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Genomic BLUP including additive 
and dominant variation in purebreds and F1 
crossbreds, with an application in pigs
Zulma G. Vitezica1,2*, Luis Varona3,4, Jean‑Michel Elsen2, Ignacy Misztal5, William Herring6 and Andrès Legarra2

Abstract 

Background:  Most developments in quantitative genetics theory focus on the study of intra-breed/line concepts. 
With the availability of massive genomic information, it becomes necessary to revisit the theory for crossbred popula‑
tions. We propose methods to construct genomic covariances with additive and non-additive (dominance) inherit‑
ance in the case of pure lines and crossbred populations.

Results:  We describe substitution effects and dominant deviations across two pure parental populations and the 
crossbred population. Gene effects are assumed to be independent of the origin of alleles and allelic frequencies can 
differ between parental populations. Based on these assumptions, the theoretical variance components (additive and 
dominant) are obtained as a function of marker effects and allelic frequencies. The additive genetic variance in the 
crossbred population includes the biological additive and dominant effects of a gene and a covariance term. Domi‑
nance variance in the crossbred population is proportional to the product of the heterozygosity coefficients of both 
parental populations. A genomic BLUP (best linear unbiased prediction) equivalent model is presented. We illustrate 
this approach by using pig data (two pure lines and their cross, including 8265 phenotyped and genotyped sows). For 
the total number of piglets born, the dominance variance in the crossbred population represented about 13 % of the 
total genetic variance. Dominance variation is only marginally important for litter size in the crossbred population.

Conclusions:  We present a coherent marker-based model that includes purebred and crossbred data and additive 
and dominant actions. Using this model, it is possible to estimate breeding values, dominant deviations and vari‑
ance components in a dataset that comprises data on purebred and crossbred individuals. These methods can be 
exploited to plan assortative mating in pig, maize or other species, in order to generate superior crossbred individuals 
in terms of performance.

© 2016 Vitezica et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Crossbreeding schemes are widely used in animal and 
plant breeding for the purpose of exploiting the het-
erosis and breed complementarity that often occur in 
crosses [1]. The main goal of crossbreeding is to improve 
the performance of crossbred populations. Pure breed/
line performance is an imperfect predictor of crossbred 
performance; there are two reasons that explain this 
incomplete correlation between purebred and crossbred 

populations. First, phenotypic measurements on pure-
bred/line individuals are often recorded in only one 
environment (e.g., management) that differs from the 
environment in which the crossbred individuals are 
raised (genotype-by-environment interaction). Second, 
non-additive genetic effects, such as dominance and/or 
epistasis, which likely determine heterosis, may result 
in different breeding values between purebreds and 
crossbreds.

In the case of dominant inheritance, the theory of 
pedigree-based genetic evaluation and estimation of 
genetic parameters for crossbred populations was pro-
posed by Lo et al. [2, 3]. In this model, each individual 
has two genetic values, one on the purebred scale and 
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one on the crossbred scale. In the absence of inbreed-
ing, it is necessary to estimate nine genetic variance 
components for an F1 cross between breeds/lines (A 
and B): additive variance for breed A, dominance vari-
ance for breed A, additive variance for breed B, domi-
nance variance for breed B, additive variance for the 
F1 population due to the effects of the alleles inherited 
from breed A, additive variance for the F1 population 
due to the effects of the alleles inherited from breed B, 
the dominance variance for the F1 population, additive 
covariance between a parent from breed A and an F1 
offspring, and the additive covariance between a par-
ent from breed B and an F1 offspring. Although the rel-
evance of the crossbred model has been shown [4, 5], 
its use in applied breeding programs is limited, because 
pedigree relationships between purebred and crossbred 
individuals are often not known, and large datasets on 
crosses are needed [6].

