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Genetic evaluation for three-way 
crossbreeding
Ole F. Christensen1*, Andres Legarra2, Mogens S. Lund1 and Guosheng Su1

Abstract 

Background: Commercial pig producers generally use a terminal crossbreeding system with three breeds. Many pig 
breeding organisations have started to use genomic selection for which genetic evaluation is often done by applying 
single-step methods for which the pedigree-based additive genetic relationship matrix is replaced by a combined 
relationship matrix based on both marker genotypes and pedigree. Genomic selection is implemented for purebreds, 
but it also offers opportunities for incorporating information from crossbreds and selecting for crossbred perfor-
mance. However, models for genetic evaluation for the three-way crossbreeding system have not been developed.

Results: Four-variate models for three-way terminal crossbreeding are presented in which the first three variables 
contain the records for the three pure breeds and the fourth variable contains the records for the three-way cross-
breds. For purebred animals, the models provide breeding values for both purebred and crossbred performances. 
Heterogeneity of genetic architecture between breeds and genotype by environment interactions are modelled 
through genetic correlations between these breeding values. Specification of the additive genetic relationships is 
essential for these models and can be defined either within populations or across populations. Based on these two 
types of additive genetic relationships, both pedigree-based, marker-based and combined relationships based on 
both pedigree and marker information are presented. All these models for three-way crossbreeding can be formu-
lated using Kronecker matrix products and therefore fitted using Henderson’s mixed model equations and standard 
animal breeding software.

Conclusions: Models for genetic evaluation in the three-way crossbreeding system are presented. They provide esti-
mated breeding values for both purebred and crossbred performances, and can use pedigree-based or marker-based 
relationships, or combined relationships based on both pedigree and marker information. This provides a framework 
that allows information from three-way crossbred animals to be incorporated into a genetic evaluation system.

© 2015 Christensen et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any 
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Commercial pig producers generally use a terminal 
crossbreeding system with three breeds. In this system, 
F1 sows from two maternal breeds are mated to pure-
bred boars from a breed that has high-level production 
traits (growth, leanness, feed efficiency) to produce pigs 
for slaughter. Commonly, boar lines in Europe are Duroc 
and Pietrain and sows are crosses between Large White 
and Landrace. Genetic evaluation is usually done within 

each of these breeds based on recorded phenotypes on 
purebred animals. However, ideally genetic evaluation 
of purebreds should incorporate phenotypes of interest 
recorded on crossbreds, and breeding values for perfor-
mance in the three-way cross should be estimated.

Many pig breeding organisations have started to use 
genomic selection [1], for which genetic evaluation is 
often done by applying single-step methods [2–4] to 
handle the fact that only a fraction of the animals are 
genotyped. Here, the pedigree-based additive genetic 
relationship matrix is replaced by a combined rela-
tionship matrix based on both marker genotypes and 
pedigree. Genomic selection is implemented for pure-
breds, but it also offers opportunities for incorporating 
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information from crossbreds and selecting for crossbred 
performance [5–7].

For two-way terminal crossbreeding (two breeds 
named A and B, and all crossbred animals AB have 
known purebred parents), Wei and van der Werf [8] pro-
posed the following trivariate model:

where the vectors yA, yB and yAB contain pheno-
types on animals from breeds A and B and from the 
cross AB, respectively, and for the three popula-
tions A, B and AB, the vectors βA, βB and βAB con-
tain fixed effects (note that intercepts should always be 
included!), and eA ∼ N (0, σ 2

e,AI), eB ∼ N (0, σ 2
e,BI) and 

eAB ∼ N (0, σ 2
e,AB

I) are the residual error vectors. The 
vectors aA and aB contain breeding values for purebred 
performance (mating within breed) for breeds A and B, 
respectively, and the vector of genetic values on the cross-
breds, gAB, is related to the vectors of breeding values on 
purebred animals for crossbred performance (mating with 
the other breed), gA and gB, by additive pedigree-based 
relationships (throughout this paper, additive genetic 
effects for purebred performance and for crossbred per-
formance are denoted by a and g, respectively). Each ani-
mal has then two breeding values (one related to mating 
within breed, e.g. aA, and another related to mating to 
another breed to produce the cross, e.g. gA) and these are 
correlated. Genetic correlations less than 1 are due to the 
presence of non-additive gene action in combination with 
different allele frequencies in the two breeds [9, 10], but 
also to genotype by environment interactions. The model 
also assumes different genetic variances in the two pure 
breeds, which is often the case in practice. Christensen 
et al. [11] reformulated the model using partial relation-
ship matrices (see below) and constructed those from a 
combination of marker genotypes and pedigree in such a 
way that it could be fitted by using standard animal breed-
ing software, i.e. a single-step method was developed.

The aim of this work was to develop models for three-
way terminal crosses that handle both pedigree-based and 
marker-based relationships, as well as combined relation-
ship matrices based on both pedigree and marker geno-
types. As indicated above, an essential part of the model is 
the specification of relationships such that the model can 
be fitted by using standard animal breeding software.

Methods
We present a specific scenario with records on all three 
pure breeds and on three-way production pigs, but not 
on two-way crossbred sows, having in mind produc-
tion traits such as daily gain, leanness or feed efficiency. 

(1)

yA = XAβA + ZAaA + eA,

yB = XBβB + ZBaB + eB ,

yAB = XABβAB + gAB + eAB ,

However, since we will specify relationships across all five 
populations, it is straightforward to generalise to other 
scenarios with records.
The model for this three-way terminal crossbreeding sys-
tem is in principle a straightforward generalisation of the 
Wei and van der Werf model [8] to the following four-
variate model:

where notation is defined as for Eq. (1), and it is assumed 
that all C(AB) animals have a purebred C father and cross-
bred AB mother, and that these AB animals all have pure-
bred parents. Breed C animals have two breeding values 
that are correlated, aC for purebred performance (mating 
within breed) and gC for C(AB) crossbred performance 
(mating between a male and a AB crossbred female). 
Breed A animals also have two breeding values, aA for 
purebred performance (mating within breed) and gA for 
crossbred C(AB) performance (mating with a breed B ani-
mal whose female AB crossbred offspring is mated with a 
breed C male). Finally, breed B animals have two breeding 
values aB and gB, defined similarly to the breeding values 
for breed A. For each breed, association between breeding 
values for purebred and crossbred performances is deter-
mined by a 2× 2 genetic variance-covariance matrix. An 
essential part of the model is the specification of the addi-
tive relationships between genetic values for crossbred 
performance on crossbred animals and purebred animals, 
and in particular marker-based versions of these relation-
ships such that pedigree-based and marker-based relation-
ships are consistent. These relationships should also be 
specified in such a way that the model can be formulated 
using Kronecker products, allowing the model to be fitted 
by using Henderson’s mixed model equations and standard 
animal breeding software. Additive relationships are rela-
tionships between gene substitution effects and these can 
be defined either within populations or across populations 
[12]. These two approaches will be called “partial genetic” 
and “common genetic” approaches in the following.

