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Abstract 

Background: Genome‑wide association studies in humans have found enrichment of trait‑associated single nucleo‑
tide polymorphisms (SNPs) in coding regions of the genome and depletion of these in intergenic regions. However, 
a recent release of the ENCyclopedia of DNA elements showed that ~80 % of the human genome has a biochemical 
function. Similar studies on the chicken genome are lacking, thus assessing the relative contribution of its genic and 
non‑genic regions to variation is relevant for biological studies and genetic improvement of chicken populations.

Methods: A dataset including 1351 birds that were genotyped with the 600K Affymetrix platform was used. We par‑
titioned SNPs according to genome annotation data into six classes to characterize the relative contribution of genic 
and non‑genic regions to genetic variation as well as their predictive power using all available quality‑filtered SNPs. 
Target traits were body weight, ultrasound measurement of breast muscle and hen house egg production in broiler 
chickens. Six genomic regions were considered: intergenic regions, introns, missense, synonymous, 5′ and 3′ untrans‑
lated regions, and regions that are located 5 kb upstream and downstream of coding genes. Genomic relationship 
matrices were constructed for each genomic region and fitted in the models, separately or simultaneously. Kernel‑
based ridge regression was used to estimate variance components and assess predictive ability. Contribution of each 
class of genomic regions to dominance variance was also considered.

Results: Variance component estimates indicated that all genomic regions contributed to marked additive genetic 
variation and that the class of synonymous regions tended to have the greatest contribution. The marked dominance 
genetic variation explained by each class of genomic regions was similar and negligible (~0.05). In terms of prediction 
mean‑square error, the whole‑genome approach showed the best predictive ability.

Conclusions: All genic and non‑genic regions contributed to phenotypic variation for the three traits studied. Over‑
all, the contribution of additive genetic variance to the total genetic variance was much greater than that of domi‑
nance variance. Our results show that all genomic regions are important for the prediction of the targeted traits, and 
the whole‑genome approach was reaffirmed as the best tool for genome‑enabled prediction of quantitative traits.

© 2016 Abdollahi‑Arpanahi et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any 
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
To date, analysis of pathways and post-genome-wide 
association studies (GWAS) have focused on genic 

regions of the genome as evidenced by the emergence of 
exome sequencing. Exons are functional sequences of the 
genome which, taken together, represent an important 
part of the genome that is actually translated into pro-
tein. Moreover, genotyping exons is less expensive than 
whole-genome sequencing. However, a recent release of 
the ENCyclopedia of DNA Elements (ENCODE) showed 
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that about 62 % of the genome is transcribed into RNA, 
which added to the evidence that has accumulated on 
transcription-factor-binding sites, chromatin structure, 
DNA methylation, histone modification and other regu-
latory regions, indicates that about 80 % of a genome has 
a biochemical function [1]. Nonetheless, DNA sequences 
in intergenic regions are considered as “dark matter” or 
“dark matter transcripts” [2] since their role is still ambig-
uous. Recent research has shown that 43 % of the regions 
that are detected in GWAS point to intergenic regions 
(outside of the promoter and transcribed regions), and 
45  % to introns [3]. Nevertheless, missense codons and 
promoter regions are significantly enriched for trait-asso-
ciated single nucleotide polymorphisms (SNPs), while 
intergenic regions are significantly underrepresented [3, 
4].

On the one hand, most GWAS have used very stringent 
significance thresholds to avoid false positives due to 
multiple-testing and, as a result, many variants with small 
effects have been missed. These also include rare variants 
that have large effects but explain a small proportion of 
the variance [5]. On the other hand, in whole-genome 
prediction, the prediction of genetic merit of individuals 
is based on the effect of all variants estimated simultane-
ously. Such an approach does not suffer from multiple-
testing, stringent significance thresholds and unrealistic 
assumptions like linkage equilibrium (LE) between mark-
ers, since linkage disequilibrium (LD) is pervasive, espe-
cially for agricultural species.

The contribution of genic and non-genic regions of the 
genome to additive genetic variance has been investigated 
in humans [6–8], dairy and beef cattle [9] and plants [10]. 
There is, however, some disagreement between the find-
ings from these studies. For instance, Yang et al. [8] stated 
that genic regions contributed more additive genetic var-
iation than non-genic regions. Koufariotis et  al. [9] also 
pointed out that the classes of missense and synonymous 
genomic regions explained most of the additive genetic 
variation. On the contrary, Gusev et al. [7] reported that 
DNaseI hypersensitivity sites explained most of the addi-
tive genetic variation for 11 common diseases. However, 
a study by Do et al. [11] on feed intake and its component 
traits in pigs indicated that the contribution of each SNP 
to total genomic variance was similar for genic and non-
genic regions.