Genomic approaches offer tools that allow to per-
form much deeper analyses, and thus, to understand 
the effects and the mechanisms of the genes and their 
interactions that underlie complex traits and to explore 
new directions for their improvement [7]. In addition, 
genomic evaluation renews the interest in crossbred indi-
viduals because they can be used as training animals [8]. 
In the case of additive inheritance, a joint genomic evalu-
ation of purebred and crossbred individuals was pro-
posed [9]. Toosi et al. [10] and Zeng et al. [11] extended 
this approach in order to include dominance. All these 
studies focused on the selection of purebred individuals 
for crossbred performance. However, the formal defini-
tion of substitution effects and dominant deviations and 
the estimation of genetic variance components in two 
breeds/lines and the F1 population have not been revis-
ited so far within the genomic framework. This is needed 
for correct genetic evaluation and for planning selection 
schemes. The additive variances due to the gametes from 
the pure lines that compose the F1 population are an 
indicator of how much can be gained by selection. Esti-
mation of dominance variance for the F1 individuals can 
be considered as a predictor of the variability of specific 
combining ability, i.e. how relevant is assortative mat-
ing between purebred lines to maximize the phenotype 
at a trait of interest in the F1 population. As an example, 
a common procedure in maize breeding is to use “test-
ers” to evaluate the performance of a pure line as a parent 
in a cross. If the level of dominance variance is high, the 
use of testers might severely bias selection towards those 
lines that combine adequately with a particular tester. 
In practice, the estimated variance components serve as 
a guide for choosing breeds/lines with good combining 
abilities (e.g., pigs, corn, etc.) in animal and plant breed-
ing schemes.

The objective of this work was twofold. First, we decom-
posed variance components for an F1 population using a 
genomic model with additive and non-additive (dominance) 
inheritance. Second, we applied the approach to estimate 
variance components using pig data. To our knowledge, 
there is no published description of the theoretical variance 
components (additive and dominant) in terms of substitu-
tion effect across two pure populations and the crossbred 
population. The next section describes the theory on which 
the estimation of genotypic values is based using GBLUP.

Theory
An F1 population involves gametes from the parental 
populations 1 and 2. If dominance is present, and because 
allelic frequencies differ in each breed, the within-breed 
(additive) substitution effects are not equal to the substi-
tution effects across the F1 population. Thus, purebred 
individuals have different breeding values depending on 
whether they are mated to individuals from the same or 
another breed/line. This situation is well known [3, 12, 
13], and holds even if the genotype effects are constant 
across breeds or crossbred individuals.

Consider one locus/gene and two non-inbred popula-
tions, P1 and P2 that are each in Hardy–Weinberg equi-
librium. An individual from P1 is crossed with a random 
individual from P2. Individuals in the F1 population have 
genotypes B1B2, B1b2, b1B2 or b1b2 where subscripts 1 
and 2 indicate the origin of the allele, i.e. populations 1 or 
2, respectively. The genotypic value G of an individual in 
the crossbred population F1 is equal to:

where a and d are deviations from the midpoint of the 
two homozygotes, and correspond to the (biological) 
additive and dominant effects of the gene, respectively. 
Let us assume that the genotypic values (a, d and −a) are 
the same in the two parental populations and the cross-
bred population F1 (this assumption will be relaxed later) 
[1], the genetic mean of the F1 population is therefore:

where p and q = 1− p are the allelic frequencies of B1 
and b1 in population 1, and p′ and q′ are the allelic fre-
quencies of B2 and b2 in population 2. If the difference 
in allele frequencies between the two populations is 
denoted by y = p− p′ = q′ − q, the genetic mean is, as 
in Falconer [1], equal to:

Following the classical parameterization, the geno-
typic values of individuals in the F1 population are the 
sum of the additive (or breeding) effects of the gametes 
that originate from populations P1 and P2 (u1 or u2) and 

GB1B2 = a, GB1b2 andGB2b1 = d andGb1b2 = −a,

E(G) =
(

pp′ − qq′
)

a+
(

pq′ + qp′
)

d,

E(G) =
(

p− q − y
)

a+ [2pq + (p− q)y]d.
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a dominant deviation (v) which depends on the combina-
tion of alleles received [14]:

where u1 is the additive effect of a gamete from popula-
tion 1 combined with a gamete from population 2, which 
differs from the effect of the gamete within the same pop-
ulation. Thus, u1 and u2 represent the general combining 
ability (GCA) of alleles B1 or b1, and B2 or b2, whereas v 
is the specific combining ability (SCA) between alleles B1 
or b1, and B2 or b2. An equivalent expression that is often 
used in plant breeding is:

where the performance of an individual i is evaluated in 
terms of its average performance when it is crossed with 
another individual j [13].