Lo et al. [13] derived the following recursive formulas 
for the variance and covariance of genotypic values for 
animals composed of multiple breeds under an additive 
model. Let the genotypic value of individual i be gi, then 
the additive variance is:

(2)

yA = XAβA + ZAaA + eA,

yB = XBβB + ZBaB + eB ,

yC = XCβC + ZCaC + eC ,

yC(AB) = XC(AB)βC(AB) + gC(AB) + eC(AB),

(3)

Var(gi) =
∑

b

f bi σ
2
g ,b + Cov(gf (i), gm(i))

+ 2
∑

b

∑

b′>b

(f bf (i)f
b′

f (i) + f bm(i)f
b′

m(i))σ
2
g ,b,b′



Page 3 of 13Christensen et al. Genet Sel Evol  (2015) 47:98 

where b and b′ denote breeds, f bi  is the breed b content 
of individual i, σ 2

g ,b is the breed b genetic variance, gf (i) 
and gm(i) are the additive genetic values of parents f(i) and 
m(i), respectively, and σ 2

g ,b,b′ is the breed b and breed b′ 
segregation genetic variance. The additive covariance 
between genotypic values of individuals i and i′ is:

when i′ �= i is not a descendant of i.
García-Cortés and Toro [14] showed that Eqs.  (3) and 

(4) could be expressed as (using matrix notation):

where the Ab and Ab,b′ matrices are separately defined 
using recursions, and that this provides a partition of the 
vector of genotypic values into:

where all the gb, gb,b
′ vectors are independent, 

Var(gb) = σ 2
bA

b and Var(gb,b′) = σ 2
b,b′A

b,b′. They termed 
matrix Ab as the breed b specific partial relationship 
matrix and matrix Ab,b′ the breed b and breed b′ segre-
gation partial relationship matrix. The vectors gb and 
gb,b

′ depend on genetic origin, such that gb is the breed 
b specific partial genetic vector, and gb,b′ is the breed b 
and breed b′ segregation partial genetic vector. Matrices 
Ab and Ab,b′ have sparse inverses that can be computed 
using the usual methods for the additive relationship 
matrix (see [14]). In this paper, the approach using a par-
tition of the genetic effects into independent terms is 
named partial genetic approach.

Legarra et  al. [15] proposed that pedigree relation-
ships should be specified across all animals, and that 
for base animals in the pedigree, the pedigree-based 
relationships within and across breeds and inbreeding 
should be estimated from observed marker genotypes. 
This approach is contradictory to the García-Cortés and 
Toro [14] approach described above, since it violates the 
assumption of independence of the gb and gb,b′ vectors. 
The approach in which relationships are specified across 
breeds is named common genetic approach.

First, partial genetic and common genetic approaches 
for constructing pedigree-based relationships are pre-
sented, then the corresponding two different ways of con-
structing marker-based relationships are presented, and 
finally the genetic variances and covariances in model (2) 
are shown for the two approaches. Detailed derivations 
are in the “Appendix”.

(4)
Cov(gi, gi′) = (Cov(gf (i), gi′)+ Cov(gm(i), gi′))/2,

Var(g) =
∑

b

σ 2
bA

b +
∑

b

∑

b′>b

σ 2
b,b′A

b,b′

g =
∑

b

gb +
∑

b

∑

b′>b

gb,b
′

,

Additive genetic model for crossbred C(AB) performance: 
partial genetic approach
For the three-way crossbreeding system, the decomposi-
tion of the additive genetic effects by García-Cortés and 
Toro [14] is as follows. For a C(AB) crossbred animal,

where terms gC
C(AB), g

A
C(AB), g

B
C(AB) are breed of origin 

specific partial genetic effects and gAB
C(AB) is a breed-seg-

regation term. For a AB crossbred sow,

with terms gA
AB

 and gB
AB

 being breed of origin partial 
genetic effects. Finally, for purebred animals, the three 
vectors of breeding values for crossbred C(AB) perfor-
mance, gA, gB and gC, are defined as being equal to the 
genotypic values.

In this way, a breed-specific partial genetic effect is 
defined for all animals containing the specific breed, 
and a breed-segregation partial genetic effect is defined 
for crossbred C(AB) animals. Assuming that base indi-
viduals in the three breeds are not related across breeds 
implies that:

are independent. In addition, for a crossbred C(AB) indi-
vidual the fact that it inherits either a breed A or B allele 
is independent of what particular alleles the AB mother 
has and what alleles all other AB individuals have, and 
hence gAB

C(AB) is independent of the vectors above.
The variance-covariance matrices of the partial genetic 

effects become (García-Cortés and Toro [14]):

where the breed-specific partial relationship matrices are 
defined by the recursive formulas:

gi = gCC(AB),i + gAC(AB),i + gBC(AB),i + gAB
C(AB),i,

gi = gAAB,i + gBAB,i,

gA =









gA

gA
AB

gA
C(AB)









, gB =









gB

gB
AB

gB
C(AB)









, gC =

�

gC

gC
C(AB)

�

Var









gA

gA
AB

gA
C(AB)









= σ 2
g ,AA

A
, Var









gB

gB
AB

gB
C(AB)









= σ 2
g ,BA

B
,

Var

[

gC

gC
C(AB)

]

= σ 2
g ,CA

C
, Var

[

gAB
C(AB)

]

= σ 2
g ,ABA

AB
,

Ab
ii = f bi + Ab

f (i)m(i)/2,

Ab
ii′ = (Ab

f (i)i′ + Ab
m(i)i′)/2,
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for breed b = A,B, C, with f bi  denoting the breed b pro-
portion, and the breed-segregation partial relationship 
matrix is defined by the recursive formulas:

where in both cases non-contributing animals are not 
included in the resulting matrices. We immediately see 
that C(AB) animals are the only animals contributing to 
matrix AAB, and since f Am(i) = f Bm(i) = 1/2 for these ani-
mals, the matrix is a diagonal matrix with diagonal ele-
ments equal to 2× 1/2× 1/2 = 1/2. This specification of 
additive relationships using partial relationship matrices 
is equivalent to the specification in Eqs. (3) and (4).

To illustrate the different partial relationship matri-
ces, we analysed the small pedigree in Table 1. Tables 2, 
3, 4 and 5 show the partial relationship matrices for this 
example.

Wei and van der Werf [8] presented a reduced form 
of the two-way crossbreeding model (1) in which the 
Mendelian sampling term of the genetic effect on cross-
bred animals was included in the residual error term. A 
reduced model can also be formulated for the three-way 
crossbreeding model by expressing:

AAB
ii = 2( f Af (i) f

B

f (i) + f Am(i) f
B
m(i))+ AAB

f (i)m(i)/2,

AAB

ii′ = (AAB

f (i)i′ + AAB

m(i)i′)/2,

gi = 0.5gf (i) + 0.5gm(i) +�C(AB),i

= 0.5gC,f (i) + 0.5gAAB,m(i) + 0.5gBAB,m(i) +�C(AB),i, for a C(AB) crossbred animal i, where �C(AB),i is the Men-
delian sampling term. The Mendelian sampling terms are 
independent among the C(AB) crossbred animals, and 
by making the approximation that father f(i) is not inbred 
and since mother m(i) is not inbred, the variance is con-
stant. In this way, the Mendelian sampling error term can 
be included into the residual error term eC(AB) in model 
(2), and the model can be formulated using three breed-
specific partial relationship matrices defined on the A,B, C 
and AB animals. However, as explained in Christensen 
et  al. [11], such a reduced model cannot be extended to 
incorporate marker genotypes since these provide infor-
mation about the Mendelian sampling term. Therefore, we 
did not pursue the reduced form of the model any further.

Note that model (2) with relationships as presented 
here is the most obvious generalisation of the Wei and 
van der Werf model in Eq. (1) from two to three breeds 
since base individuals are assumed unrelated. Without a 
formulation using partial relationship matrices, it would 
be difficult to estimate parameters in this model using 
standard animal breeding software.

Additive genetic model for crossbred C(AB) performance: 
common genetic approach
In the previous subsection, base animals were assumed 
to be unrelated. An alternative proposed by Legarra et al. 

