be a good 
approach to control the estimated GEBV reliability.

As detailed by Hayes et  al. [17], the effective number 
of independent chromosome segments depends on the 
population structure. The higher is the mean relation-
ship level, the smaller is this effective number. However, 
we suggest the use of this number as estimated from a set 
of unrelated individuals, or of its expectation prior to any 
observation, assuming independence between individu-
als. Without formal proof, the idea was that long-term 
LD was considered by using an effective (or equivalent) 
number of independent loci while short-term non-inde-
pendence was taken into account with our formalization 
of the matrix’s expectations that is developed in Addi-
tional file  1. A complete proof of the procedure is still 
needed.

Regardless of the definition of Me or Mi, there is no 
reason that the number of independent loci must equal 
the number of QTL, which is unknown, contrary to the 
hypothesis about pairs of marker-QTL (in practice, since 
the QTL effects are random variables, many segments 
will only have very small effects on the trait, thus simu-
lating the more likely situation of a limited number of 
“real” QTL). Equating X and W as well as σβ

2 and σα
2 has 

no clear justification. The variance v
(

q̂c|X
)

 of the molec-
ular score should not be σβ

2xcXr
′(XrXr

′  +  Iλβ)−1Xrxc
′ but 

σα
2xcXr

′ (Xr Xr
′  +  Iλβ)−1(WrWr

′  +  Iλα)(XrXr
′  +  Iλβ)−1Xrxc

′ .  
This other formula assembles two sets of unknown 
parameters: the variances σα

2 and σβ
2, and the genotypes X 

and W. It is often assumed that σ 2
β = σ 2

g /(nM τ̄ ) (e.g. [1]), 
which results in an overestimation of the �β parameter 
since LD is not considered. Working on the number of 
independent loci (Me orMi) apparently solves this diffi-
culty. The QTL variance σ 2

α = σ 2
g /

(

nQτ̄
)

 could be derived 
based on a hypothesis about the number of QTL. The 
situation is more difficult for the genotype matrices since 
the Wr matrix is not observed.

If the framework considered so far (nM markers-QTL 
pairs with strong LD within pairs and no LD between 
pairs) is partly retained, a slight improvement is possi-
ble considering the element b of the genetic variability 

0
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m
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Popula�on reference size

φ

Fig. 6 Parameter of the beta distribution B(φ,φ) that best fits God‑
ard’s distribution of allele frequencies
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explained by SNPs. The idea would be to replace, in 
the formulae used in this paper, σq

2 by b ×  σg
2. Element 

b can be derived by considering that the markers’ (β) 
and QTL’ (α) effects are fixed in the genetic and statis-
tical models. Leaving aside the singularity of Xr

′Xr when 
the number of SNPs is large, the marker effects are now 
estimated by β̂ =

(

X′
rXr

)−1
X′
ry and the molecular score 

defined as q̂ = Xrβ̂, while the genetic value was g = Wrα. 
Given the genotype matrices, the sample genetic vari-
ability is vg  =  α′Wr

′Wrα and the sample molecular 
score variability y′Xr(Xr

′Xr)−1Xr
′y with an expectation 

vq = α′Wr
′Xr(Xr

′Xr)−1Xr
′Wrα. The part of the genetic vari-

ability explained by the SNPs is the ratio b = vq/vg.
Expectations of the matrices’ product ele-

ments 
{

X′
rXr

}

ml
 are 2nr�ml off diagonal and 

2nrpm(1  −  pm)  =  nrσm
2  in the diagonal, with similar 

expressions for W′
rXr and Wr

′Wr elements.
Following Goddard [16], approximating expectations 

of the matrices’ functions by the function of their 
expectation, and assuming that (1) markers are 
independent, (2) each QTL q is in LD with only 
one marker m(q), with a LD value �qm(q), and (3) 

individuals are unrelated: vg  =  nr  ∑  qαq
2σq

2, we get 

vq ∼ 4nr
∑

q

�2
qm(q)

σ 2
m(q)

α2
q = nr

∑

q r
2
qm(q)α

2
qσ

2
q , and 

b =
∑

q r
2
qm(q)α

2
qσ

2
q

∑

q α
2
qσ

2
q

, corresponding to Eq. (4) in [16].

