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Accuracy of prediction of simulated 
polygenic phenotypes and their underlying 
quantitative trait loci genotypes using real or 
imputed whole‑genome markers in cattle
Saeed Hassani1,2, Mahdi Saatchi2, Rohan L. Fernando2 and Dorian J. Garrick2* 

Abstract 

Background:  More accurate genomic predictions are expected when the effects of QTL (quantitative trait loci) are 
predicted from markers in close physical proximity to the QTL. The objective of this study was to quantify to what 
extent whole-genome methods using 50 K or imputed 770 K SNPs (single nucleotide polymorphisms) could predict 
single or multiple QTL genotypes based on SNPs in close proximity to those QTL.

Methods:  Phenotypes with a heritability of 1 were simulated for 2677 Hereford animals genotyped with the 
BovineSNP50 BeadChip. Genotypes for the high-density 770 K SNP panel were imputed using Beagle software. Vari-
ous Bayesian regression methods were used to predict single QTL or a trait influenced by 42 such QTL. We quantified 
to what extent these predictions were based on SNPs in close proximity to the QTL by comparing whole-genome 
predictions to local predictions based on estimates of the effects of variable numbers of SNPs i.e. ±1, ±2, ±5, ±10, 
±50 or ±100 that flanked the QTL.

Results:  Prediction accuracies based on local SNPs using whole-genome training for single QTL with the 50 K SNP 
panel and BayesC0 ranged from 0.49 (±1 SNP) to 0.75 (±100 SNPs). The minimum number of local SNPs for an accu-
rate prediction is ±10 SNPs. Prediction accuracies that were based on local SNPs only were higher than those based 
on whole-genome SNPs for both 50 K and 770 K SNP panels. For the 770 K SNP panel, prediction accuracies were 
higher than 0.70 and varied little i.e. between 0.73 (±1 SNP) and 0.77 (±5 SNPs). For the summed 42 QTL, prediction 
accuracies were generally higher than for single QTL regardless of the number of local SNPs. For QTL with low minor 
allele frequency (MAF) compared to QTL with high MAF, prediction accuracies increased as the number of SNPs 
around the QTL increased.

Conclusions:  These results suggest that with both 50 K and imputed 770 K SNP genotypes the level of linkage 
disequilibrium is sufficient to predict single and multiple QTL. However, prediction accuracies are eroded through 
spuriously estimated effects of SNPs that are distant from the QTL. Prediction accuracies were higher with the 770 K 
than with the 50 K SNP panel.

© 2015 Hassani et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
There has been considerable focus on the identifica-
tion of quantitative trait loci (QTL) and on strategies for 
including genomic information in selection programs as 

the amount of data on the bovine genome has increased 
[1]. Many research groups are striving to identify QTL 
accounting for variation in quantitative traits because 
of the resulting significant scientific and economic ben-
efits. To date, only a few functionally significant muta-
tions have been shown to control phenotypic variation 
and used commercially for cattle breeding [2]. Genome-
wide linkage analysis is the traditional method to identify 

Open Access

Genetics Selection Evolution

*Correspondence:  dorian@iastate.edu 
2 Department of Animal Science, Iowa State University, Ames 50011, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8640-5372
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-015-0179-4&domain=pdf