Table 1 Example pedigree

id Father Mother Population

1 0 0 A

2 0 0 A

3 0 0 B

4 0 0 C

5 1 2 A

6 3 5 AB

7 4 6 C(AB)

8 4 6 C(AB)

Table 2 Breed A specific partial relationship matrix AA 
for the pedigree in Table 1

id 1 2 5 6 7 8

1 1 0 1

2

1

4

1

8

1

8

2 1 1

2

1

4

1

8

1

8

5 1 1

2

1

4

1

4

6 1

2

1

4

1

4

7 1

4

1

8

8 1

4

Table 3 Breed B specific partial relationship matrix AB 
for the pedigree in Table 1

id 3 6 7 8

3 1 1

2

1

4

1

4

6 1

2

1

4

1

4

7 1

4

1

8

8 1

4

Table 4 Breed C specific partial relationship matrix AC 
for the pedigree in Table 1

id 4 7 8

4 1 1

2

1

2

7 1

2

1

4

8 1

2

Table 5 Breed AB segregation partial relationship matrix 
A
AB for the pedigree in Table 1

id 9 10 

9 1

2
0

10 1

2
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[15] is to assume that base animals are related and inbred 
within breeds and related between breeds with relation-
ships determined by:

This means that among the base animals, the variance-
covariance of genetic effects is as follows. The variance-
covariance within breed is defined by:

for an individual in breed b, and

for two individuals in breed b, i.e. base animals are inbred 
with coefficient γb/2 and related with relationship coef-
ficient γb. Furthermore,

for two individuals in different breeds b and b′, i.e. base 
animals in different breeds are related. Therefore, a joint 
relationship matrix is specified among all base animals, 
and by applying the usual recursive definition:

an additive relationship matrix A(Ŵ) is defined across all 
animals with relationships among the three base popula-
tions A,B and C defined by matrix Ŵ. The variance-covar-
iance of genetic effects is therefore determined by

Ŵ =





γA γA,B γA,C

γA,B γB γB,C
γA,C γB,C γC



.

Var(gi) = σ 2
g (1+ γb/2),

Cov(gi, gi′) = σ 2
g γb,

Cov(gi, gi′) = σ 2
g γb,b′ ,

A(Ŵ)ii = 1+ A(Ŵ)f (i)m(i)/2,

A(Ŵ)ii′ = (A(Ŵ)f (i)i′ + A(Ŵ)m(i)i′)/2,

(5)Var











gA
gB
gC
gAB

gC(AB)











= σ 2
g A(Ŵ).

Table  6 shows the common relationship matrix for the 
pedigree in Table 1.

Legarra et  al. [15] suggested a framework where 
individuals in the base population of the pedigree are 
related because they originate from overlapping ances-
tral populations with a finite size, and they termed 
each of these ancestral populations as a meta-founder 
to be included in the pedigree. Here, A,B, C are meta-
founders, and each base individual in the pedigree has 
a meta-founder, which is both its parents; see exam-
ple in Table  7. When extending the pedigree and the 
matrix A(Ŵ) with these meta-founders, Legarra et  al. 
[15] showed that the algorithms for computing the 
sparse inverse matrix A(Ŵ)−1 directly as in Henderson 
[16] and submatrices of A(Ŵ) by the Colleau algorithm 
[17] are as usual.

The parameter σ 2
g  in Eq.  (5) does not correspond 

to the usual genetic variance which is the variance 
among unrelated individuals in the base population. 
As explained in Legarra et  al. [15], σ 2

g (1− γb/2) cor-
responds to the variance among unrelated breed b ani-
mals, and therefore the genetic variances for crossbred 
C(AB) performance are σ 2

g (1− γA/2), σ 2
g (1− γB/2) and 

σ 2
g (1− γC/2), corresponding to σ 2

g ,A, σ 2
g ,B and σ 2

g ,C in the 
previous section, respectively. In addition, Legarra et al. 
[15] explained that the breed-segregation variance is 
σ 2
g ((γA + γB)/2− γA,B)/4, which corresponds to σ 2

g ,AB
 

in the previous section.

Genomic model for crossbred C(AB) performance: partial 
genetic approach
Marker-based partial relationship matrices are con-
structed by tracing breed of origin of alleles and defin-
ing relationships according to breed of origin. Assume 
that breed of origin of alleles can be determined for all 
animals and define breed-specific allele content matri-
ces as: matrix mb with entries 0, 1, 2 for purebred b ani-
mals, matrices zA and zB with entries 0,  1 for paternal 

Table 6 Common relationship matrix A(Ŵ) for the pedigree in Table 1

id 1 2 3 4 5 6 7 8

1 1+
γA
2

γA γAB γAC
1

2
+

3γA
4

1

4
+

3γA
8

+

γAB

2

1

8
+

3γA
16

+

γAB

4
+

γAC

2

1

8
+

3γA
16

+

γAB

4
+

γAC

2

2 1+
γA
2

γAB γAC
1

2
+

3γA
4

1

4
+

3γA
8

+

γAB

2

1

8
+

3γA
16

+

γAB

4
+

γAC

2

1

8
+

3γA
16

+

γAB

4
+

γAC

2

3 1+
γB
2

γBC γAB
1

2
+

γB
4

+

γAB

2

1

4
+

γB
8

+

γAB

4
+

γAC

2

1

4
+

γB
8

+

γAB

4
+

γAC

2

4 1+
γC
2

γAC
γAC+γBC

2

1

2
+

γC+γAC+γBC

4

1

2
+

γC+γAC+γBC

4

5 1+
γA
2

1

2
+

γA
4

+

γAB

2

1

4
+

γA
8

+

γAB

4
+

γAC

2

1

4
+

γA
8

+

γAB

4
+

γAC

2

6 1+
γAB

2
1

2
+

γAB+γAC+γBC

4

1

2
+

γAB+γAC+γBC

4

7 1+
γAC+γBC

4

1

2
+

γC+γAB

8
+

γAC+γBC

4

8 1+
γAC+γBC

4
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and maternal alleles, respectively, for crossbred AB ani-
mals, matrix zC with entries 0,  1 for paternal allele of 
crossbred C(AB) animals, and finally matrices zAp  and zBp  
with entries 0,  1, respectively, for crossbred C(AB) ani-
mals when the breed-specific allele is inherited and zero 
otherwise. This means that breed of origin of each allele 
needs to be traced, usually by a phasing software [18].

Marker-based breed-specific partial relationship matri-
ces are constructed as follows (details can be found in 
the “Appendix”). For breed A, the marker-based breed 
A specific partial relationship matrix GA is divided into 
submatrices with indices denoting genotyped breed A 
and crossbred AB animals,

which are defined as

where the vector pA contains breed A specific allele fre-
quencies, matrix pAp  has elements (i, j) equal to pAj  when 
the crossbred C(AB) individual i inherited an A specific 

GA =





GA
A,A GA

A,AB
GA

A,C(AB)

GA
AB,A GA

AB,AB
GA

AB,C(AB)

GA
C(AB),A GA

C(AB),AB
GA

C(AB),C(AB)



,

GA
A,A =

(mA − 2pA1T)(mA − 2pA1T)T

sA
,

GA
A,AB =

(mA − 2pA1T)(zA − pA1T)T

sA
,

GA
A,C(AB) =

(mA − 2pA1T)(zAp − pAp )
T

sA
,

GA
AB,AB =

(zA − pA1T)(zA − pA1T)T

sA
,

GA
AB,C(AB) =

(zA − pA1T)(zAp − pAp )
T

sA
,

GA
C(AB),C(AB) =

(zAp − pAp )(z
A
p − pAp )

T

sA
,

allele and zero otherwise, and sA is a scaling parameter. 
The marker-based breed B specific partial relationship 
matrix GB is defined similarly to GA, and the marker-
based breed C specific partial relationship matrix is

where submatrices are defined as

where the vector pC contains estimated breed C specific 
allele frequencies and sC is a scaling parameter.