Additive values u1 and u2 of the gametes include a sub-
stitution effect for each gene. Thus, α1 is the additive 
(or breeding) effect of the gametes from population 1 
crossed with population 2, and α2 the additive (or breed-
ing) effect of the gametes from population 2 crossed with 
population 1, which are equal to:

From the expression, σ 2
G = E

(

G2
)

− (E(G))2, the total 
genetic variance for the F1 population is equal to:

We can partition the genetic variance σ 2
G into compo-

nents due to individual additive value (breeding values, 
u ), and dominance deviations (v). The additive genetic 
variance for the F1 population is:

where σ 2
A1

= 2pq(α1)
2 and σ 2

A2
= 2p′q′(α2)

2.
The part of variance for each population is:

(1)G = E(G)+ u1 + u2 + v,

G = E(G)+ GCAi + GCAj + SCAij ,

α1 = a+ d
(

q′ − p′
)

and α2 = a+ d(q − p).

σ 2
G =

(

pq + p′q′
)

a2 − 2
(

1− q − q′
)(

pq′ + p′q
)

ad

+
(

pq + p′q′ − 4pqp′q′
)

d2.

σ 2
A =

1

2
σ 2
A1

+
1

2
σ 2
A2
,

σ 2
A1

= 2pq(α1)
2

= 2

[

pqa2 + 2pq
(

q′ − p′
)

ad + pq
(

q′ − p′
)2
d2

]

,

(2)σ 2
A1

= 2pq
[

a+
(

q′ − p′
)

d
]2
,

σ 2
A2

= 2p′q′(α2)
2

= 2

[

p′q′a2 + 2p′q′(q − p)ad + p′q′(q − p)2d2
]

,

(3)σ 2
A2

= 2p′q′[a+ (q − p)d]2.

σ 2
A1

 (σ 2
A2
) is the variance of the GCA of the alleles of 

individuals from population 1 crossed to individuals 
from population 2 (alleles of individuals from population 
2 crossed with individuals from population 1) or it can 
also be considered as the additive variance of gametes 
inherited from population 1 (from population 2) in the F1 
population as in Lo et al. [3].

The variance of the GCA (σ 2
A) is an important param-

eter to understand if selection of purebred individuals 
can increase crossbred performance [1]. If variance of 
the GCA explains a large part of the total genetic vari-
ance for the F1 population, it means that within-pop-
ulation selection will result in a large increase of the 
crossbred performance, without resorting to specific 
matings to create crossbreds with large dominance 
deviations.

The term ad appears in σ 2
G but is completely embedded 

in σ 2
A1

 and σ 2
A2

. This term differs from 0 if there is covari-
ance between a and d, i.e. if a and d are of the same mag-
nitude and direction or if there is overdominance. This 
covariance between additive and dominant effects of 
genes implies the presence of inbreeding depression or 
heterosis. Different models have been proposed to take 
the dependency between additive and dominant effects 
into account [15].

Thus, based on Eq. (2) and (3), we can write the addi-
tive variance for the F1 population as:

Using this last expression of σ 2
A and the expression of 

the total genetic variance, i.e. σ 2
G = σ 2

A + σ 2
D, the variance 

for the dominance deviation (v) can be obtained as:

where the first and second terms correspond to the total 
genetic variance and the breeding value (or GCA) vari-
ance, respectively. Thus, the dominance genetic variance 
or the variance of the SCA is equal to:

which leads to the result obtained for a single population 
if p = p′ (e.g., [1]).

If a and d effects are considered as random variables 
with a covariance of 0 between a and d, variance com-
ponents for the F1 population can be obtained from 
these expressions using markers in a GBLUP context as 
detailed in the next section.

σ 2
A = pq

[

a+
(

q′ − p′
)

d
]2

+ p′q′[a+ (q − p)d]2.

σ 2
D = σ 2

G − σ 2
A,

σ 2
D =

[

pq
(

1− 2p′q′
)

+ (p′q′(1− 2pq)
]

d2

−
[

pq
(

1− 2p′
)

+ (p′q′(1− 2p)
]

d2,

(4)σ 2
D = 4pqp′q′d2,
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Equivalent genomic model based on SNPs
A model including (biological) additive and dominant 
effects of the SNPs can be written in matrix form for a set 
of individuals as [16]:

where y is the phenotypic value of individuals, µ is the 
population mean and e is the residual. Additive effect a 
and dominant effect d vectors are included for each of 
the SNP markers. The matrix Z = (z1 . . . zm) is equal to 
1, 0, −1, for SNP genotypes BB, Bb and bb, respectively. 
For the dominant component, W = (w1 . . .wm) is equal 
to 0, 1, 0 for SNP genotypes BB, Bb and bb, respectively. 
This model is general and applies to any population 
structure (purebred or crossed), as far as effects a and d 
are assumed constant across populations.

