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RESEARCH ARTICLE

Genome‑wide association study 
and biological pathway analysis of the Eimeria 
maxima response in broilers
Edin Hamzić1,2,3, Bart Buitenhuis3, Frédéric Hérault4, Rachel Hawken5, Mitchel S. Abrahamsen5,  
Bertrand Servin6, Jean‑Michel Elsen6, Marie‑Hélène Pinard ‑ van der Laan1,2 and Bertrand Bed’Hom1,2*

Abstract 

Background:  Coccidiosis is the most common and costly disease in the poultry industry and is caused by protozo‑
ans of the Eimeria genus. The current control of coccidiosis, based on the use of anticoccidial drugs and vaccination, 
faces serious obstacles such as drug resistance and the high costs for the development of efficient vaccines, respec‑
tively. Therefore, the current control programs must be expanded with complementary approaches such as the use 
of genetics to improve the host response to Eimeria infections. Recently, we have performed a large-scale challenge 
study on Cobb500 broilers using E. maxima for which we investigated variability among animals in response to the 
challenge. As a follow-up to this challenge study, we performed a genome-wide association study (GWAS) to identify 
genomic regions underlying variability of the measured traits in the response to Eimeria maxima in broilers. Further‑
more, we conducted a post-GWAS functional analysis to increase our biological understanding of the underlying 
response to Eimeria maxima challenge.

Results:  In total, we identified 22 single nucleotide polymorphisms (SNPs) with q value <0.1 distributed across 
five chromosomes. The highly significant SNPs were associated with body weight gain (three SNPs on GGA5, one 
SNP on GGA1 and one SNP on GGA3), plasma coloration measured as optical density at wavelengths in the range 
465–510 nm (10 SNPs and all on GGA10) and the percentage of β2-globulin in blood plasma (15 SNPs on GGA1 and 
one SNP on GGA2). Biological pathways related to metabolic processes, cell proliferation, and primary innate immune 
processes were among the most frequent significantly enriched biological pathways. Furthermore, the network-based 
analysis produced two networks of high confidence, with one centered on large tumor suppressor kinase 1 (LATS1) 
and 2 (LATS2) and the second involving the myosin heavy chain 6 (MYH6).

Conclusions:  We identified several strong candidate genes and genomic regions associated with traits measured 
in response to Eimeria maxima in broilers. Furthermore, the post-GWAS functional analysis indicates that biological 
pathways and networks involved in tissue proliferation and repair along with the primary innate immune response 
may play the most important role during the early stage of Eimeria maxima infection in broilers.

© 2015 Hamzić et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Coccidiosis is an animal parasitic disease caused by 
protozoans belonging to the Coccidia subclass. In the 
chicken, seven species of the genus Eimeria are infectious 

and cause coccidiosis: E. brunetti, E. necatrix, E. tenella, 
E. acervulina, E. maxima, E. mitis, and E. praecox. E. 
maxima is the most immunogenic of the seven species 
[1] and mostly infects the lining of the jejunum, causing 
mucoid enteritis [2]. Chicken coccidiosis is one of the 
most common and costly diseases currently affecting the 
poultry industry, with worldwide costs caused by produc-
tion losses as well as by prevention and treatment actions 
that are estimated to exceed USD 3 billion per year [3, 4]. 
Current coccidiosis management is based on the use of 
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anticoccidial drugs and vaccination [5]. The first anticoc-
cidial drugs, sulfonamides, began to be used in the early 
1940s, and then over the years, several different classes of 
drugs were developed and extensively used for the con-
trol of coccidiosis in broiler production [6]. However, 
the future use of anticoccidial drugs has caused concern 
due to the tendency of Eimeria species to rapidly develop 
resistance to drugs [7] as well as public dissatisfaction 
regarding the presence of chemical residues in food. In 
addition, the development of efficient multiple-species 
live vaccines is primarily limited by their high economic 
costs [5].

Due to these issues, the current control programs 
must be expanded using a complementary approach, 
including the application of genetics to improve the 
host response to Eimeria infection. Genetic approaches 
and manipulations have been shown to have a small 
effect at each generation, but also a cumulative effect 
and is a long-term, cost-effective and environmentally 
friendly way of keeping livestock animals healthy [8]. 
The first studies indicating that genetic diversity may 
account for differences in susceptibility to coccidiosis 
were published in the 1940s and 1950s [9, 10]. Consid-
erable variation in coccidiosis susceptibility has been 
observed between different chicken breeds [11]. The 
first successful performance of divergent selection for 
resistance and susceptibility to acute cecal coccidiosis 
was performed by Johnson and Edgar [12]. Likewise, 
marked differences in the response to Eimeria infection 
were observed between inbred and outbred lines [13, 
14]. The availability of genome-wide dense markers has 
enabled the identification of several quantitative trait 
loci (QTL) regions associated with resistance to Eimeria 
tenella and Eimeria maxima in experimental popula-
tions [15–17]. In addition, several genes that are located 
in highly significant previously detected QTL [16] were 
also found to be differentially expressed in a follow-up 
transcriptome study [18].