The breed-segregation partial relationship matrix is 
defined as:

where r
d
j
i

= 1 when dji ∈ A and r
d
j
i

= −1 when dji ∈ B, r
d
j

i′
 

is defined similarly to r
d
j
i

, and n is the number of mark-
ers. Note that diagonal elements of GAB equal diagonal 
elements of AAB (i.e. 1/2). Off-diagonal elements of GAB 
measure whether pairs of individuals share more alleles 
from a particular parental breed (A or B) than expected. 
Expectations of off-diagonal elements GAB equal off-
diagonal elements of AAB (i.e. 0).

Relationship matrices that combine pedigree and 
marker information [2, 4] can then be constructed. 
Below, indices 1 and 2 in submatrices denote non-gen-
otyped and genotyped animals, respectively. The breed 
b = A,B, C specific combined relationship matrices are 
given by their sparse inverses

for b = A,B, C, and because AAB = I/2 the breed-segre-
gation combined relationship matrix is

Matrices (AA)−1, (AB)−1 and (AC)−1 can be computed 
directly in sparse format and matrices AA

22, A
B
22 and AC

22 
can be computed by the Colleau algorithm [17]; see 
Christensen et al. [11].

The breed-specific partial marker-based relationship 
matrices above require estimates of breed-specific allele 

GC =

[

GC
C,C GA

C,C(AB)

GC
C(AB),C GA

C(AB),C(AB)

]

,

GC
C,C =

(mC − 2pC1T)(mC − 2pC1T)T

sC
,

GC
C,C(AB) =

(mC − 2pC1T)(zC − pA1T)T

sC
,

GC
C(AB),C(AB) =

(zC − pC1T)(zC − pC1T)T

sC
,

GAB

i,i′ =
∑

j

r
d
j
i

r
d
j

i′
/(2n),

(6)(Hb)−1 =

[

0 0

0 (Gb)−1 − (Ab
22)

−1

]

+ (Ab)−1,

(7)HAB =

[

I/2 0

0 GAB

]

.

Table 7 Pedigree in Table 1 with metafounders

id father mother

A - -

B - -

C - -

1 A A

2 A A

3 B B

4 C C

5 1 2

6 3 5

7 4 6

8 4 6
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frequencies. Such estimates can be obtained from marker 
genotypes of purebred animals and breed-specific marker 
alleles for crossbred animals. Furthermore, there is a 
need to adjust these matrices to be compatible with par-
tial pedigree relationship matrices similar to Christensen 
et al. [11, 19], i.e. Gb

a = Gbβb + αbJ
b where αb and βb are 

parameters and Jb is a matrix with entries Jbi,i′ = f bi f
b
i′ . 

The scaling parameters sb in marker-based relationship 
matrices Gb, b=A,B, C are unspecified above, since the 
compatibility adjustment involves a scaling parameter βb 
for each breed, and therefore sb can be arbitrary. On the 
other hand, matrix GAB does not need an adjustment.

Finally, to incorporate the fact that marker geno-
types only capture a fraction of the genetic effects, 
the partial marker-based relationship matrices Gb , 
b ∈ A,B, C and GAB above may be replaced by 
matrices Gb

ω = Gb(1− ω)+ Abω, b ∈ A,B, C and 
GAB(1− ω)+ AABω, respectively, where ω is the fraction 
of genetic variance not captured by marker genotypes [4].

Genomic model for crossbred C(AB) performance: 
common genetic approach
The marker-based relationship matrix is constructed as 
usual across all genotyped animals:

where m is the gene content matrix with entries 0, 1, 2 and 
s is scaling parameter. As in Christensen [20] and Legarra 
et  al. [15], we chose common allele frequencies, i.e. 
pj = 0.5, and then determine the parameters in matrix Ŵ 
and parameter s such that the pedigree-based and marker-
based relationship matrices are compatible. Parameters 
in matrix Ŵ and scaling parameter s can be estimated by 
matching A(Ŵ) and G for purebred individuals; see Legarra 
et al. [15]. For example, if genotyping is done in each of the 
three pure breeds then the following system of equations 
can be used to determine the parameters:

where ḠA,A, ḠA,B, ḠA,C, ḠB,B, ḠB,C and ḠC,C 
denote averages of elements in submatrices of G, 
Ḡ = (ḠA,A + ḠB,B + ḠC,C)/3, ĀA,A, ĀA,B, ĀA,C, ĀB,B, 
ĀB,C and ĀC,C denote averages of elements in submatri-
ces of A22, and ¯diag(AA,A), ¯diag(AB,B), ¯diag(AC,C) denote 
averages of diagonal elements in submatrices of A22. 

G =
(m − 11T)(m − 11T)T

s
,

ḠA,B/s = γA,B, ḠA,C/s = γA,C , ḠB,C/s = γB,C ,

ḠA,A/s = ĀA,A(1− γA/2)+ γA,

ḠB,B/s = ĀB,B(1− γB/2)+ γB ,

Ḡ/s = ( ¯diag(AA,A)(1− γA/2)+ γA)/3

+ ( ¯diag(AB,B)(1− γB/2)+ γB)/3

+ ( ¯diag(AC,C)(1− γC/2)+ γC)/3,

This is a linear system of 7 equations with 7 parameters 
γA, γB, γC , γA,B , γA,C , γB,C and 1/s and can therefore be 
solved directly to obtain estimates.

The relationship matrix that combines pedigree and 
marker information becomes

Finally, similar to the previous section, the marker-
based relationship matrices G above may be replaced 
by Gω = G(1− ω)+ A(Ŵ)ω where ω is the fraction of 
genetic variance that is not captured by marker genotypes.

Genetic models for both purebred and crossbred C(AB) 
performances
In the previous sections, partial genetic and common 
genetic models for additive genetic effects for crossbred 
C(AB) performance were presented, and in both cases 
genomic versions of the models and combined rela-
tionship matrices were shown. Now, we show how the 
genetic variances and covariances for the model in Eq. (2) 
look like in the two cases.

For the partial genetic case, the vector of genetic 
effects on crossbred C(AB) individuals equals 
gC
C(AB) + gA

C(AB) + gB
C(AB) + gAB

C(AB) and based on gA
C(AB) , 

gB
C(AB) and gC

C(AB), breed-specific partial relationships 
define the breeding values for crossbred C(AB) perfor-
mance on purebred animals, gA, gB and gC, respectively. 
Combining these effects with the breeding values for 
purebred performances, aA, aB and aC, the variance-
covariance of genetic effects is determined by

(8)H(Ŵ)−1 =

[

0 0

0 G−1 − (A(Ŵ)22)
−1

]

+ A(Ŵ)−1.

Var



















aA
⋆

⋆

- - - - -

gA
gA
AB

gA
C(AB)



















= �A

�

HA
,

Var



















aB
⋆

⋆

- - - - -

gB
gB
AB

gB
C(AB)



















= �B

�

HB
,

Var











aC
⋆

- - - - -

gC
gC
C(AB)











= �C

�

HC
,

Var
�

gAB
C(AB)

�

= σ 2
g ,ABH

AB
,
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with the four vectors being independent. Here, 
⊗

 denotes 
the Kronecker product, ⋆ denotes artificial random vec-
tors such that the genetic variance-covariance matrices 
can be expressed using Kronecker products and matrices

for b = A,B, C, are the 2× 2 variance-covariance matri-
ces containing the genetic variances for purebred breeding 
values and crossbred breeding values, and the covariance 
between them. Thus, using partial relationship matrices 
provides a formulation of the model in Eq.  (2) using Kro-
necker products, such that parameters can be estimated and 
breeding values predicted using standard animal breeding 
software. In this model, there are 10 genetic parameters and 
2(nA + nB + nC + nAB)+ 3nC(AB) genetic values where 
nX is the number of individuals in population X .