Page 2 of 11Hassani et al. Genet Sel Evol  (2015) 47:99 

QTL and has been successful in mapping major QTL. 
However, the success of QTL mapping has been limited 
by: (1) the low heritability of most complex traits; (2) 
the low resolution of genome scans using microsatellite 
markers which were usually spaced at intervals of about 
10 centiMorgans (cM) throughout the genome; and (3) 
the imprecise definition of phenotypes and inadequate 
experimental designs that limit the power to detect QTL 
[3]. The availability of high-density single nucleotide pol-
ymorphism (SNP) genotypes across the whole genome 
has enabled more accurate prediction of breeding values 
than conventional pedigree-based methods, as well as the 
mapping of QTL across the genome [4]. Current routine 
genomic evaluations of cattle populations are performed 
using selected genotypes that are obtained from the 
~54,000 SNPs that are included in the BovineSNP50 or 
so-called 50  K array. However, high-density Affymetrix 
(648,874 SNPs) and Illumina (777,962 SNPs, referred to 
as the 770  K array) genotyping arrays are now available 
[5]. Using high-density SNP maps increases the probabil-
ity of co-segregation between SNPs and quantitative trait 
nucleotides (QTN) [6]. Since both genomic predictions 
and genome-wide association studies exploit linkage dis-
equilibrium (LD) between anonymous SNPs and QTN, 
increasing the density of SNP maps is likely to refine the 
findings from genome-wide population analyses [7–11].

Genomic selection exploits genomic information 
and can be based on (1) direct genomic values (DGV), 
which are estimated breeding values, from marker 
effects and genotypes only, or (2) on genomic enhanced 
breeding values (GEBV) that also combine information 
from phenotypes. The construction of the prediction 
equation and subsequent estimation of DGV or GEBV 
is termed “genomic prediction” and is the first step in 
genomic selection [12]. Although genomic prediction 
does not seek to explicitly detect the QTL that underlie 
the trait of interest, many of the models applied to pre-
dict DGV or GEBV can be used for QTL analysis. While 
genomic selection is currently producing results that 
lead to increased accuracy of selection at young ages, 
the ability to correctly determine the QTL that under-
lie traits of interest would further increase the ability 
to construct robust and accurate prediction equations. 
Thus, as the number of genotyped animals (with reli-
able phenotypes) increases, the ability to identify sig-
nificant QTL should increase. The identification of QTL 
that explain small amounts of genetic variation can be 
improved by increasing the power of QTL studies [13]. 
Multiple methods and models have been proposed for 
implementing genomic selection. All methods have to 
overcome the so-called p  >  n problem, which is that 
the number of markers (p) is usually much larger than 
the number of phenotypic records (n). One approach to 

this problem is to use Bayesian inference that allows for 
an oversaturated model [14]. In a Bayesian approach, 
prior knowledge about the distribution of the effects of 
SNPs is assumed, i.e. that many of the SNPs are likely 
to have small individual effects and only a few will have 
large effects [15]. This results in shrinkage procedures 
in which the prior information is used to coerce neg-
ligible effects towards zero [16]. In BayesA, effects of 
SNPs are assumed to have different variances, which 
are modeled as a scaled inverse Chi square distribution 
[14]. The prior assumptions in BayesB [14] include SNPs 
that have zero effect with probability π, and the com-
plement with probability (1 −  π) following an inverse 
Chi square distribution, with v degrees of freedom and 
scale parameter S. Like BayesA, effects of SNPs are 
assumed to have different variances. In BayesC, the 
prior assumptions are similar to those of BayesB except 
that the effects of SNPs are assumed to have a common 
variance. It has been shown that BayesC is less sensi-
tive to prior assumptions than BayesB [17]. The defini-
tion of the probability π assumed in BayesB and BayesC 
depends on the density of the SNP panel and the genetic 
architecture of the trait. Assuming π =  0 in BayesB is 
equivalent to BayesA, and in BayesC, it is referred to as 
BayesC0. BayesCπ assumes that the mixture probability 
π is not known but is estimated from the data by assum-
ing a uniform prior distribution [17].