Recently, we conducted a large-scale challenge study 
with Cobb500 broilers using E. maxima as the infective 
agent, and high variability was observed in the meas-
ured traits among challenged animals [19]. The measured 
traits included a wide range of physiological, immuno-
logical and disease resistance parameters. This study is 
a follow-up on the aforementioned large-scale challenge 
study in which we assessed the effects of the E. maxima 
challenge on the measured traits and also evaluated the 
level of variability of the measured traits. Taking advan-
tage of the size and structure of this large-scale challenge 
study, we performed a genome-wide association study 
(GWAS) to identify genomic regions underlying the 
broiler response to E. maxima. In addition, based on the 
results of the GWAS, a post-GWAS functional analysis 

was performed to further understand the biology of the 
underlying response to the E. maxima challenge. The 
functional analysis comprised the following two inde-
pendent approaches: a biological pathway analysis based 
on the publicly available Kyoto encyclopedia of genes and 
genomes (KEGG) pathways and a network-based analysis 
that was performed using the ingenuity pathway analysis 
(IPA) software.

Methods
Ethics statements
All procedures were conducted under License No. 
A176661 from the Veterinary Services, Charente Mari-
time, France and in accordance with guidelines for the 
Care and Use of Animals in Agricultural Research and 
Teaching (French Agricultural Agency and Scientific 
Research Agency) (http://www.gouvernement.fr/en/
culture-education-and-research).

Experimental population and phenotyping
In this study, we used phenotype data collected during a 
large-scale Eimeria maxima challenge study on Cobb500 
broilers [19]. The challenge study was performed using 
2024 Cobb500 broilers randomly distributed in 44 (chal-
lenge) and two (control) litter pens (3  m ×  1  m) each 
containing 44 birds. For the GWAS, we used only data 
collected from the challenged animals, with control ani-
mals excluded from the analysis. Traits were measured 
at two levels: “global phenotyping”, which was performed 
on all animals and “detailed phenotyping”, which was per-
formed on a subset of 176 animals. The experimental lay-
out of the challenge is presented in Fig. 1.

BWG, HEMA, BT and PC were measured on all ani-
mals. BWG was calculated as BWG = (BW at day 22-BW 
at day 15)/BW at day 15. We used relative BWG with 
respect to day 15 to focus solely on the BWG in response 
to the challenge. HEMA levels and PC were measured 
from the blood samples that were collected on days 16 
and 23.

The subset of 176 animals was chosen by selecting two 
birds among those with the lowest and two birds among 
those with the largest BWG from each challenged animal 
pen. Animal selection within each pen was based on the 
ranking per pen. The subset of 176 animals with extreme 
BWG values was used for further detailed phenotyping. 
Detailed phenotyping included LS (duodenum and jeju-
num), OC, BC and PPP. PPP was assessed using capillary 
electrophoresis, which separates the protein components 
into five major fractions by size and electrical charge: 
prealbumins, albumins, α-1 globulins, α-2 globulins, α-3 
globulins, β-1 globulins, β-2 globulins and γ globulins. 
BC included blood cell count (BCC) and red blood indi-
ces (RBI). A detailed description of the methodologies 
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used for measuring all traits was reported by Hamzic 
et al. [19].

Genotype data
DNA was extracted from blood samples obtained from 
1972 animal samples at day 16 of the experiment. Geno-
typing was performed using a 580 K Affymetrix® Axiom® 
HD genotyping array (Affymetrix, Santa Clara, USA) [20] 
at a commercial laboratory (GeneSeek, Lincoln, USA). 
Quality control of the genotype data was performed 
using PLINK 1.9 [21–23] and included the sample call 
rate (>98  %), SNP call rate (>98  %), minor allele fre-
quency (>2  %) and removing SNPs with extreme F-sta-
tistic values. A total of 138,568 SNPs out of 580,961 were 
removed during the quality control (See Additional file 1: 
Table S1). SNP thresholds and sample call rates were set 
at 98 % and all SNPs and individuals with a call rate less 
than 98  % were excluded from the analysis. We did not 
perform imputation of the residual missing genotypes. 
The F-statistics distribution for the SNPs that remained 
after the quality control steps was assessed, and all SNPs 
outside the adjusted interquartile range were excluded 
from the analysis. The interquartile range for skewed dis-
tribution of F-statistics was calculated as suggested by 
Hubert and Vandervieren [24]. Sex was assessed using 
PLINK 1.9 by analyzing SNPs on the Z and W chromo-
somes. Detected females were included in the analysis 
with sex considered as a covariate (See Additional file 1: 
Table S1). Finally, after quality control, we obtained a 
dataset that included 443,587 SNPs distributed along 
28 autosomal chromosomes, two linkage groups 

(LGE22C19W28_E50C23 and LGE64) and chromosome 
Z. Mean, median and standard deviation for base pair 
distances between neighboring SNPs across chromo-
somes are in Table S2 (See Additional file 2: Table S2).