For the common genetic case, all individuals are 
related, and breeding values for crossbred C(AB) perfor-
mance on purebred animals, gA, gB and gC, are defined 
by additive relationships to the genetic effects on cross-
breds, gC(AB). Combining these effects with the breed-
ing values for purebred performances, aA, aB and aC, the 
variance-covariance of genetic effects equals:

where ⋆ denotes artificial random vectors and � is the 
4 × 4 genetic variance-covariance matrix:

�b =

[

σ 2
a,b σag ,b

σag ,b σ 2
g ,b

]

,

Var















































































aA
⋆

⋆

⋆

⋆

- - - - -
⋆

aB
⋆

⋆

⋆

- - - - -
⋆

⋆

aC
⋆

⋆

- - - - -
gA
gB
gC
gAB

gC(AB)















































































= �
�

H(Ŵ),

� =









σ 2
a,A σa,A,B σa,A,C σag ,A

σa,A,B σ 2
a,B σa,B,C σag ,B

σa,A,C σa,B,C σ 2
a,C σag ,C

σag ,A σag ,B σag ,C σ 2
g









.

The formulation of the model in Eq. (2) using Kronecker 
products implies that parameters can be estimated and 
breeding values predicted using standard animal breed-
ing software. This model contains 10 genetic parameters 
and 2(nA + nB + nC)+ nAB)+ nC(AB) genetic values, 
and in addition, 6 parameters in matrix Ŵ.

In the common genetic case, there are three parame-
ters σa,A,B, σa,A,C and σa,B,C which are genetic covariances 
between purebred performances, and these parame-
ters are not present in the partial genetic case. The rea-
son is that they would not be identifiable since there is 
no specification of the relationships across breeds in 
the partial genetic case. In the common genetic case, 
the identifiability of σa,A,B, σa,A,C and σa,B,C relies on 
the genomic relationships between pairs of animals in 
different breeds. In the partial genetic case, there are 
four genetic parameters for crossbred performance, 
σ 2
g ,A , σ 2

g ,B, σ 2
g ,C and σ 2

g ,AB
 that scale each of the four par-

tial relationship matrices, whereas in the common 
genetic case there is only one such parameter σ 2

g . As 
explained in a previous section, there is a correspond-
ence between these parameters via the parameters in 
matrix Ŵ as follows: σ 2

g ,b = σ 2
g (1− γb/2), b = A,B, C, 

σ 2
g ,AB

= σ 2
g ((γA + γB)/2− γA,B)/4. However, note that 

there is a difference between estimating σ 2
g ,A, σ 2

g ,B, σ 2
g ,C 

and σ 2
g ,AB

 from phenotypes as in the partial genetic case, 
and determining these from a general σ 2

g  and parameters 
in Ŵ, which are estimated based on marker genotypes as 
in the common genetic case.

Discussion
For three-way crossbreeding, we presented models 
based on both pedigree-based, marker-based and com-
bined relationships. Using combined relationship matri-
ces results in a model for genetic evaluation where both 
pedigree and marker genotypes are used simultane-
ously for genetic evaluation, i.e. a single-step method 
for genomic evaluation. This paper provides the models 
and mathematical formulas, but a numerical implemen-
tation is needed before the methods are ready for use in 
practice. Such methods make it possible to incorporate 
phenotypes and genotypes on crossbreds into an existing 
genetic evaluation system, assuming that such a system is 
based on a single-step method.

The models for three-way crossbreeding investigated 
in this paper were four-variate models where each vari-
able was measured in a specific population, A, B, C or 
C(AB) . The main scenario that we have in mind is a sce-
nario where the four variables represent the same biolog-
ical trait measured in four different genetic backgrounds 
and possibly different environments, but in principle the 
four variables could also be different biological traits. 
An extension of the model to a situation where multiple 
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biological traits are measured in each of the four popu-
lations is in principle straightforward since the additive 
relationship matrices are the same, although in practice 
it may require the estimation of a very large number of 
genetic parameters. Extending the approaches to other 
types of models that are implemented in standard animal 
breeding software, like threshold models, models with 
indirect genetic effects, models for test-day records, etc. 
is also in principle straightforward. Finally, modifying the 
models to other scenarios with data recording, for exam-
ple with records on AB individuals or no records on one 
of the pure breeds, is also straightforward. In general, 
designing data recording for these complicated models is 
an issue, and for example to obtain precise estimates of 
the genetic correlation parameters, it would be important 
that the relationships between crossbred animals with 
records and purebred animals with records are close.

Two types of approaches for constructing additive rela-
tionships were presented, based on different assumptions 
about allele substitution effects of causal loci or SNPs. In 
the partial genetic approach, allele substitution effects 
of SNPs were assumed independent between breeds, 
whereas in the common genetic approach, they were 
assumed to be the same in different breeds. The partial 
genetic approach requires that alleles are traced accord-
ing to breed of origin, which is feasible in some scenarios 
but may be difficult with sufficient accuracy in others. In 
particular, when crossbred C(AB) animals are genotyped, 
a reasonable requirement is that breed C fathers are also 
genotyped which would make the tracing of the breed C 
paternal allele feasible, but the tracing of the breed of ori-
gin (A or B) of the maternal allele may be more uncertain 
and depend on whether AB mothers are genotyped (may 
not be due to logistical issues), maternal grandfathers are 
genotyped and maternal grandmothers are genotyped 
(may be difficult to obtain if these are from multiplier 
herds). An advantage of the common genetic approach 
is that the marker-based relationship matrix is easier to 
construct because tracing the breed of origin of alleles 
is not required, but a disadvantage may be the compu-
tational burden of using a larger relationship matrix. In 
addition, parameters in matrix Ŵ need to be estimated 
and the sensitivity of genetic evaluation to these esti-
mates is unknown. Future research using simulated and 
real data is needed to clarify the differences between the 
two approaches.

Other terminal crossbreeding systems are of interest 
in pig production. Models for two-way crossbreeding 
are relevant for sow-traits measured on animals from 
breed A and B and cross AB, and such models were pre-
sented in Christensen et al. [11] using partial genetic rela-
tionship matrices. An alternative to this partial genetic 
approach would be to use the common genetic approach 

presented here. The four-way crossbreeding system 
where crossbred CD sires are mated to AB dams to pro-
duce (CD)(AB) pigs for slaughter, is also used in pig pro-
duction. The approaches in this paper can be extended to 
such a system, and the resulting model would be a five-
variate model. Using the partial genetic approach, there 
would be four breed-specific partial relationship matrices 
and two breed-segregation partial relationship matrices, 
and the corresponding model for purebred and cross-
bred performances would contain 14 genetic parameters, 
whereas using the common genetic approach, the model 
for purebred and crossbred performances would contain 
15 genetic parameters.

Many papers have reported genetic correlations 
between purebred and crossbred performances [21–26]. 
The reported estimated correlations ranged from 0.38 to 
0.946, depending on trait and on differences in the envi-
ronment, and in general with relatively high standard 
error on the estimates. The higher the genetic correlation, 
the less gain there will be by including crossbred data 
into the genetic evaluation system. All these results are 
from two-way crosses, and the authors are not aware of 
publications based on data from three-way crossbreeding 
where data in purebred and crossbred populations are 
considered to be different traits. The models presented in 
this paper should be useful to investigate such data from 
three-way crossbreeding.