Morota et al. [12] studied the predictive ability of vari-
ous genomic regions for three chicken broiler traits. 
They found that the enrichment or depletion of genomic 
regions in terms of predictive ability was trait-depend-
ent and that the whole-genome approach had the best 
predictive power regardless of trait. Erbe et  al. [13] 
compared the predictive ability of SNPs in transcribed 
regions with that of SNPs in intergenic regions and found 

that the transcribed part of the genome of dairy cattle 
performed better, with a 0.03 increase in predictive cor-
relation for Jersey cattle traits. However, these studies 
fitted genic and non-genic regions using a single kernel 
(single genomic relationships matrix) approach. An alter-
native approach would be to use multiple kernels (mul-
tiple genomic relationship matrices) that are tailored to 
each specific genomic region.

Partitioning genetic variation into marked additive 
and dominance components has been explored [14–18] 
but knowledge on the contribution of different genomic 
regions to non-additive genetic variation is lacking. Par-
titioning the genome into classes of SNPs allows one to 
target genomic regions of interest.

While Morota et al. [12] used the same dataset to eval-
uate the predictive performance of different genomic 
regions, some limitations of their study led us to con-
duct additional research, i.e.: (1) they used a single-
kernel approach, while the multiple-kernel approach 
is more flexible for prediction and, thus, can be used to 
improve accuracy of prediction and to decrease learn-
ing complexity and training time e.g., [19]; (2) the non-
additive contribution of different genomic regions was 
not considered; (3) variance components estimates were 
not studied; and (4) overlapping genic regions compli-
cated the interpretation of results, thus partitioning the 
genome into distinct segments may produce a clearer 
picture. Therefore, the aim of our study was to investigate 
the relative contribution of genic and non-genic regions 
to marked additive and dominance genetic variation for 
body weight (BW), breast muscle (BM) and hen house 
egg production (HHP) in broiler chickens. We also evalu-
ated the predictive ability of different genomic regions for 
yet-to-be observed phenotypes. To our knowledge, this is 
the first study that addresses the contribution of genomic 
regions to marked non-additive genetic variation by fit-
ting one class of genomic regions at a time.

Methods
Data
A total of 1351 birds from a commercial broiler chicken 
line were provided by Aviagen Ltd. This broiler line has 
undergone several generations of selection using genetic 
evaluations based on multiple-trait pedigree best linear 
unbiased prediction (P-BLUP). The following traits were 
studied: BW, ultrasound of BM at 35  days of age, and 
HHP defined as the total number of eggs laid between 
weeks 28 and 54 per bird. Phenotype records for BW 
and BM were pre-corrected for a combined effect of 
sex (525 males and 826 females), hatch week, contem-
porary group of parents and pen in the growing farm, 
whereas phenotype records for HHP were adjusted for 
hatch effects. Phenotypic records were merged with SNP 
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genotype records on individuals that were genotyped 
using the Affymetrix 600K chip. More details on geno-
typing and phenotypic data are in Kranis et al. [20] and 
Abdollahi-Arpanahi et al. [21]. In total, there were 1346, 
1331, and 819 individuals scored for BW, BM and HHP, 
respectively.

A total of 580,954 SNP genotypes were originally avail-
able in the dataset. SNPs that departed from Hardy–
Weinberg equilibrium (p < 10−6) based on a Chi square 
test, SNPs that had a minor allele frequency (MAF) 
<0.01, or a missing rate >0.05 were excluded from the 
analysis. Missing SNPs were imputed using Beagle [22]. 
After editing, 354,364 SNPs remained for the analysis. 
Mean MAF was equal to 0.27. Only SNPs on 28 auto-
somes (GGA1–28, GGA for Gallus gallus chromosome) 
were included, which covered 919  Mb of the G. gallus 
genome. Data editing was done with the PLINK software 
[23]. The following coding was used for SNP substitution 
effects in the additive genotype matrix (XA) i.e. 0 for “aa”, 
1 for “Aa”, and 2 for “AA”.

SNP annotation
Chromosome information and physical positions of 
SNPs were obtained using the annotation file down-
loaded from the Animal Genome Database (http://www.
animalgenome.org/repository/chicken/). We mapped 
the Aviagen marker coordinates file to Gallus_gallus_4.0 
Ensembl VEP tool (release 75) (ftp://ftp.ensembl.org/
pub/release-75/variation/VEP/arrays/) and to the ani-
mal genome annotated file of chicken data. Each SNP 
was examined to determine if it was located in genic or 
non-genic regions. Six classes of disjoint genomic regions 
were formed, namely, introns, missense (non-synon-
ymous), synonymous, 5′ and 3′ untranslated regions 
(UTR), regions that are located 5 kb upstream and down-
stream of gene (“up-down” class), and intergenic regions, 
which included SNPs that were not annotated as being 
in genic regions. Missense genomic regions are regions 
where a point mutation causes a single nucleotide change 
in a codon that codes for a different amino acid. Con-
versely, the annotation class of synonymous regions 
includes SNPs for which the substitution of one base for 
another in a coding region does not modify the resulting 
amino acid. Regulatory regions were defined as regions 
located 5  kb upstream and downstream of genes. In 
our study, intergenic regions consisted of SNPs without 
any assignment to the aforementioned annotation cat-
egories. Numbers of SNPs and their allelic frequency for 
each class of genomic regions are in Table 1. After qual-
ity control, 43,600 SNPs were not found in the Ensembl 
database or animal genome annotated database and were 
discarded from all further analyses. Finally, 310,764 SNPs 
were retained for the final analysis.