From this genotypic model, we can define u∗ and v∗ as 
the genotypic additive and dominant effects, i.e. the parts 
that are attributed to the additive and dominance “biologi-
cal” effects [17, 18] of the markers for the whole population 
(individuals from populations 1 and 2 and the crossbred 
population F1). Note that ‘biological’ is used here to refer 
to genotypic additive and dominant values of the SNP, to 
distinguish it from the traditional treatment of quantita-
tive genetics in terms of “statistical” effects (breeding val-
ues and dominance deviations). So for a set of individuals 
u∗ = Za and v∗ = Wd. Under standard assumptions, the 
covariances across genotypic additive values are:

where σ 2
a  is the SNP variance for additive component. 

Then, the normalized matrix is:

The division by 
{

tr
[

ZZ′
]}

/n where n is the number of 
individuals scales the matrix to an average of the diagonal 
elements equal to 1. This covariance matrix is similar to 
the classical G matrix of genomic BLUP [19], but with a 
different variance component i.e. σ 2

A∗, the variance com-
ponent that is associated to the genotypic additive values 
(this is not a genetic variance per se since it cannot be 
interpreted as the variance of the population). Based on 
σ 2
A∗, the SNP variance for the additive component can be 

obtained as σ 2
a =

σ 2
A∗

{tr[ZZ′]}/n
.

Then, the covariance of genotypic values due to domi-
nance is:

where σ 2
D∗ is the variance component associated to geno-

typic dominant values. The SNP variance for the domi-
nance component can be obtained as:

y = 1µ+ Za +Wd + e,

Cov
(

u∗
)

= ZZ′σ 2
a ,

Cov
(

u∗
)

=
ZZ′

{

tr
[

ZZ′
]}

/n
σ 2
A∗ .

Cov
(

v∗
)

=
WW′

{

tr
[

WW′
]}

/n
σ 2
D∗ ,

Therefore, the genotypic model is an equivalent model, 
which is useful to go from variance components (σ 2

A∗, 
σ 2
D∗ ), with no particular interpretations, to marker vari-

ances (σ 2
a , σ

2
d).

To estimate SNP variance, additive and dominance 
genetic variances in the F1 population are obtained from 
Eqs. (2), (3) and (4) extended to multiple loci. The exten-
sion to multiple loci assumes linkage equilibrium and 
uncorrelated marker effects which are standard assump-
tions [19]. To estimate additive variances, we also assume 
a covariance of 0 between a and d. Thus, the additive 
genetic variance due to alleles from population 1 in the F1 
population can be written as:

and the additive genetic variance due to alleles from pop-
ulation 2 in the F1 population as:

This equation is the variance of GCA among individu-
als from population 2 crossed with individuals from pop-
ulation 1. It should be recalled that the additive genetic 
variance for the F1 population is equal to:

We can also write the dominance genetic variance for 
the F1 population as:

For the additive and dominance genetic variances in 
the parental breeds/lines, expressions are in Vitezica 
et al. [18]. For instance, for population 1 (P1) with allele 
frequencies p and q, variances are equal to:

 and

Therefore, this approach allows to estimate variance 
components for the F1 population under a genomic model 
with additive and non-additive (dominance) inheritance. 
The three variance components in Eqs. (5), (6) and (7) do 
have an interpretation in terms of variances of breeding 
values (or GCA) and of dominant deviations (or SCA).

σ 2
d =

σ 2
D∗

{

tr
[

WW′
]}

/n
.

(5)σ 2
A1

=
∑

(2piqi)σ
2
a +

∑

(2piqi
(

q′i − p′i
)2
)σ 2

d ,

(6)σ 2
A2

=
∑

(

2p′iq
′
i

)

σ 2
a +

∑

(

2p′iq
′
i(qi − pi)

2
)

σ 2
d .

σ 2
A =

1

2
σ 2
A1

+
1

2
σ 2
A2
.

(7)σ 2
D =

∑

(4piqip
′
iq

′
i)σ

2
d .