Conclusion
Models for genetic evaluation in the three-way cross-
breeding system are presented. These models pro-
vide estimated breeding values for both purebred and 
crossbred performances, and can use pedigree-based 
or marker-based relationships, or combined relation-
ships based on both pedigree and marker information. 
This provides a framework that allows information from 
three-way crossbred animals to be incorporated into a 
genetic evaluation system.
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Appendix
Here, explicit and detailed derivations of the additive 
relationships across purebred and crossbred animals 
related to the C(AB) crossbreeding system are presented.

In the derivation, both partial genetic and common 
genetic approaches for the variance-covariance of genetic 
effects for crossbred C(AB) performance are inspired by 
the derivation in Lo et al. [13] of formulas (3) and (4). Lo 
et  al. [13] based their derivation on the genotypic value 
expressed as a sum over loci of effects of paternal and 
maternal alleles:

where α
s
j
i

 and α
d
j
i

 are the additive effects of the pater-
nal and maternal alleles, respectively, and these effects 
depend on the breed of origin b of the alleles j, such 
that E[α

s
j
i

| si ∈ b] = ǫbj  and E[α
d
j
i

| di ∈ b] = ǫbj  , 
where the expectation is taken across all individuals 
in breed b and symbol ∈ is used to denote breed of ori-
gin of an allele. The term ǫbj  is the mean additive effect 
and this is different between breeds due to different 
allele frequencies in different breeds. To be explicit, 
ǫbj = pbj aj + (1− pbj )(−aj) = (pbj − 1/2)2aj where pbj  is 
the allele frequency in breed b and aj is the additive effect 
of the j-th allele. Above, both expectations and allele fre-
quencies refer to the base populations, and it is assumed 
that in each base population, alleles are assigned ran-
domly to individuals. It is further assumed that effects 
for different loci are independent. Here, we introduce the 
notation αb

s
j
i

= α
s
j
i

− ǫbj  when sji ∈ b and αb

d
j
i

= α
d
j
i

− ǫbj  
when dji ∈ b, such that the expectations of the αbs are 
equal to 0.

First, pedigree-based additive genetic relationships are 
derived using the partial genetic approach and common 
genetic approach, respectively, and second the corre-
sponding marker-based relationships are derived.

Additive genetic model for crossbred C(AB) performance: 
partial genetic approach
Contrary to Lo et al. [13] and Garcia-Cortes and Toro [14], 
in the derivation presented here, we first split the geno-
typic values according to breeds of origin instead of com-
puting the variances and covariances and then splitting 
them. The reason for this is for similarity with the deriva-
tion of the corresponding genomic model using the partial 
genetic approach that appears in a following subsection.

gi = µ+
∑

j

(α
s
j
i

+ α
d
j
i

),

For the C(AB) crossbred animals studied here, the 
paternal allele is always breed C and the maternal allele is 
either breed A or B with equal probability, and therefore 
the genotypic value becomes:

where µ̃C(AB) = µ+
∑

j ǫ
C
j + 0.5(

∑

j ǫ
A
j +

∑

j ǫ
B
j ) , 

r
d
j
i

= 1 when dji ∈ A and r
d
j
i

= −1 when dji ∈ B, and 

terms gC
C(AB), g

A
C(AB), g

B
C(AB) and gAB

C(AB) are defined 
implicitly. In this way, the genotypic value has been 
split into partial genetic effects, where the terms gC

C(AB), 
gA
C(AB), g

B
C(AB) are breed of origin specific and gAB

C(AB) is a 
breed-segregation term.

For the AB crossbred sows (where for simplicity of 
notation it is assumed that their fathers are breed A and 
mothers breed B),

with µ̃AB = µ+
∑

j ǫ
A
j +

∑

j ǫ
B
j , and terms gA

AB
 and gB

AB
 

defined implicitly.
For a purebred animal of breed b

where µ̃b = µ+ 2
∑

j ǫ
b
j  and gb,i =

∑

j α
b

s
j
i

+
∑

j α
b

d
j
i

 is the 

breeding value for crossbred C(AB) performance. From 
this, the three vectors of breeding values for crossbred 
C(AB) performance, gA, gB and gC, are defined.

In this way, a breed-specific partial genetic effect has 
been defined for all animals containing the specific breed, 
and a breed-segregation partial genetic effect has been 
defined for crossbred C(AB) animals. The resulting var-
iance-covariance matrices are as shown in the “Methods” 
section.

Note that the different means µ̃C(AB), µ̃AB, µ̃A, µ̃B and 
µ̃C should strictly speaking be included into the genetic 
effects and breeding values, but they have been omitted 
here, since the genetic values are for performance in a 

gi = µ+
∑

j

α
s
j
i

+
∑

j:d
j
i∈A

α
d
j
i

+
∑

j:d
j
i∈B

α
d
j
i

= µ̃C(AB) +
∑

j

αC

s
j
i

+
∑

j:d
j
i∈A

αA

d
j
i

+
∑

j:d
j
i∈B

αB

d
j
i

+ 0.5
∑

j

r
d
j
i

(ǫAj − ǫBj )

= µ̃C(AB) + gCC(AB),i + gAC(AB),i + gBC(AB),i + gAB
C(AB),i,

gi = µ+
∑

j

α
s
j
i

+
∑

j

α
d
j
i

= µ̃AB +
∑

j

αA

s
j
i

+
∑

j

αB

d
j
i

= µ̃AB + gAAB,i + gBAB,i,

gi = µ+
∑

j

α
s
j
i

+
∑

j

α
d
j
i

= µ̃b +
∑

j

αb

s
j
i

+
∑

j

αb

d
j
i

= µ̃b + gb,i,
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specific C(AB) cross and these means cannot be inferred 
from data.

The variance of the breed-segregation term for a C(AB) 
animal equals

where σ 2
g ,AB

=
∑

j(ǫ
A
j − ǫBj )

2/2 is the breed-segregation 
variance, i.e. the additional genetic variance in an F2 
cross compared to an F1 cross. The assumption that has 
been used here is that the ǫAj s and ǫBj s are fixed constants.

Additive genetic model for crossbred C(AB) performance: 
common genetic approach
Using the notation defined above, the genetic value for 
crossbred performance of purebred b animal i equals

where the αb

s
j
i

s and αb

d
j
i

s are independent between breeds, 
and N is the number of genes. Compared to the partial 
genetics approach, here we assume that both the αbs and 
the ǫbj s are random variables. The randomness in the αb

s is because different animals inherit different alleles, 
but the randomness in ǫbj  has a different origin. Note 
that the differences in ǫbj  between breeds is due to differ-
ences in allele frequencies, and as explained previously, 
ǫbj = pbj aj + (1− pbj )(−aj) = (pbj − 1/2)2aj, where pbj  is 
the allele frequency and aj is the allelic effect. Assigning 
prior distributions with expectations 1/2 to the allele fre-
quencies as in Christensen [20] corresponds to assigning 
a prior distribution with expectation 0 and variance pro-
portional to (aj)2 to ǫbj  for all loci. Furthermore, assuming 
that prior distributions for allele frequencies are corre-
lated between breeds implies that covariances of the ǫbj s 
become proportional to (aj)2.