All these methods are expected to generate predic-
tions that are highly correlated with the phenotype 
measured in the training population, particularly if the 
number of available SNPs greatly exceeds the number 
of animals and the number of QTL that contribute to 
the phenotype. Since BayesA and BayesC0 estimate the 
phenotype by using a linear combination that includes 
the effects of each SNP across the genome, there is no 
guarantee that SNPs that are physically close to the QTL 
will dominate the prediction even in models in which 
the phenotype is determined by a single QTL. Non-ran-
dom association of alleles reflects LD and is important 
in fine-scale mapping of QTL [18]. BayesB and BayesC 
with values of π set to reflect the fact that most SNPs 
are assumed to have zero effect might, through vari-
able selection, identify this small set of SNPs that are 
physically close to one or more QTL, provided the LD 
between SNP and QTL is high for some of the SNPs that 
are in close proximity to the QTL, and low for those 
that are more distant including those on other chromo-
somes. To optimally design marker panels, it is neces-
sary to have information on the LD, however, for beef 
cattle, this information is limited, and among beef cat-
tle breeds, the primary focus has been on the Angus 
breed [19]. The main objective of this study was to 
quantify, for some commonly used Bayesian regression 
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techniques, to what extent SNPs from the 50  K SNP 
panel or the imputed 770 K SNPs and that are in close 
proximity of QTL can locally predict single or multiple 
QTL in Hereford beef cattle.

Methods
Genotype and phenotype data
Committee approvals for animal care and use were not 
required for this study since the data came from existing 
industry databases. A total of 2677 purebred American 
Hereford animals were genotyped with the BovineSNP50 
BeadChip (Illumina, San Diego, CA, USA) at GeneSeek 
(Lincoln, NE, USA) providing results on 54,555 SNPs. 
The DNA of registered Hereford cattle was obtained from 
cryo-preserved semen or from hair samples provided by 
artificial insemination organizations or individual breed-
ers. None of the American Hereford animals were gen-
otyped with the 770 K panel, but we had access to SNP 
genotypes for 364 Irish Hereford cattle genotyped with 
Illumina BovineHD BeadChip. Marker genotypes for the 
2677 American Hereford cattle were imputed using BEA-
GLE software [20] based on the 364 Irish Hereford cattle 
and resulted in 764,830 polymorphic SNP genotypes at 
real or imputed loci.

Simulated phenotypes with a heritability of 1 based on 
SNP genotypes (0, 1 and 2) were created for these ani-
mals and used as response variables. Phenotypes used 
to simulate a single QTL simply represented the vector 
of SNP genotypes at the locus chosen to represent the 
QTL since multiplying by a simulated QTL effect would 
simply scale the vector by a constant. For multiple QTL, 
the phenotype of each animal was simply defined as the 
sum of the 42 genome-wide QTL, which means that all 
the QTL had the same effect and that the contribution of 
each QTL to the genetic variance of the polygenic trait 
depended on its allele frequency relative to that of the 
other loci.

Prediction strategies
In this study, every 1000th ordered SNP from the 50  K 
panel was chosen to represent a QTL. Among those, the 
42 polymorphic autosomal SNPs that were located in 
mapped regions were used in the analysis. Two predic-
tion strategies were followed: (1) estimating the effects of 
only the SNPs that flanked the QTL with variable num-
bers of SNPs i.e. ±1, ±2, ±5, ±10, ±50 or ±100 and pre-
dicting the QTL based on the effects of these SNPs only 
(local training and prediction); (2) training on the whole 
genome using all SNPs except those assumed to be QTL 
and then predicting the QTL based on the effects of only 
the SNPs that flanked the true QTL location with varia-
ble numbers of SNPs i.e. ±1, ±2, ±5, ±10, ±50 and ±100 
(whole-genome training and local prediction).

Statistical model
Bayesian methods including BayesA, BayesB [14], 
BayesC0, BayesC [21] and BayesCπ [17] were used to 
estimate the effects of SNPs for genomic prediction. The 
following model was fitted to the simulated phenotypes 
for training:

where yi is the simulated phenotype on animal i, μ is the 
overall mean of y, zij is equal to 0, 1 or 2 depending on 
the SNP genotype at marker locus j in individual i, βj is 
the allele substitution effect associated with marker j, δj 
is a 1 or 0 indicator variable for inclusion or exclusion 
of marker j in the model, and ei is a residual. Parameter 
π was assumed for BayesB and BayesC to be 0 (BayesA, 
BayesC0), 0.95 (BayesB0.95, BayesC0.95) or 0.996 
(BayesB0.996, BayesC0.996) for the 50 K analyses, corre-
sponding to fitting non-zero effects for 50 K, 2500 or 200 
SNPs per iteration, whereas π was equal to 0 (BayesC0) 
or 0.9997 (BayesB0.9997, BayesC0.9997), corresponding 
to fitting 770 K or about 200 SNPs per iteration for 770 K 
SNP panels. High values of π were chosen to provide var-
iable selection by assuming that most loci had zero effect 
while still ensuring that the number of SNPs fitted in 
each iteration was larger than the actual number of QTL 
(1 or 42) that contributed to the trait. In real data analy-
ses, the number of QTL is not known, and BayesCπ in 
which π is estimated from the data is a practical alterna-
tive that was also used in this study. Markov chain Monte 
Carlo (MCMC) methods with 41,000 or 21,000 iterations 
for the 50 or 770 K SNP panels, respectively, were used to 
provide posterior mean estimates of effects of SNPs after 
discarding the first 1000 samples for burn-in. A smaller 
number of iterations was chosen for the 770 K analyses to 
reduce computing effort since preliminary analyses dem-
onstrated rapid convergence of these models for both the 
simulated monogenic or polygenic phenotypic traits with 
a heritability of 1. Relationships between minor allele fre-
quency (MAF) and prediction accuracies were also stud-
ied. All analyses were performed using GenSel software 
[22].

Cross‑validation
Animals were clustered into six groups using K-means 
clustering on pedigree estimates of additive genetic rela-
tionships between animals in order to increase within-
group and decrease between-group relationships [23]. 
All six combinations of five groups were used for model 
training, with cross-validation performed by predicting 
each group not used in training. Cross-validation was 
only performed for the summed 42 QTL and included 
analyses undertaken using BayesCπ with starting values 
of π = 0.95 (BayesCπ0.95) or π = 0.996 (BayesCπ0.996) 

yi = µ + Σjzijβjδj + ei,
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to compare accuracies in  situations for which neither 
prior knowledge on the genetic architecture nor the likely 
values of the proportion or number of loci with zero 
effects were known.

Results and discussion
Convergence of the predictive ability of the Markov chain
A frequent criticism of MCMC-based Bayesian regres-
sion models is that convergence may not be achieved with 
a given number of iterations in the Markov chain. It was 
assumed that the single-QTL analyses with a heritabil-
ity of 1 would converge faster than the analyses using the 
summed 42 QTL to represent a polygenic trait. A prelimi-
nary analysis using the simulated polygenic trait showed 
convergence of the chains with far less iterations than 
were performed in our study. Post-burn-in samples of SNP 
effects were averaged to obtain posterior means of SNP 
effects as the length of the chain increased. Using BayesC 
with π =  0.996 for 50  K SNPs, the correlation between 
phenotype and whole-genome prediction exceeded 0.97 
at burn-in, 0.980 after 280 post-burn-in iterations, 0.983 
after 6280 post-burn-in iterations, and then it failed to 
increase further. For a trait with a heritability of 1, this cor-
relation represents the correlation between true and esti-
mated genetic merit. Using BayesC with π =  0.9997 for 
770 K SNPs, the correlation exceeded 0.99 at burn-in, and 
asymptoted to 0.996 within a further 300 iterations.