σ 2
AP1

=
∑

(2piqi)σ
2
a +

∑

(2piqi(qi − pi)
2)σ 2

d ,

σ 2
DP1

=
∑

(2piqi)
2σ 2

d .
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The biological additive and dominant effects of SNPs 
may not be the same across the different populations, due 
to genotype by environment or genotype by genotype 
(i.e. epistasis) interactions.

A simple alternative is to model marker effects as cor-
related across populations [20], which implies correlated 
u∗ and v∗ [21, 22]. This generalizes the methods above.

Methods
In this section, we illustrate the partition of variance 
components (additive and dominant) across two pig 
lines 1 and 2 and the crossbred population. Data for this 
study were provided by Genus plc (Hendersonville, TN, 
USA). Animal Care and Use Committee approval was not 
obtained for this study because the data were obtained 
from an existing database.

Lines 1 and 2 were two unrelated lines, and popula-
tion 12 consisted of both reciprocal crosses of animals 
from lines 1 and 2. Data on litter size (total number of 
piglets born per litter) were analyzed. The average lit-
ter size was equal to 12.68  ±  3.07, 13.15  ±  3.20 and 
13.64 ± 3.16 for lines 1 and 2 and population 12, respec-
tively. A total of 34,753 records were available for 8265 
sows. Genotypes for all sows were generated using the 
Illumina PorcineSNP60 BeadChip (Illumina, San Diego, 
CA). After quality control, i.e. after excluding genotypes 
with a minor allele frequency lower than 0.05 and a SNP 
call rate less than 0.90 in the overall population, 40,634 
SNPs remained and were used to build genomic relation-
ship matrices. Animals with a call rate less than 0.90 were 
removed. Thus, the number of sows with genotypes was 
equal to 3509, 2706 and 2050 in lines 1 and 2 and popula-
tion 12, respectively.

Phenotypes were collected for the genetic nucleus 
(pure lines) and commercial herds (crosses). Records 
were analyzed using a GBLUP (mixed) model. Fixed 
effects included parity order, farm, year and month of 
farrowing, and mating type (artificial insemination or 
natural service).

To estimate the variance components, lines 1 and 2 and 
population 12 were considered as three different traits 
with correlations between pure and cross lines [3]. This 
model is equivalent to a model where marker effects are 
correlated across populations [20–22] and assumes that 
additive and dominant effects of a gene (a1, a2, a12 and 
d1, d2, d12) are not necessarily the same in the three pop-
ulations. Quantitative trait loci (QTL) that segregate in 
different breeds are not necessarily identical. In addition, 
linkage disequilibrium between SNPs and QTL can differ 
between populations. Even with causal genes, the effects 
may differ, which was confirmed by experimental results. 
One example is the bovine myostatin gene (GDF8), i.e. 
both the Belgian Blue and South Devon breeds carry the 

same GDF8 mutation, but they have different conforma-
tion and double-muscling phenotypes [23]. Functional 
mutations in the GDF8 gene appear to be breed-specific 
[24]. Effects can be population-specific and the variation 
can be interpreted as a dependency of the gene effect on 
the environmental (GxE) and genetic (i.e. epistasis) back-
grounds. Parental pure lines and the F1 population have 
only half of their genetic background in common.

In order to estimate the genetic parameters (additive 
and dominant variances) for the F1 population based on 
SNPs, the multivariate model that includes purebred and 
crossbred performances was as follows:

where µ is the population mean, u∗ and v∗ are the geno-
typic additive and dominant effects, p is the permanent 
environmental effect and e is the residual. The covariance 
matrix for additive effects is expressed as:

where G is a normalized genomic additive relationship 
matrix constructed as G = ZZ′

{tr[ZZ′]}/n
; Z contains values 

of {1, 0,−1} for each genotype; and Go is a 3 × 3 covari-
ance matrix as follows:

with the variances for the pure lines and the F1 popula-
tion on the diagonal, and the covariances between pure-
bred and crossbred additive effects on the off-diagonals. 
It should be noted that these variances are not the genetic 
variances of the populations (lines 1 and 2 and popula-
tion 12). Based on these variances, it is possible to obtain 
the SNP additive variance of each pure line (σ 2

a1
, σ 2

a2
) and 

the F1 population (σ 2
a12

) e.g., as:

The covariance matrix for dominant effects is as 
follows:

where D is a normalized genomic dominant rela-
tionship matrix constructed as indicated above with 
D = WW′

{tr[WW′]}/n
, W contains values of {0, 1, 0} for each 

genotype, and Do is:

y = Xµ+ u∗ + v∗ + p+ e,

Var





u∗1
u∗2
u∗12



 = Go ⊗ G,

Go =







σ 2
A∗
1

σA∗
1A

∗
2
σA∗

1A
∗
12

σA∗
1A

∗
2

σ 2
A∗
2

σA∗
2A

∗
12

σA∗
1A

∗
12

σA∗
2A

∗
12

σ 2
A∗
12






,

σ 2
a1

= σ̂ 2
A∗
1
/
({

tr
[

ZZ′
]}

/n
)

.