Thus, we assume that the ǫbj s are random variables that 
are independent of the αb

s
j
i

s and αb

d
j
i

s and have a mean of 
0. Furthermore, we assume that the ǫbj s are correlated 
between breeds,

The variable αb

s
j
i

 when s
j
i ∈ b is a random vari-

able with mean 0, and since it may be expressed as 
αb

s
j
i

= (z
s
j
i

− pbj )aj where z
s
j
i

= 0, 1 for paternal allele 
being 1 and 2, respectively, we see that the variance 

Var(gAB
C(AB),i) = Var(0.5

∑

j

r
d
j
i

(ǫAj − ǫBj ))

=
∑

j

(ǫAj − ǫBj )
2/4 = σ 2

g ,AB/2,

gi = µ+

N
∑

j=1

α
s
j
i

+

N
∑

j=1

α
d
j
i

= µ+

N
∑

j=1

(αb

s
j
i

+ αb

d
j
i

+ 2ǫbj ),

Var







ǫAj
ǫBj
ǫCj






=





τ 2ǫ,A τǫ,A,B τǫ,A,C

τǫ,A,B τ 2ǫ,B τǫ,A,C

τǫ,A,C τǫ,A,B τ 2ǫ,C



(aj)
2.

of αb

s
j
i

 is proportional to (aj)2. Similarly, αb

d
j
i

 is a ran-
dom variable with mean 0 and variance proportional 
to (aj)2. For animals in the base population of the pedi-
gree, the variances of αb

s
j
i

 and αb

d
j
i

 equal τ 2
α,b(aj)

2 with 

τ 2
α,b = E[Var[(z

s
j
i

− pbj ) | p
b
j ]] = E[pbj (1− pbj )] = E[pbj ] −

(Var[pbj ] + E[pbj ]
2) = 1/4 − τ 2

ǫ,b where expectation is 
taken with respect to the prior distribution of pbj , and the 
mutual covariances between αb

s
j
i

, αb

s
j

i′

, αb

d
j
i

 and αb

d
j

i′

 are all 
zero when i �= i′.

Therefore, in the base population of the pedigree, 
the variances and covariances of the genetic values 
gi =

∑

j(α
b

s
j
i

+ αb

d
j
i

+ 2ǫbj ) become

for an individual in breed b,

for two different individuals in breed b, and finally

for two individuals in different breeds b, b′.
Defining new parameters σ 2

g =
∑

j(aj)
2(2τ 2

α,b + 2τ 2
ǫ,b) 

and γb = 4τ 2
ǫ,b/(2τ

2
α,b + 2τ 2

ǫ,b), we see that the elements 
of the variance-covariance matrix within breed is defined 
by:

for an individual in breed b, and

for two individuals in breed b, i.e. animals in the 
base population are inbred with coefficient γb/2 and 
related with relationship coefficient γb. Note that from 
τ 2
α,b + τ 2

ǫ,b = 1/4, we see that σ 2
g =

∑

j(aj)
2/2 does not 

depend on breed and γb = 8τ 2
ǫ,b. Furthermore, define 

γb,b′ = 8τǫ,b,b′, then

for two individuals in different breeds b, b′, i.e. base ani-
mals in different breeds are related. Therefore, a joint 
relationship matrix is specified among all base animals, 
and by applying the usual recursive definition, an additive 
relationship matrix is defined across all animals as shown 
in the “Methods” section.

Note that the breed-segregation term disappears 
here, since the differences in the ǫA and ǫB terms are 

Var(gi) = (2τ 2α,b + 4τ 2ǫ,b)
∑

j

(aj)
2,

Cov(gi, gi′) = 4τ 2ǫ,b

∑

j

(aj)
2,

Cov(gi, gi′) = 4τǫ,b,b′
∑

j

(aj)
2,

Var(gi) = σ 2
g (1+ γb/2),

Cov(gi, gi′) = σ 2
g γb,

Cov(gi, gi′) = σ 2
g γb,b′ ,
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incorporated into the Ŵ matrix. However, breed-segrega-
tion variance is still present under this model, which is 
illustrated by

where σ 2
g ,AB

= σ 2
g ((γA + γB)/2− γA,B)/4 is the breed-

segregation variance, i.e. the additional genetic variance 
in an F2 cross compared to an F1 cross; see Legarra et al. 
(2015) [15].

Genomic model for crossbred C(AB) performance: partial 
genetic approach
Based on pedigree relationships, the randomness comes 
from not knowing which alleles are inherited, but when 
having marker genotypes this is actually known. Here, 
the randomness comes from assigning distributions on 
effects. In addition, causal loci are replaced by SNPs that 
are in linkage disequilibrium with causal loci, but for 
shortness of notation we will use the same notation for 
the effects of SNPs as that used for the causal loci.

Now, for SNP j

where z
s
j
i

= 0, 1 for paternal allele being 1 and 2, respec-
tively, z

s
j
i

 is defined similarly for the maternal allele, pbj  
denotes the allele frequency of breed b base population, 
and βb

j  is the breed b specific allele substitution effect 
which is assumed to be Gaussian distributed with mean 
0. Breed-specific partial genetic effects are therefore as 
follows:

for breed A,

Var(gAB
C(AB),i) = Var(0.5

∑

j

r
d
j
i

(ǫAj − ǫBj ))

=

n
∑

j=1

E((ǫAj − ǫBj )
2)/4

= (τ 2ǫ,A + τ 2ǫ,B − 2τǫ,A,B)
∑

j

(aj)
2/4

= (γA + γB − 2γA,B)σ
2
g /16

= σ 2
g ,AB/2,

αb

s
j
i

= (z
s
j
i

− pbj )β
b
j , αb

d
j
i

= (z
d
j
i

− pbj )β
b
j ,

gA,i =
∑

j

(z
s
j
i

+ z
d
j
i

− 2pAj )β
A
j ,

gAAB,i =
∑

j

(z
s
j
i

− pAj )β
A
j ,

gAC(AB),i =
∑

j:d
j
i∈A

(z
d
j
i

− pAj )β
A
j ,

for breed B, and

for breed C. The breed-segregation partial genetic 
effect is gAB

C(AB),i = 0.5
∑

j rdji
(ǫAj − ǫBj ) where 

r
d
j
i

= 1 when dji ∈ A and r
d
j
i

= −1 when dji ∈ B and 
ǫAj − ǫBj = pAj β

A
j − pBj β

B
j .

An equivalent formulation of the model is to use 
marker-based partial relationship matrices instead of 
breed-specific allele substitution effects. Define breed 
b specific allele content matrices as matrix mb with 
entries mb

ij = z
s
j
i

+ z
d
j
i

 for purebred b animals, matri-
ces zA and zB with entries z

s
j
i

 and z
d
j
i

, respectively, for 
crossbred AB animals, matrix zC with entries z

s
j
i

 for 
crossbred C(AB) animals, and finally matrices zAp  and 
zBp  with entries z

d
j
i

 and z
d
j
i

, respectively, for crossbred 
C(AB) animals when the breed-specific allele is inher-
ited and zero otherwise. From these breed-specific allele 
content matrices, marker-based breed-specific partial 
relationship matrices are constructed and these are as 
in the “Methods” section. Note that the scalings of these 
matrices are sb = Var(βb

j )/σ
2
b  for b = A,B, C. The breed-

segregation partial relationship matrix is defined as 
GAB

i,i′ =
∑

j rdji
r
d
j

i′
/(2n).