Single QTL: local training and predictions
If the QTL locations are known (e.g. from genome-
wide association studies or from the location of candi-
date genes), higher accuracy might be achieved by using 
increased SNP density in those regions and eliminating 
SNPs in other unassociated regions. To quantify this 
effect, local training and predictions were performed. 
Figure  1 shows accuracies (correlations between y and 
DGV) averaged over 42 QTL for local (±1 SNP, ±2 SNPs, 
±5 SNPs, ±10 SNPs, ±50 SNPs and ±100 SNPs flanking 
the QTL) training and predictions with the 50 or 770 K 
SNP panels using BayesC0. Prediction accuracies ranged 
from 0.50 (±1 SNP) to 0.97 (±100 SNPs) and 0.75 (±1 
SNP) to 0.99 (±100 SNPs) for the 50 and 770 K SNP pan-
els, respectively. Accuracies increased as the numbers of 
SNPs flanking the QTL increased for both 50 and 770 K 
SNP panels. Regardless of the number of SNPs flanking 
the QTL, accuracies that were estimated with the 770 K 
panel were higher than with the 50  K panel but differ-
ences between these accuracies decreased as the number 
of SNPs flanking the QTL increased.

Single QTL: whole‑genome training and local predictions
Figure  2 shows the accuracies (correlations between y 
and DGV) averaged over 42 QTL for whole-genome 

training and local predictions that were estimated with 
the 50 and 770  K SNP panels using BayesC. Accuracies 
obtained with the 50  K SNP panel and BayesC0 were 
lowest and highest for ±1 SNP (0.49) and ±100 SNPs 
(0.75) flanking the QTL, respectively, with minor varia-
tions in accuracy for numbers of flanking SNPs between 
±5 and ±100 SNPs. With the same 50 K SNP panel and 
BayesC0.996, accuracies increased steadily as the number 
of SNPs flanking the QTL increased from 0.38 (±1 SNP) 
and to 0.91 (±100 SNPs). Comparison of results obtained 
with BayesC0 and BayesC0.996 indicated that except for 
±1, ±2 and, ±5 flanking SNPs, accuracies were higher 
for BayesC0.996. With the 770 K SNP panel and BayesC0, 
accuracies were higher than 0.70 for all numbers of flank-
ing SNPs, with minor variations that ranged from 0.73 
(±1 SNP) to 0.77 (±5 SNPs). With the 770 K SNP panel 
and BayesC0.9997, accuracies were lowest and highest 
for ±2 (0.67) and ±100 flanking SNPs (0.88), respectively. 
In this case, at least ±10 flanking SNPs are required for 
the accuracy to be higher than 0.80. With BayesC0, accu-
racies were higher with the 770 K than with the 50 K SNP 
panel regardless of the number of SNPs flanking the QTL 
but if π was not equal to 0, accuracies were lower with 
the 770  K than with the 50  K panel for ±50 and ±100 
flanking SNPs.

Accuracies of whole-genome prediction for both SNP 
panels regardless of the number of flanking SNPs did 
not exceed 0.76. In contrast, accuracies for local pre-
diction with ±100 flanking SNPs were close to 1. Esti-
mating higher accuracies for local training than for 
whole-genome training may be due to the spurious 
interference of more distant SNPs in whole-genome 
training. Comparison of results from local and whole-
genome training (Figs.  1, 2) indicates that accuracies 
of predictions from local training were higher than for 

Fig. 1  Accuracies for local training and predictions averaged over 42 
QTL predicted using 50 or 770 K SNP panels and BayesC0
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whole-genome training for both 50 and 770 K SNP pan-
els but the differences between the two prediction accu-
racies decreased as the number of SNPs flanking the QTL 
increased.

In general, the amount of LD between any two SNPs 
decreases as the physical distance between them 
increases. However, forces such as selection can cause 
markers that are far apart physically (or even on differ-
ent chromosomes) to be in high LD with one another 
[24]. Generally, our results indicated that for both 50 
and 770 K SNP panels, at least ±10 flanking SNPs were 
required to reach a reasonable accuracy. Increasing the 
number of SNPs used for genomic evaluation is expected 
to increase the accuracy of evaluations through bet-
ter tracking of QTL [25]. However, previous studies on 
simulations showed conflicting results i.e. increasing SNP 
density to more than 50,000 (50 K) resulted in either no 
gain in evaluation reliability [26], very small gains [27], 
or large gains [8]. A study on real data showed that the 
use of high-density genotypes for 384 Norwegian Red 
bulls increased the correlations between predicted and 
observed reliabilities for milk yield, protein yield, and one 
measure of mastitis by 7  to  9  % whereas for four other 
traits (non-return rate at 56  days, days from calving to 
first insemination, somatic cell score, and another meas-
ure of mastitis) no or little increase was found [28]. Ben-
efits from high-density genotypes may be small if most of 