Var





v∗1
v∗2
v∗12



 = Do ⊗ D,
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SNP dominance variances (σ 2
d1
, σ 2

d2
, σ 2

d12
) are 

obtained similarly, e.g., as σ 2
d1

= σ̂ 2
D∗
1
/
({

tr
[

WW′
]}

/n
)

.  
The covariance matrices for permanent envi-
ronmental and residual effects are as fol-

lows: Var





p1
p2
p12



 =





σ 2
p1

0 0

0 σ 2
p2

0

0 0 σ 2
p12



⊗ I3 , and 

Var





e1
e2
e12



 =





σ 2
e1

0 0

0 σ 2
e2

0

0 0 σ 2
e12



⊗ I3, respectively.

Inbreeding was included in the model as a covari-
ate. A molecular metrics of inbreeding, defined as the 
proportion of genotyped SNPs at which an individual 
is homozygous [25], was used. It was calculated as the 
within-individual average homozygosity (FHo) across all 
SNPs using the following formula:

where NAA, NAa and Naa refer to the numbers of SNPs 
that are classified as AA, Aa, and aa, respectively.

Variance components for the genomic model (GBLUP 
model) and for a pedigree-based model (PED model, 
not including dominance) were estimated by EM-REML 
(expectation maximization restricted maximum likeli-
hood) using the software remlf90 ([26]; available at http://
nce.ads.uga.edu/wiki/doku.php), plus an additional 
iteration of AIREML to obtain the average information 
matrix. It should be noted that estimated values of σ 2

A∗ 
and σ 2

D∗ have per se no meaningful genetic interpretation.
Additive and dominance variance components at the 

SNP level (σ 2
a1
, σ 2

a2
, σ 2

a12
 and σ 2

d1
, σ 2

d2
, σ 2

d12
) were back-

solved (dividing by 
{

tr
[

ZZ
′
]}

/n) and 
{

tr
[

WW′
]}

/n)  
from variance component estimates (σ 2

A∗
1
, σ 2

A∗
2
, σ 2

A∗
12

 and 
σ 2
D∗
1
, σ 2

D∗
2
, σ 2

D∗
12

 , respectively) for the three populations. 
Genetic variance components for the F1 population were 
obtained from Eqs.  (5), (6) and (7). Asymptotic standard 
errors of variance component estimates were obtained as in 
[27].

Results and discussion
Heritability
To verify whether the correct genetic parameters could 
be estimated using our approach, the heritability esti-
mates obtained with the traditional pedigree-based 

Do =







σ 2
D∗
1

σD∗
1D

∗
2
σD∗

1D
∗
12

σD∗
1D

∗
2

σ 2
D∗
2

σD∗
2D

∗
12

σD∗
1D

∗
12

σD∗
2D

∗
12

σ 2
D∗
12






.

FHo =
NAA + Naa

NAA + NAa + Naa
,

model, PED, were compared to those obtained using the 
genomic GBLUP model. Narrow-sense (additive) herit-
ability coefficients estimated within-line for litter size are 
in Table 1.

Estimated heritability coefficients across models (PED 
vs. GBLUP) were similar. They were close to 0.10 and 
consistent with those reported by Nielsen et al. [28] and 
Guo et al. [29]. Our estimated heritability coefficients for 
total number of piglets born per litter were also consist-
ent with the average heritability (0.11) reported in the 
review by Rothschild and Bidanel [30].