Statistical models
To explore the variance and predictive ability of each of 
the six aforementioned classes of genomic regions, 12 
additive and dominance parametric kernels were con-
structed. Kernel methods have been reviewed in Gianola 
et  al. [24], Gianola and van Kaam [25], de los Campos 
et al. [26] and Morota and Gianola [27]. In order to cap-
ture signals from genotypes to phenotypes through the 
construction of kernel matrices G (additive genomic 
relationships) and D (dominance genomic relationships), 
three scenarios were considered: (1) fitting additive ker-
nels (G) for each genomic region or fitting one kernel 
(G matrix) for all SNPs without distinction of genomic 
regions; (2) fitting additive and dominance kernels 
(G + D) jointly for each genomic region; and (3) fitting 
six additive kernels jointly (G1 +G2 + · · · +G6), with 
each kernel linked to one genomic region. All additive 
kernels are parametric (linear) kernels that were con-
structed following VanRaden’s [28] genomic relation-
ship matrices based on SNP information. While a joint 
analysis that involves 12 additive and dominance kernels 
is appealing, it was not considered here because in terms 
of convergence issue, it is too computationally demand-
ing for at least two reasons: (1) small sample size; and (2) 
poor mixing since the additive and dominance kernels 
were not orthogonal to each other. Each of the statistical 
models is described below.

Scenario (1): Separate analysis with additive kernels (G)
In this analysis, we fitted models by accounting for the 
similarity relationship matrix (kernel) within each of the 
six classes of genomic regions. Phenotypes that were pre-
corrected for systematic effects were analyzed trait by 
trait with the following model:

where yi is the pre-corrected phenotype on bird i; μ is the 
intercept; g(xi) is a linear function of SNP genotypes xi, 
and ei is the residual of the model for bird i. We assumed 

(1)yi = µ+ g(xi)+ ei,

Table 1 Number of SNPs assigned to each genomic region 
and the corresponding mean and standard deviations (SD) 
of minor allelic frequencies (MAF)

Classes of genomic regions Number of SNPs Mean MAF SD MAF

Intergenic 139,394 0.27 0.13

Intron 124,734 0.27 0.13

Missense 1658 0.27 0.13

Synonymous 5620 0.27 0.13

UTR 3044 0.28 0.13

Upsteam and downstream 36,314 0.27 0.13

All markers 310,764 0.27 0.13

http://www.animalgenome.org/repository/chicken/
http://www.animalgenome.org/repository/chicken/
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that the genetic signals (g) were represented by Gα, where 
G is an n × n kernel matrix indexed by the observed SNP 
covariates such that G ~ XXT, where X is a SNP genotype 
matrix. G resulted from a centered and standardized X 
matrix, then divided by the number of SNPs, as proposed 
by VanRaden [28] and Yang et al. [29], and α is the vector 
of the reproducing kernel Hilbert spaces (RKHS) regres-
sion coefficients that is estimated as the solution that 
minimizes:

where α ∼ N(0,G−1σ 2
g ), σ 2

g  is the additive variance cap-
tured by markers, and λ is a regularization factor. Since 
g = Gα, the hundreds of thousands of SNP predictors are 
featured into a number of functions that is equal to the 
number of observations, i.e. 1346, 1331 or 819 individu-
als for BW, BM, and HHP, respectively.

We can now rewrite Eq. (1) in matrix form as:

where 1 is a vector of ones with the appropriate dimen-
sion, and e is a vector of model residuals with e ~ N(0, Iσ 2

e ),  
where σ 2

e  is the residual variance. We assume that the var-
iance–covariance structure of the above model was:

The prediction of genetic values in a testing set (ĝ test) is 
given by:

where Gtest,strain is a rectangular matrix of genomic rela-
tionships between training and testing individuals, which 
represents a subset of the total G constructed from all 
individuals in the training and testing sets, Gtrain is the 
genomic relationship between individuals in the training 
set, and ĝ train is the vector of predicted genetic signals of 
individuals in the training set.

Scenario (2): Joint analysis of additive and dominance 
kernels (G + D) for each genomic region
The standard RKHS regression model can be represented 
in this case as:

where α1 ∼ N (0,G−1σ 2
g ) and α2 ∼ N(0,D−1σ 2

d ) are 
unknown regression vectors in RKHS, where σ 2

d  is the 
marked dominance variance and D is the dominance 
relationship matrix. To build D, we created an incidence 
matrix (XD) for effects due to dominance XD  =  (xDij). 
Elements of XD are equal to −2q2, 2pq and −2p2 for 
genotypes aa, Aa and AA, respectively, where p is the fre-
quency of A and q = 1 − p. Then, XDX

′
D is standardized 

l(α|�) = (y −Gα)′(y −Gα)+ �α
′Gα,

y = 1µ+Gα+ e,

V = Gσ 2
g + Iσ 2

e .