the genetic variation is due to many QTL with very small 
effects [29]. Imputation losses can also affect reliability 
of evaluation if the number of animals with high-density 
genotypes is insufficient [30]. The number of flanking 
SNPs that are needed to detect a QTL depends on the 
distance over which LD extends. Increasing SNP den-
sity will increase the power to detect QTL and, to some 
extent, increase the precision of mapping. However, if 
LD is high across a chromosome segment, increasing 
SNP density may still not make it possible to map the 
QTL precisely within this segment. In such a case, each 
QTL could be tracked by many SNPs because no indi-
vidual SNP is in complete LD with the QTL, especially 
in domestic animals in which LD extends across a large 
distance and SNP density is not high [31]. Generally, with 
high-density chips, the number of SNPs that are in high 
LD with the QTL will increase but the level of co-linear-
ity between informative and uninformative SNPs will also 
increase as the number of SNPs that statistically account 
for phenotype error increase [26]. Several major factors 
that influence the accuracy of genomic selection have 
been reported in the literature: (1) LD extent between 
SNPs and QTL; (2) size of the training population (i.e. 
individuals that are both phenotyped and genotyped and 
used to construct the statistical models and predict the 
effects of SNPs); (3) heritability or genetic basis of the 
trait analyzed, and (4) distribution of QTL effects [24]. 

Fig. 2  Accuracies for whole-genome training and local predictions averaged over 42 QTL predicted using the 50 or 770 K SNP panels and BayesC 
with different values of π (0, 0.996 or 0.9997)
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Accuracies of genomic prediction increased with BayesC 
when the number of flanking SNPs was equal to ±10 or 
more as π increased for both 50 and 770 K SNP panels. 
Generally, our results indicated that as far as accuracy of 
QTL prediction is concerned, the finite locus local pre-
diction model performed better than the whole-genome 
infinitesimal model. Saatchi et al. [32] in a study on Her-
eford beef cattle showed that, with BayesC, accuracies 
of genomic predictions increased as π increased from 0 
to 0.95 and 0.99 (fewer fitted markers in the model) for 
almost all studied traits. When π is small, we assume that 
the trait is likely affected by many QTL with small effects, 
and when π is large, a few large QTL are expected to 
influence the trait [17].

Multiple QTL: whole‑genome training and local predictions
Since most complex quantitative traits are associated 
with multiple QTL rather than a single QTL, the same 
42 QTL used for single-QTL prediction were summed 
to represent a polygenic trait and whole-genome training 
and local (±1, ±2, ±5, ±10, ±50 and ±100 SNPs flanking 
the QTL) predictions were done with the 50 or 770 K SNP 
panels using BayesC (Fig. 3). Similar trends for multiple 
QTL prediction were found as previously reported for 
single QTL prediction but accuracies for multiple QTL 
prediction were generally higher than those obtained for 
a single QTL regardless of the number of flanking SNPs 

except for a few cases. Estimating higher prediction accu-
racies for multiple QTL may be due to higher LD for the 
summed 42 QTL than for a single QTL. In other words, 
local markers for one QTL may be in LD with other QTL 
even on another chromosome. Generally, multiple QTL 
are expected to reflect the underlying genetic architec-
ture of complex traits better than single QTL. Meuwis-
sen [33] concluded that multipoint-QTL mapping is 
expected to reflect the underlying genetic model better 
than single-QTL mapping. In particular, MCMC multi-
QTL mapping approaches result in sharper QTL peaks 
because they estimate the effect of a QTL at the putative 
position conditional on all other QTL that are fitted in 
the model, whereas single-QTL mapping estimates the 
effect of a QTL at the putative position without account-
ing for effects of QTL at other positions, and thus, can 
detect an apparent effect due to LD with a large QTL at 
some other location.