The ratio b is the weighted mean of LD r2. Unfortu-

nately, neither αq
2 nor σq

2 are known. The unweighted mean 
∑

q r
2
qm(q)

nq
= r̄2 may be a fruitful approximation. Following 

Sved [33], the expectation of r2qm(q) is 1
1+4Nec

 with c being 
the distance, in Morgan, between the QTL and its marker. 
Let L be the total length of the genome, and assume an 
equal distance L/nM between each successive marker 
b ∼

∫ L/2nM
0

1
1+4Nec

1
L/ 2nM

dc = nM
2NeL

[

log
(

1+ 2NeL
/

nM
)]

.

The expectation of the reliability E
[

r2
qc,q̂c

]

, which 

is a ratio of variances EX
[

v
(

q̂c|X
)

/v(qc|X)
]

 was 
approximated by the ratio of the variance expectations 
EX

[

v
(

q̂c|X
)]

/EX[v(qc|X)]. The usual second degree 
approximation (E[N/D]  =  E[N]/E[D]  −  cov[N,  D]/
E2[D] + v[D]E[N]/E3[D]) could not be used here due to 
algebra complexity. However, in the case of unrelated 
individuals and independent markers, numerical 
evaluation of the difference between exact and 
approximated results for various reference population 
sizes and numbers of markers shows a very small 
underestimation of the reliability (Table 9).

The theory presented here was developed by 
considering a single selection candidate. When 
candidates are diversely related to the reference 
population, as suggested in Goddard et  al. [18], the 
candidates should be examined one by one. Moreover, 
non-independence between candidates should be 
considered. A further step towards the modeling of 
genomic selection could be an approximation of the 
mean genetic values of selected individuals when GEBV 
reliabilities are heterogeneous.

A few other hypotheses were made in this paper, 
including additivity and i.i.d. of QTL effects, and the 
use of GBLUP. As long as the objective is to model 
and optimize breeding plans, only relative values are 
interesting and we assumed that these hypotheses were 
not critical.

Conclusions
The objective of this paper was to provide a further step 
towards the development of deterministic models that 
describe genomic breeding plans. Such deterministic mod-
els carry low computational burden and thus allow design 
optimization through intensive numerical exploration.

We proposed two alternative approximations of 
the estimation of GEBV reliability in the case of non-
independence between candidate and reference 
populations. Both were derived from the Taylor series 
heuristic approach suggested by Goddard [16]. A 
numerical exploration of their properties showed that 
the series were not equivalent in terms of convergence 

Table 9 Expectation of  the ratio of  variances vs. the ratio 
of  the variance expectations considering different refer-
ence population sizes and  numbers of  markers (ν2 =  0.4, 
50 simulations)

nr nM E
[

v
(

q̂c
)

/v(qc)
]

E
[

v
(

q̂c
)]

/E
[

v(qc)
]

500 1000 0.403 0.401

1000 1000 0.726 0.725

1500 1000 1.010 1.008

2000 1000 1.212 1.212

500 1500 0.270 0.269

1000 1500 0.535 0.534

1500 1500 0.753 0.753

2000 1500 0.944 0.944

500 2000 0.213 0.213

1000 2000 0.414 0.413

1500 2000 0.597 0.597

2000 2000 0.760 0.759

500 2500 0.175 0.175

1000 2500 0.349 0.348

1500 2500 0.515 0.514

2000 2500 0.670 0.669
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to the exact reliability, that the approximations may 
overestimate GEBV precision and that they perfectly 
converged toward their theoretical expectations.

Formulae derived for these approximations were sim-
ple to handle in the case of independent markers. A few 
parameters that describe the markers’ genotypic vari-
ability (allele frequencies, linkage disequilibrium) can be 
estimated from genomic data corresponding to the pop-
ulation of interest or estimated after assumption about 
their distribution.

When markers are not in linkage equilibrium (i.e. there 
is LD), replacing the real number of markers and QTL by 
an effective or equivalent number of independent loci, as 
proposed by Goddard [16] and Hayes et al. [17], is a prac-
tical solution. Research efforts are still needed to over-
come some strong limits of this approach.
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