ĝ test = Gtest,strainG
−1
trainĝ train,

(2)y = 1µ+Gα1 +Dα2 + e.

at 4
∑m

i=1 p
2
i q

2
i  as in Vitezica et  al. [30], where m is the 

number of SNPs. With this structure of G and D, the var-
iance–covariance structure was:

The additive genetic values of individuals in the test-
ing set were predicted with the equation in Scenario (1), 
and d̂test = Dtest,trainD

−1
traind̂train was used for dominance 

values.

Scenario (3): Joint analysis of six additive kernels 
(G1 + G2 + · · · + G6)

In the joint analysis of the six classes of genomic regions, 
we used the following statistical model:

where y is the vector of observations; 1 is a vector of 
ones; μ is an intercept; h = 6 is the number of genomic 
regions; αt  ~  (0, G−1

t σ 2
gt) with t = 1, 2, . . . , 6 is a regres-

sion vector in RKHS for genomic region t; Gt is a matrix 
of additive genomic relationships for the tth genomic 
region; σ 2

gt
 is the variance that is captured by SNPs in 

the tth genomic region; and e ∼ N(0, Iσ 2
e ) is a vector of 

model residuals, where σ 2
e  is the residual variance, and I 

is an identity matrix. Therefore, the joint density of the 
six random vectors and of the residual term is:

The marginal distribution of the data in model (3) has 
an expected value of 1μ and the variance–covariance 
matrix is V =

∑h
t=1Gtσ

2
gt + Iσ 2

e . It was assumed that 
there was no covariance between effects of SNPs from 
different genomic regions. Prediction of genetic value 
obtained with SNPs in region t for individuals in the test-
ing set was as follows:

where notations are as in Scenario (1), except that t indi-
cates the G matrix of tth genomic region.

To illustrate the difference or similarity in information 
that is captured by the additive genomic relationships in 
each of the classes of genomic regions, the Euclidean dis-
tance (ED) between each pair of genomic relationships 
was calculated using the formula:

V = Gσ 2
g +Dσ 2

d + Iσ 2
e .

(3)y = 1µ+

h
∑

t=1

Gtαt + e,

p
(

e, g1, . . . , gt |σ
2
e , σ

2
g1
, . . . , σ 2

gt

)

= N
(

e|0, Iσ 2
e

)

h
∏

t=1

N
(

gt |0,Gtσ
2
gt

)

.

ĝ t,test = Gt,test,trainG
−1
t,trainĝ t,train,
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where a and b are the corresponding elements of the 
genomic relationship matrices for each annotation class. 
This distance matrix was subsequently fed to an R pack-
age for clustering and drawing heat map plots [31].

Implementation of Bayesian analysis
To implement the procedures within a Bayesian frame-
work, a flat prior was assigned to μ, and independent 
scaled inverse Chi square distributions were assigned to 
the variance components. The hyper-parameters for each 
of the inverse Chi square distributions were equal to 5 for 
degrees of freedom and the scale parameter was calcu-
lated according to the default value of the BGLR package 
[32]. All analyses were conducted using RKHS regression 
as implemented in the BGLR package.

The Bayesian model was run via Gibbs sampling. For 
each fitted model, a Markov chain Monte Carlo (MCMC) 
with 500,000 samples was run and the first 50,000 sam-
ples were discarded as burn-in. Subsequently, 450,000 
samples were obtained and thinned at a rate of 50, 
resulting in 9000 mildly correlated samples for posterior 
inference. Convergence diagnostics and statistical and 
graphical analysis of Gibbs sampling were checked by 
visual inspection of trace plots of some parameters (i.e. 
variance components) and with the Coda [33] package.

Predictive ability
The predictive ability of our RKHS regression models was 
assessed by cross-validation (CV). Specifically, a fourfold 
CV scheme was applied by assigning animals randomly 
to one of four separate subsets. Of these four subsets, 
three were combined to form a training set and one was 
used as testing set. Each of the four subsets was used as a 
testing set only once. Since the CV distribution was dis-
persed because of the small size of the sample, the above 
fourfold CV was replicated 15 times, at random, and 
results were averaged over replications. Predictive abili-
ties were assessed via Pearson’s product-moment corre-
lation between pre-adjusted phenotypes and predicted 
phenotypes (predicted genetic values plus intercept), and 
via prediction mean-squared error (MSE).