Cross‑validation
Figure  4 shows average cross-validation accuracies 
of whole-genome training and local predictions of all 
validation groups for the summed 42 QTL using 50 or 
770 K SNP panels with BayesB or BayesC. For the 50 K 
SNP panel, accuracies ranged from 0.55 (±1 SNP) to 
0.79 (±50 SNPs) and from 0.46 (±1 SNP) to 0.92 (all 
SNPs) for BayesC0 and BayesB0.95, respectively. For 

Fig. 3  Accuracies for whole-genome training and local predictions in training data for a complex trait defined as the sum of 42 QTL predicted with 
50 or 770 K SNP panels using BayesC with different values of π
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the 770 K SNP panel, accuracies ranged from 0.71 (all 
SNPs) to 0.82 (±5 SNPs) and from 0.46 (±1 SNP) to 
0.99 (all SNPs) for BayesC0 and BayesB0.9997, respec-
tively. Accuracies for the 770 K were higher than those 
for the 50  K SNP panel regardless of the number of 
flanking SNPs using either BayesB or BayesC. Increas-
ing the number of SNPs flanking QTL did not change 
accuracies significantly for the 770  K SNP panel with 
BayesC0, whereas with BayesB0.95 and BayesB0.9997, 
accuracies increased. This clearly indicates that BayesB 
gives more emphasis to informative SNPs that are near 
the QTL than does BayesC as a result of its ability to 
provide greater shrinkage to SNPs with small effects 
since these SNPs have larger variance ratios than 
large effect markers. Although all the models estimate 
the phenotypes in the training data, they may vary in 
their accuracy for out-of-sample prediction, which 
is why cross-validation is necessary. Out-of-sample 
prediction is more difficult, because LD relationships 
may differ between testing and validation samples, or 
because models with many parameters can overfit the 
data to reflect their vagaries [34]. Figure  5 shows, for 
different Bayesian methods and π values, the average 
cross-validation accuracies of all validation groups for 
the summed 42 QTL using all 50  K SNPs excluding 
SNPs that were QTL. Accuracies ranged from 0.70 for 
BayesA and BayesC0 to 0.92 for BayesB0.95. Generally, 

the results indicated that Bayesian methods with π 
values higher than 0 resulted in higher accuracies but 
with π set to the same values, BayesB and BayesC did 
not differ in accuracy. The study of Wang et  al. [35] 
based on the 15th QTL-MAS Workshop dataset con-
cluded that BayesA, BayesB, BayesCπ performed simi-
larly and satisfactorily for the estimation of genomic 
breeding values.

Minor allele frequency
MAF for the 42 QTL ranged from 0.0001 to 0.499 
with an average of 0.27. Figure 6 shows whole-genome 
training and local prediction accuracies for the 42 QTL 
obtained with BayesC0 and the 50 K SNP panel plotted 
against their MAF. Overall, regardless of the number 
of flanking SNPs, accuracy of low MAF QTL is lower 
than that of QTL with a MAF higher than 0.15. Simple 
correlations between MAF and accuracies ranged from 
0.37 to 0.67 for ±1 and ±10 flanking SNPs, respec-
tively. Figure  7 shows local training and local predic-
tions accuracies for the MAF of the 42 QTL obtained 
by BayesC0 for the 50  K SNP panel. As for whole-
genome training, there was a positive correlation 
between MAF, and accuracies for local training ranged 
from 0.20 to 0.49 for ±10 and ±100 flanking SNPs, 
respectively, but fluctuated less for ±50 and ±100 
flanking SNPs. Figure  7 shows that QTL with a low 