Genetic variances
Additive and dominance variance components that were 
estimated for pure lines and the F1 population are in 
Table 2. Results show how important it is to estimate the 
variances for the F1 population and point out that within-
line variances cannot be directly related to variances for 
the F1 population. Estimates of dominance variance for 
litter size based on pedigree data have been reported in 
the literature [6, 31, 32] and were equal to 25  % of the 
estimated additive genetic variance for litter size. With 
our genomic model, dominance variance for litter size, 
was equal to about 15 % of the additive genetic variance 
and was reasonably consistent with the pedigree-based 
estimates reported in the literature. Dominance variance 
for the F1 population represents only a small fraction of 
the total genetic variance i.e. 13 %, which agrees with the 
results obtained by Misztal et  al. [32]. Dominance vari-
ance for litter size was found to be slightly greater for the 
F1 population than for the parental lines. Hence, the 
common belief that low heritability in the narrow sense 
of the term can hide clearly higher heritability in the 
broad sense of the term is not supported by the estimated 
dominance variances.

The theory presented in this paper and illustrated with 
these results makes it possible to estimate breeding val-
ues and dominance deviations, and to estimate domi-
nance variance for a crossbred population for different 
traits. It can also be used for more accurate predictions 
and to assess the relevance of assortative mating in spe-
cies such as pigs or maize, in order to increase the perfor-
mance of offspring.

Table 1  Narrow-sense heritabilities for  litter size in  pure 
pig lines under pedigree-based (PED) and genomic multi-
ple-trait (GBLUP) models

Model Line 1 Line 2

PED 0.101 ± 0.019 0.102 ± 0.021

GBLUP 0.094 ± 0.014 0.103 ± 0.015

http://nce.ads.uga.edu/wiki/doku.php
http://nce.ads.uga.edu/wiki/doku.php


Page 7 of 8Vitezica et al. Genet Sel Evol  (2016) 48:6 

Genomic correlations
In the GBLUP model, litter size in pure lines and the F1 
population was analyzed as three traits using a multi-
ple-trait approach (Table  3). The additive correlation of 
breeding values between pure lines and the F1 population 
refers to the linear association between breeding values 
of individuals. Selection within the parental lines without 
including crossbred performance (e.g., in pigs) implic-
itly assumes that the additive correlation between pure 
lines and the F1 population is equal to 1. As expected, 
additive correlations of both lines with the F1 population 
are favorable, although less than 1. These values explain 
the effectiveness of selection on pure lines in breed-
ing programs. Our results show that selection within 
line 2 is more effective than within line 1 for crossbred 
performance.

Table 3 presents the additive and dominance genotypic 
correlations for markers (a and d) between pure lines and 
the F1 population. The estimated additive genotypic cor-
relation between lines 1 and 2 was equal to 0.78 (Table 3). 
This indicates that the biological additive effects of SNPs 
are similar between these lines. Estimating correlations 
between nominally unrelated lines may seem strange, but 
genomic relationships allow this estimation. Similar cor-
relations for milk yield were obtained by Karoui et al. [21] 
between dairy breeds.

For dominance genotypic correlations (Table  3), the 
values were low regardless of the population, which indi-
cates that dominant effects differ in each population, and 
that, in practice, assortative mating between two geno-
types that would be profitable within, say, line 1 may not 
be so profitable in the F1 population.

Estimates of inbreeding depression, for which the 
inbreeding coefficient was calculated as the average 
homozygosity for litter size, were equal to −12.90 ± 2.29 
and −10.74 ±  3.03 for lines 1 and 2, respectively. Esti-
mates of inbreeding depression for pure lines expressed 
as the change in phenotypic mean per 10  % increase in 
inbreeding were equal to −1.29 and −1.07 piglets born.

Conclusions
Assuming that SNP effects are independent of the ori-
gin of alleles and that allelic frequencies differ between 
parental populations, we show that the genetic variance 
for the F1 population includes the biological additive 
and dominant effects of the gene and a covariance term. 
Genetic variance can be partitioned into additive vari-
ance (due to substitution effects of the parental gametes) 
and dominance deviations. Breeding values of cross-
bred individuals are generated by substitution effects, 
where the effects for each parental line depend on the 
allele frequencies from the other line. In addition, domi-
nance variance is proportional to the product of the het-
erozygosities of both lines. If the biological additive and 
dominant effects of markers are considered random with 
the covariance between them equal to 0, genetic vari-
ance components for the F1 population can be obtained 
using an equivalent GBLUP model based on SNPs. The 
method presented here allows selection for specific com-
bining ability, i.e. selection of a specific pair of parents to 
produce superior F1 individuals, in a GBLUP evaluation 
framework. The identification of superior F1 individu-
als between inbred/pure lines is an important focus of 
research in animals and plants [33].
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