Results
Variance components
Narrow-sense genomic heritabilities were estimated by 
fitting all SNPs together and were equal to 0.29 ±  0.04 
for BW, 0.33 ±  0.04 for BM and 0.24 ±  0.04 for HHP. 
These estimates agreed with those from our previous 
study using the same dataset but a different number of 
SNPs and a restricted maximum likelihood approach to 

(4)ED =

√

∑

i=1
(ai − bi)

2,

estimate variances [21]. The genomic heritability associ-
ated with each class of genomic regions in the separate 
(Scenario 1) and joint analyses (Scenario 3) is presented 
in Fig. 1. Estimates obtained by fitting the six classes of 
genomic regions separately or together differed sig-
nificantly: i.e. estimates from the separate analyses were 
much larger than those from the joint analysis for all 
classes of genomic regions and all traits. In the sepa-
rate analyses, the variance attributable to each class of 
genomic regions was overestimated because of the LD 
between SNPs in different regions, whereas in the joint 
analysis, all classes of genomic regions acted together 
and leveraged the polygenic basis of each trait, possi-
bly resulting in more accurate estimates. The mean LD 
(r2) 0.32 was observed for SNPs that were separated by 
<20 kb and it dropped to 0.21 when the distance between 
SNPs reached 100  kb for the current population. This 
amount of r2 was almost the same within and between 
SNPs in different genomic regions.

Interestingly, in both analyses, all classes of genomic 
regions made significant contributions to the narrow-
sense genomic heritability with the class of synonymous 
regions having a slightly stronger impact. If the esti-
mates of narrow-sense genomic heritability for each class 
of genomic regions in the separate analysis are added 
up, the genomic heritability would also be out of range. 
However, in the joint analysis, the sum of the six com-
ponent estimates was similar to the estimate from the 
whole-genome analysis for each trait. This reinforces the 
concept that LD causes single SNP regression (GWAS) 
to capture effects due to other SNPs, and the same is 
observed with variance component estimates.

In the joint analysis of BW, the estimated genomic her-
itability ranged from 0.05 to 0.10 for the different classes 
of genomic regions (Fig.  1). The largest estimate was 
attributed to the class of synonymous regions. For BM 
(joint analysis, Fig. 1), the estimates ranged from 0.05 for 
the class of missense regions to up to 0.09 for that of syn-
onymous regions, and the distribution of the estimates 
of genomic heritability over the six classes for BM was 
similar to that for BW. For HHP (joint analysis, Fig.  1), 
the estimated genomic heritability ranged from 0.06 for 
the class of missense regions to 0.07 for the UTR class. 
Differences in the relative contribution of each class of 
genomic regions were similar in the joint and separate 
analyses. However, the difference in estimates of genomic 
heritability between classes of genomic regions was 
larger in the separate analysis than in the joint analysis. 
The posterior standard deviations of the genomic herita-
bility in the separate analysis were larger than in the joint 
analysis.

Although the number of SNPs within coding DNA 
regions (synonymous and missense) was smaller than in 
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non-coding regions (introns and intergenic), the magni-
tude of the genetic variance for these regions was simi-
lar and, in some cases, larger than for the non-coding 
regions. In order to check the influence of number of 
SNPs within a class of genomic regions, we picked 1500 
random SNPs from each class and performed the same 
analysis to estimate genetic parameters with ten replica-
tions. The results (not shown here) produced a similar 
pattern as those for all the SNPs within each class. Hence, 
we concluded that our results were neither driven by dif-
ferences in allelic frequency distributions, which were 
similar (Table 1), nor by differences between the number 
of SNPs in genic and intergenic regions.

Estimates of additive and dominance genomic herita-
bility from the separate analysis for each class of genomic 
regions are in Table 2 (Scenario 2). Results were similar to 

those obtained with additive kernels only (Fig. 1). These 
results corroborated that all genomic regions contributed 
to the marked additive and dominance genetic variation 
and, for BW and BM, synonymous regions had the great-
est contribution to the additive genetic variance among 
all annotation classes. Relative to the estimates from the 
separate analysis in Fig.  1, for most genomic regions, 
there was a decrease in the estimates of the marked 
additive genomic heritability, which seemed to move to 
the marked dominance variance. Regardless of the trait 
under study, the contribution of dominance genomic 
variance to total genetic variation was negligible (~0.05) 
and the contributions of each class of genomic regions to 
dominance variance were almost the same.

The heat map and a hierarchical clustering indicated 
high similarity between additive genomic relationships 

Fig. 1 Marked genomic heritability estimates with SNPs partitioned into six classes of genomic regions for body weight (BW), ultra‑sound of 
breast muscle (BM) and hen house egg production (HHP). Red bars and blue bars show joint and separate analyses, respectively. “up‑down” indicates 
regions that are located 5 kb upstream and downstream of the gene. The whiskers represent 95 % confidence interval
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matrices that were computed by using SNPs within dif-
ferent genomic regions (Fig. 2). All genomic relationship 
matrices, except the dominance relationship matrices 
for intron and intergenic regions, were grouped in the 
same cluster. There was a large correlation between cor-
responding elements of G from different genomic regions 
(>0.90), with an average of 0.94. We also found that the 
correlation between corresponding elements of D was 
>0.83, with an average of 0.90. The correlation between 
additive and dominance relationships ranged from 0.70 
to 0.82 with an average value of 0.76. Thus, these genomic 
relationship matrices are not orthogonal to each other, 
and there is some confounding between the estimated 
parameters. This clearly complicates the separation and 
interpretation of estimates. Genomic relationship ker-
nels that are “orthogonal” to each other could probably 
enhance inference or prediction ability but such kernels 
are not straightforward to construct and further research 
is needed on this issue.