Fig. 4  Accuracies for whole-genome training and local predictions averaged over cross-validation folds for a complex trait defined as the sum of 42 
QTL predicted with 50 or 770 K SNP panels using BayesB or BayesC with different values of π
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MAF had lower accuracies in the first four graphs but 
for the last two (±50 and ±100 flanking SNPs), these 
QTL showed high accuracies. In other words, for rare 
QTL with low MAF, a larger number of flanking SNPs 
is required in order to increase prediction accuracies. 
Using simulated data, Pérez-Encisco et al. [36] demon-
strated that including all SNPs that are located within 
causal genes in the prediction model could dramati-
cally increase prediction accuracy by ~40 % compared 
to using the SNPs that typically compose a genotyping 
array. Du et al. [37] in a study on LD in pig populations 
found that expected local LD increased with increas-
ing MAF under the assumption that the MAF at two 
loci are independently and uniformly distributed.

Selection
The genotypes used in this simulation represented actual 
genotypes for a real cattle population, but it is likely that 
the distribution of the allele frequencies of those geno-
types will not reflect the distribution of allele frequen-
cies of real QTN, because SNPs that are selected for 
genotyping arrays are chosen to be particularly informa-
tive and therefore tend to include more SNPs with a 
higher allelic frequency than those included in exonic 

variants [38]. Furthermore, for most traits of interest 
for genomic selection, artificial and perhaps also natural 
selection might have created long-range LD through the 
so-called Bulmer effect [39]. Studying the effects of such 
selection would require more complex simulations than 
those reported here, but they would likely reduce the 
ability to detect, in whole-genome analyses, SNPs with 
large effects near the QTL. Moreover, the simulation 
in our study assumed simulated traits with a heritabil-
ity of 1, whereas in practice, only a few traits of inter-
est in selection programs have a heritability higher than 
0.5, and many have a heritability lower than 0.25. In such 
circumstances, many more genotyped animals would be 
required to achieve the accuracies reported in this study. 
Finally, most productive traits are likely to be influenced 
by many more QTL than the 42 that were simulated in 
this study, and many of these may have small effects, 
which would make them more difficult to detect than 
was the case in this study where all QTL had the same 
effect.

Conclusions
This study applied single- and multiple-QTL pre-
dictions using SNPs that flank the QTL to American 

Fig. 5  Average cross-validation accuracies of all validation groups for a complex trait defined as the sum of 42 QTL predicted with all 50 K SNPs 
excluding QTL by different Bayes methods and for π values
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Hereford beef cattle genotypes and simulated pheno-
types. Overall, our results suggest that for a dataset 
with less than 3000 animals, the LD of the 50  K SNP 
panel is sufficient to predict single or multiple QTL. 
Training on SNPs that are located close to the QTL 
rather than whole-genome SNPs resulted in higher 
prediction accuracies than whole-genome analy-
ses, which indicates that predictive accuracy can be 
improved if prior knowledge of the QTL locations or 
of the likely informative SNPs was available. In our 

simulation, we assumed a complex trait that was influ-
enced by only 42 QTL with a heritability of 1, which 
suggests that for traits with more QTL or lower her-
itabilities, predictions would be less accurate. As far 
as marker density is concerned, the 770  K SNP panel 
performed slightly better than the 50 K SNP panel for 
prediction of single and multiple QTL. Analysis of 
the QTL MAF shows that in order to get high predic-
tion accuracies for rare QTL, a larger number of SNPs 
flanking the QTL (±50 or ±100 SNPs) is required. 
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Fig. 6  Accuracies for whole-genome training and local predictions obtained using BayesC0 with a 50 K SNP panel for 42 individual QTL plotted 
against the QTL minor allele frequencies
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Bayesian regression methods that involve variable 
selection were better able to detect and localize QTL 
than methods that fitted all whole-genome SNPs 
simultaneously.
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