Independence between vectors, g(A), g(B), g(C) and 
gAB
C(AB) requires that allele substitution effects βA

j , βB
j  

and βC
j  are independent between breeds, and also that 

they are independent of the ǫAj − ǫBj . First, independence 
between βA

j , βB
j  and βC

j  seems to somehow contradict the 
assumption of additive gene effect aj being the same inde-
pendent of breed of origin, but may be justified if there 
is no persistence of the phase between markers and QTL 
in different breeds. Second, ǫAj − ǫBj = pAj β

A
j − pBj β

B
j  

being independent of βA
j  and βB

j  cannot strictly hold 
when βA

j  and βB
j  are also independent. However, as 

explained by de los Campos et al. [27] the fact that mul-
tiple markers are likely to track the same QTL questions 
the assumptions of additivity and independence of SNP 
allele substitution effects between loci, and therefore the 

gB,i =
∑

j

(z
s
j
i

+ z
d
j
i

− 2pBj )β
B
j ,

gBAB,i =
∑

j

(z
d
j
i

− pBj )β
B
j ,

gBC(AB),i =
∑

j:d
j
i∈B

(z
d
j
i

− pBj )β
B
j ,

gC,i =
∑

j

(z
s
j
i

+ z
d
j
i

− 2pCj )β
C
j ,

gCC(AB),i =
∑

j

(z
s
j
i

− pCj )β
C
j ,
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genomic model is a rough approximation to the reality of 
the additive model of causal effects.

Genomic model for crossbred C(AB) performance: 
common genetic approach
A genomic version of the model with common genetic 
effects across breeds can be formulated by replacing αb

s
j
i

 
by (z

s
j
i

− pbj )βj, α
b

d
j
i

 by (z
d
j
i

− pbj )βj, and ǫbj  by (pbj − 1/2)βj 
where 1/2 is the common allele frequency and βj is the 
allele substitution effect. Then,

The resulting model becomes:

The marker-based relationship matrix is therefore con-
structed as usual across all genotyped animals:

where s is scaling parameter.

Received: 24 June 2015   Accepted: 4 December 2015

References
 1. Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value 

using genome-wide dense marker maps. Genetics. 2001;157:1819–29.
 2. Legarra A, Aguilar I, Misztal I. A relationship matrix including full pedigree 

and genomic information. J Dairy Sci. 2009;92:4656–63.
 3. Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: 

A unified approach to utilize phenotypic, full pedigree, and genomic 
information for genetic evaluations of Holstein final score. J Dairy Sci. 
2010;93:743–52.

 4. Christensen OF, Lund MS. Genomic prediction when some animals are 
not genotyped. Genet Sel Evol. 2010;42:2.

 5. Ibánẽz-Escriche N, Fernando RL, Toosi A, Dekkers JCM. Genomic selection 
of purebreds for crossbred performance. Genet Sel Evol. 2009;41:12.

 6. Kinghorn BP, Hickey JM, van der Werf, JHJ. Reciprocal recurrent genomic 
selection for total genetic merit in crossbred individuals. In: Proceedings 
of the 9th World Congress on Genetics Applied to Livestock Production, 
1–6 August 2010; Leipzig; 2010. paper 0036. urlhttp://www.kongress-
band.de/wcgalp2010/assets/pdf/0036.

 7. Zeng J, Toosi A, Fernando RL, Dekkers JCM, Garrick DJ. Genomic selection 
of purebred animals for crossbred performance in the presence of domi-
nant gene action. Genet Sel Evol. 2013;45:11.

 8. Wei M, van der Werf JHJ. Maximizing genetic response in cross-
breds using both purebred and crossbred information. Anim Prod. 
1994;59:401–13.

 9. Wei M, van der Werf JHJ, Brascamp EW. Relationship between purebred 
and crossbred parameters: II genetic correlation between purebred and 
crossbred performance under the model with two loci. J Anim Breed 
Genet. 1991;108:262–9.

αb

s
j
i

+ ǫbj = (z
s
j
i

− 0.5)βj , αb

d
j
i

+ ǫbj = (z
d
j
i

− 0.5)βj .

gi = µ+
∑

j

(z
s
j
i

− 0.5)βj + (z
d
j
i

− 0.5)βj

= µ+
∑

j

(mi,j − 1)βj .

G =
(m − 11T)(m − 11T)T

s
,

 10. Baumung R, Sölkner J, Essl A. Correlation between purebred and cross-
bred performance under a two-locus model with additive by additive 
interaction. J Anim Breed Genet. 1997;114:89–98.

 11. Christensen OF, Madsen P, Nielsen B, Su G. Genomic evaluation of both 
purebred and crossbred performances. Genet Sel Evol. 2014;46:23.

 12. Stuber CW, Cockerham CC. Gene effects and variances in hybrid popula-
tions. Genetics. 1966;64:1279–86.

 13. Lo LL, Fernando RL, Grossman M. Covariance between relatives in multi-
breed populations: additive model. Theor Appl Genet. 1993;87:423–30.

 14. García-Cortés LA, Toro MA. Multibreed analysis by splitting the breeding 
values. Genet Sel Evol. 2006;38:601–15.

 15. Legarra A, Christensen OF, Vitezica ZG, Aguilar I, Misztal I. Ancestral 
relationships using metafounders: finite ancestral populations and across 
population relationships. Genetics. 2015;200:455–68.

 16. Henderson CR. A simple method for computing the inverse of a numera-
tor relationship matrix used in prediction of breeding values. Biometrics. 
1976;32:69–83.

 17. Colleau J-J. An indirect approach to the extensive calculation of relation-
ship coefficients. Genet Sel Evol. 2002;34:409–21.

 18. Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient 
genotype imputation using information from relatives. BMC Genomics. 
2014;15:478.

 19. Christensen OF, Madsen P, Nielsen B, Ostersen T, Su G. Single-step meth-
ods for genomic evaluation in pigs. Animal. 2012;6:1565–71.

 20. Christensen OF. Compatibility of pedigree-based and marker-based 
relationship matrices for single-step genetic evaluation. Genet Sel Evol. 
2012;44:37.

 21. Brandt H, Täubert H. Parameter estimates for purebred and crossbred 
performances in pigs. J Anim Breed Genet. 1998;115:97–104.

 22. Kiszlinger HN, Farkas J, Köver G, Onika-Szvath S, Nagy I. Genetic param-
eters of growth traits from a joint evaluation of purebred and crossbred 
pigs. Agric Cons Sci. 2011;76:223–6.

 23. Wei M, van der Werf JHJ. Genetic correlation and heritabilities for pure-
bred and crossbred performance in poultry egg production traits. J Anim 
Sci. 1995;73:2220–6.

 24. Zumbach B, Misztal I, Tsuruta S, Holl J, Heering W, Long T. Genetic cor-
relations between two strains of Durocs and crossbreds from differing 
production environments for slaughter traits. J Anim Sci. 2007;85:901–8.

 25. Lutaaya E, Misztal I, Mabry JW, Short T, Timm HH, Holzbauer R. Genetic 
parameter estimates from joint evaluation of purebreds and crossbreds 
in swine using the crossbred model. J Anim Sci. 2001;79:3002–7.

 26. Bloemhof K, Kause A, Knol EF, van Arendonk JAM, Misztal I. Heat stress 
effects on farrowing rate in sows: genetic parameter stimation using 
within-line and crossbred models. J Anim Sci. 2011;90:2009–119.

 27. de los Campos G, Sorensen D, Gianola D. Genomic heritability: what is it? 
PLoS Genet. 2015;11:1005048.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:


	Genetic evaluation for three-way crossbreeding
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Additive genetic model for crossbred  performance: partial genetic approach
	Additive genetic model for crossbred  performance: common genetic approach
	Genomic model for crossbred  performance: partial genetic approach
	Genomic model for crossbred  performance: common genetic approach
	Genetic models for both purebred and crossbred  performances

	Discussion
	Conclusion
	Authors’ contributions
	References