Predictive ability
Figure 3 represents the predictive correlation (left panel) 
and MSE (right panel) from the additive kernel (G) 
and additive and dominance kernels (G + D) for each 
genomic region [Scenarios (1), (2), respectively]. Here, 
each genomic region was analyzed separately, thus the LD 
between SNPs in different genomic regions can affect the 
results. The gain in predictive ability from the combined 
use of additive and dominance (G + D) kernels was neg-
ligible. In terms of predictive correlation, minor differ-
ences between classes of genomic regions were observed 
but, according to the MSE metric, all genomic regions 
performed similarly. For BW, when only additive or joint 
additive and dominance (G + D) kernels were fitted, the 
predictive correlation due to SNPs in synonymous and 
UTR genomic regions was greater than for other genic 
regions. The lowest predictive ability was obtained for 

the class of missense genomic regions. In general, for BW 
and BM, the predictive correlation obtained for differ-
ent classes of genomic regions was similar. Overall, our 
results indicated that all classes of genomic regions influ-
ence the prediction of yet-to-be observed phenotypes.

For HHP, when additive and dominance kernels 
(G + D) were fitted jointly, the class of intron regions 
had the largest predictive correlation, but this superior-
ity was not observed in terms of MSE. In agreement with 
genomic heritability estimates (Table  2), the MSE for 
genic regions was slightly smaller than for intron regions 
(HHP, Fig. 3).

Predictive ability of the six classes of genomic regions 
for BW, BM and HHP when the statistical model fitted 
all genomic regions jointly is shown in Fig.  4. In agree-
ment with the estimates of genomic heritability (Fig. 1), 
SNPs within the class of synonymous regions resulted 
in a better predictive correlation than other classes of 
genomic regions irrespective of trait, whereas in terms 
of MSE the predictive performance of the six classes of 
genomic regions was almost the same (Fig. 4). In terms of 
predictive correlation, the predictive abilities of the class 
of synonymous regions and of all sets of SNPs were the 
same whereas, in terms of MSE, using all SNPs resulted 
in a better predictive ability than when using any single 
class of genomic regions across all traits. The class of 
missense genomic regions led to the smallest predictive 
correlation.

Discussion
Which parts of the genome contribute relatively more to 
the genetic variation of a complex trait is an important 
question in quantitative genetics. In human and dairy 
cattle studies, missense SNPs are over-represented in 
trait-associated variants e.g., [3], which is in agreement 
with their major role for protein sequence changes [34]. 
More recently, with the availability of transcriptomic 

Table 2 Estimates of  additive and  dominance genomic heritability of  SNPs partitioned into  six classes of  genomic 
regions for body weight (BW), ultra-sound of breast muscle (BM) and hen house egg production (HHP)

Each genomic region was fitted separately

Numbers in italics indicate the largest estimates among all classes of genomic regions

h
2

mA
 Additive genomic heritability, h2

mD
 dominance genomic heritability, SD posterior standard deviation

Class of genomic regions BW BM HHP

h
2

mA
  ± SD h

2

mD
  ± SD h

2

mA
  ± SD h

2

mD
  ± SD h

2

mA
  ± SD h

2

mD
  ± SD

Intergenic 0.22 ± 0.04 0.05 ± 0.02 0.24 ± 0.05 0.07 ± 0.02 0.16 ± 0.04 0.05 ± 0.01

Intron 0.23 ± 0.03 0.05 ± 0.02 0.25 ± 0.05 0.06 ± 0.02 0.17 ± 0.04 0.06 ± 0.02

Missense 0.18 ± 0.03 0.04 ± 0.01 0.20 ± 0.03 0.04 ± 0.01 0.15 ± 0.03 0.05 ± 0.01

Synonymous 0.28 ± 0.05 0.04 ± 0.02 0.28 ± 0.05 0.05 ± 0.01 0.17 ± 0.04 0.05 ± 0.01

UTR 0.21 ± 0.04 0.05 ± 0.01 0.23 ± 0.04 0.07 ± 0.02 0.17 ± 0.04 0.06 ± 0.01

Up‑down stream 0.22 ± 0.04 0.06 ± 0.02 0.26 ± 0.05 0.07 ± 0.02 0.18 ± 0.04 0.05 ± 0.01

All markers 0.23 ± 0.04 0.06 ± 0.02 0.26 ± 0.05 0.07 ± 0.02 0.17 ± 0.04 0.06 ± 0.02
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data and findings from the ENCODE projects, it has 
been reported that 80 % of the genome has a biochemi-
cal function [1]. The statistical framework that was devel-
oped by Fisher [35] assumes that most traits are affected 
by an infinite number of genes and that each contribute 
very little to the variance of the trait, and are randomly 
distributed across the genome. Here, we partitioned the 
chicken genome into six classes of genic and non-genic 
regions and investigated their contribution to marked 
additive and dominance genetic variation, and to predic-
tive performance. We found that all classes of genomic 
regions contributed to genetic variation and that this 
contribution was slightly greater for SNPs within syn-
onymous regions. Variance component estimates can 
be regarded as measures of goodness of fit, but better fit 
will not necessarily lead to increased predictive accuracy 
for future samples because of issues such as model over-
fitting. In terms of MSE, all annotation classes resulted 
in a similar predictive ability regardless of the trait under 
study. The MSE is a better and more flexible metric for 
comparing models than predictive correlations. The pre-
dictive correlations are bounded between 0 and 1, while 

MSE can move from 0 to infinity. Furthermore, MSE 
addresses both prediction bias and variability, whereas 
predictive correlations provide only a measure of associa-
tion e.g., [36, 37].

Missense regions consistently yielded the lowest per-
formance, whereas synonymous regions produced the 
highest performance in terms of predictive correlations. 
However, the predictive ability of genic regions with a 
few 1000 SNPs was more or less the same as that of non-
genic regions with a hundred thousand SNPs. This agrees 
with the findings of Do et al. [11] who showed that pre-
dictive accuracy and prediction bias of genomic regions 
did not significantly differ from those of randomized SNP 
groups.

In agreement with the infinitesimal theory and with 
Morota et  al. [12], we found that the whole-genome 
approach is a better choice for prediction than using 
genomic regions individually. In general, our results high-
light the importance of having SNPs that cover the entire 
genome, which suggests that many nucleotides play a role 
in connecting genotypes to phenotypes.

Fig. 2 Heat map visualizing the degree of similarity between additive and dominance genomic relationship matrices for each genomic region. Very 
similar matrices are indicated in red and very dissimilar matrices are in white. Variable names that begin with an “A_” denote additive relationships 
and those with a “D_” denote dominance relationships. “up‑down” indicates regions that are located 5 kb upstream and downstream of the gene
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Our results for BW and BM agree with the findings 
of Koufariotis et  al. [9] who reported that synonymous 
parts of the genome explained a larger proportion of the 
additive variance than other genomic regions in dairy 
cattle. Importantly, recent studies have demonstrated 
some functional outcomes of synonymous mutations 
[10, 38]. In the fields of genetics and pharmacology, there 
is increasing interest for synonymous codon changes, 
which do not alter amino acids, [38, 39], since over 50 
human diseases have been associated with synonymous 
mutations [39]. Furthermore, some studies have reported 
that synonymous codons can affect protein folding and 

function of translated proteins and, therefore, may be 
under selective pressure [40]. Other functions for syn-
onymous mutations, such as the splicing of precursor 
mRNAs, alteration of the secondary structure of mRNA 
and effects on mRNA stability, have also been described 
[38, 39].

However, the association between SNPs in intron 
regions and complex traits cannot be ruled out since ele-
ments within introns have been demonstrated to have 
regulatory functions [41, 42]. Studies in human genet-
ics have found that the DNaseI hypersensitivity sites are 
some of the most enriched regions for trait-associated 

Fig. 3 Predictive correlations and prediction mean‑squared errors (MSE) resulting from different classes of genomic regions for body weight (BW), 
ultra‑sound of breast muscle (BM) and hen house egg production (HHP) from the separate analysis of additive (G) and additive + dominance 
(G + D) kernels for each genomic region. The results were based on a fourfold cross‑validation with 15 replications. “up‑down” indicates regions that 
are located 5 kb upstream and downstream of the gene. “All” means that all SNPs were used to construct G. The whiskers represent 95 % confidence 
intervals and overlapping bars are in bronze color
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SNPs [7]. Regulatory functions such as promoter, 
enhancer or transcription factor binding sites (TFBS) 
are located in the genomic regions of the upstream and 
downstream annotation classes, and Gusev et  al. [7] 
reported that this part of the genome is responsible for 
part of the genetic variation in 11 human diseases. A 
slightly better predictive performance of the class of 
intergenic regions for broiler traits was also suggested in 
other studies e.g., [12], and hundreds of structural and 
copy number variants in intronic and intergenic regions 
were identified in the two Silkie and Taiwanese native 
chicken breeds [43]. In general, our results suggest that 
the variants within the non-coding genome are also 

important, thus attention should not be limited to vari-
ants within the protein-coding regions only.

Our heat map and cluster analysis showed a high level 
of similarity between genomic relationships based on 
SNPs in different genomic regions. Hence, if a study aims 
at partitioning the genetic variation into different classes 
of genomic regions or into additive and non-additive 
components, larger sample sizes must be used and non-
orthogonality of genomic relationship matrices must be 
taken into account for proper interpretation. Increas-
ing sample size may improve the power of detecting and 
distinguishing between minor additive and non-additive 
effects.

Fig. 4 Predictive correlations and prediction mean‑squared error (MSE) for the six classes of genomic regions for body weight (BW), ultra‑sound of 
breast muscle (BM) and hen house egg production (HHP) from the joint analysis of all additive kernels (G1 + G2 + · · · + G6). The results were based 
on a fourfold cross‑validation with 15 replications. “up‑down” indicates regions that are located 5 kb upstream and downstream of the gene. “All” 
means that all SNPs were used to construct G. The whiskers represent 95 % confidence intervals
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In agreement with our results, Yang et  al. [8] parti-
tioned the genome into genic and non-genic regions and 
found that genic regions explained more genetic varia-
tion than intergenic regions for height and body mass 
index (BMI) in humans. Morota et  al. [12] found that, 
for BW and HHP, non-genic regions performed margin-
ally better than genic regions, while for BM, genic regions 
resulted in a better predictive performance than non-
genic regions. However, there are differences between 
our study and that of Morota et  al. [12]. In the later, 
coding DNA sequences were clustered together and a 
tenfold CV design was used, while in our study, annota-
tion classes were distinct and a fourfold CV layout was 
used. We also used a multiple-kernel approach, while in 
Morota et al. [12] a single-kernel approach was applied. A 
multiple-kernel approach helps to eliminate signals that 
one annotation class has on another annotation class.

We observed that additive genetic variance had a major 
contribution to total genetic variance. Several studies 
have reported that the contribution of non-additive vari-
ance to total variation is minor [44, 45], while evidence 
of interactions within and between loci is pervasive [45]. 
Mäki-Tanila and Hill [46] concluded that multilocus 
interactions make significant contributions to the addi-
tive variance and does not lead to large increases in the 
non-additive genetic variance, but if the heterozygo-
sity level is high at multiple loci, epistatic loci explain a 
large part of the non-additive variance. However, Munoz 
et  al. [14] showed that, for tree height, additive and 
non-additive components of the genetic variance were 
similar in magnitude. Quantifying non-additive genetic 
variance precisely requires the setting-up of orthogonal 
additive and dominance genomic relationship matrices 
(kernels) and the assumption of LE [47]. LD exacerbates 
non-orthogonality [18, 48] and construction of orthogo-
nal kernels needs further investigation. Therefore, the 
decomposition of the variance obtained in this study via 
the two kernels (G + D) must be interpreted with cau-
tion, because we cannot rule out the possibility that a 
single kernel captures multiple sources of genetic vari-
ation. Morota et  al. [18] reported that, for health traits 
in dairy cattle, the non-additive genetic variance con-
tributed greatly to the genetic variance. However, our 
results showed that the contribution of dominance vari-
ance to total variance was negligible, and that all genic 
and non-genic regions represented similar contributions 
to the dominance variation captured by SNPs. Visscher 
et  al. [49], using identity-by-descent (IBD) coefficients, 
showed that additive and dominance relationship coef-
ficients were highly correlated (theoretical correlation 
was equal to 0.89), with an empirical correlation between 
additive and dominance relationships of 0.91. This illus-
trates that partitioning genetic variance into additive and 

dominance variance is indeed very difficult. In terms of 
predictive ability, our findings agree with a recent study 
on Fleckvieh cattle, where inclusion of dominance in the 
model did not increase the accuracy of predicted breed-
ing (and total genetic) values of milk production and con-
formation traits [50].

There are some limitations in our study, i.e. (1) small 
sample size; although our sample of 1346 birds was suf-
ficient to estimate the heritability for BW with a reason-
able precision, for traits with a smaller heritability such 
as HHP (or for separating additive variance from domi-
nance variance), larger sample sizes are necessary; (2) 
the precision of the annotated chicken genomic regions 
was maybe not sufficiently high, but one can assume that 
in the near future more precisely annotated data will be 
available; (3) a genomic annotation study using a ~300K 
SNP dataset cannot include all genic and non-genic 
SNPs; the availability of whole-genome sequence data 
is expected to identify all causal SNPs and, thus, results 
should be more accurate given the large size of the gen-
otyped samples [51]. However, it has been argued that 
whole-genome sequencing data would not significantly 
improve predictive correlations using current genomic 
relationship-based methods (e.g., GBLUP or single step 
GBLUP) [52, 53]; (4) due to non-orthogonality between 
additive and dominance relationships, it was difficult to 
disentangle the additive variance from the dominance 
variance; with larger datasets, the issue of the correlation 
between additive and dominance coefficients should be 
less important, and additional non-additive effects, such 
as additive-by-additive or additive-by-dominance inter-
actions could be estimated [49]; and (5) the variants that 
we investigated represent a set of SNPs that were selected 
to have a high MAF and to be evenly spaced across the 
genome (ascertainment bias), rather than a complete 
set of variants in the population. With the availability of 
whole-genome sequence data, this limitation should be 
alleviated.

Conclusions
Our results provide information about the quantita-
tive impact of coding and non-coding DNA regions on 
complex traits. All genomic regions regardless of the 
trait under study contribute similarly to the additive and 
dominance variances. However, the contribution of dom-
inance variance to the total genetic variation was minor 
compared to that of the additive variance. In agreement 
with variance component estimates, the predictive abil-
ity of all genomic regions was similar except for the class 
of missense regions, which led to a lower predictive cor-
relation. However, the whole-genome approach provided 
a better predictive ability than that obtained from classes 
of genomic regions considered individually.
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