Genome‑wide association analysis
The genome-wide association analyses were performed 
using the Genome-wide Efficient Mixed Model Associa-
tion (GEMMA) algorithm [25] for the univariate linear 
mixed model (LMM). In this study, we used Cobb500 
broilers, which are the final products of a four-way cross-
breeding scheme, indicating the presence of a strong 
population structure. The linear mixed model approach 
was used since this method has been proven to suc-
cessfully account for population structure in associa-
tion mapping studies [26]. In the context of the LMM, 
the correction for population structure is performed by 
creating the genomic relationship matrix (K) that mod-
els the structure present in the analyzed population by 
estimating the contribution of genetic relatedness to the 
phenotypic variance. K presents a pairwise relationship 
between individuals, and its structure is also influenced 
by population structure, family structure and cryptic 
relatedness.

The model used for the analysis is presented in expres-
sion (1):

where y is an n-vector of observations (or trait meas-
urements) for n individuals, W is an n  ×  c matrix of 
covariates which contains information about pen and 

(1)y = Wα + xβ+ u + ǫ,

LARGE-SCALE STUDY

Before challenge After challenge

).i.p7yaD(32yaD8yaD1yaD Day 15 Day 22 (Day 6 p.i.) After experiment

Blood sampling
Challenge (50000 oocysts)
44 x 44 infected animals
2 x 44  controls  

Animal delivery
Identification

Blood sampling
Fecal sampling for OC
Slaughter

BT, LS BC, BWG, HEMA,
OC, PC, PPP 

Global phenotyping and detailed phenotyping

BWBWBWBW

Day 16

Fig. 1  Experimental layout of the large-scale challenge study. In total, 2024 1-day-old broilers were used in the experiment with 88 control animals 
and 1936 challenged animals. The challenge was performed on day 16 of the experiment by inoculating 50,000 Eimeria maxima oocysts. Traits were 
measured at two levels: “global phenotyping” and “detailed phenotyping”. Global phenotyping was performed on all animals and included body 
weight (BW), plasma coloration (PC), body temperature (BT) and hematocrit (HEMA) levels. Detailed phenotyping was performed on the subset 
of 176 animals and included lesion score (LS), oocyst count (OC), plasma protein profiles (PPP), and blood composition (BC). Body weight gain 
(BWG) was calculated using the following formula (BW at day 22-BW at day 15)/BW at day 15. PC is optical density of blood plasma measured for 44 
wavelengths (every 5 nm, 380–600 nm) on days 15 and 22. BT was measured at day 23, and HEMA was measured from blood samples obtained on 
days 16 and 23. BC, PPP, OC and LS were assessed using samples obtained on day 23. Please refer to Hamzic et al. [19] for a detailed description of 
the trait measurements
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sex including a column of 1s for the general mean; α is 
a c-vector of the corresponding coefficients, including 
the intercept, x is an n-vector of marker genotypes, β is 
the effect size of the marker, u is an n-vector of polygenic 
effects, and ε is an n-vector of residual effects.

For polygenic effects, u follows a multivariate normal 
distribution (MVNn) (u ∼ MVNn (0, �τ

−1K)), with λ 
indicating the ratio between the genetic variance (more 
precisely the variance explained by the SNPs) and vari-
ance of the residuals, τ−1 is the variance of the residuals, 
and K is a known n × n, which is the genomic relation-
ship matrix, calculated using a n × p matrix of genotypes 
(X). Expression (2) was used to calculate K where xi is 
the ith column representing genotypes of the ith SNP in 
the X matrix, xi is the sample mean, and 1n is an n × 1 
vector of 1s. Residual effects are presented as an ε vector 
of length n following the multivariate normal distribu-
tion (MVNn) (ε ∼ MVNn (0, τ

−1In)) where In is an n × n 
identity matrix.

To correct for multiple hypothesis testing, the false-dis-
covery rate (FDR) was calculated for each SNP from the 
distribution of p-values: SNPs with an FDR less than 0.1 
were considered significant [27]. The results are shown 
in Manhattan plots constructed by the qqman R package 
[28].

Biological pathway analysis
In general, biological pathway analysis is used to test 
the association between a curated set of genes (biologi-
cal pathways) and a trait of interest. This approach tests 
for the cumulative effect across many genes, which ena-
bles the detection of effects at the biological pathway 
level. Biological pathway analysis has been conducted as 
described in the following paragraphs. This analysis was 
divided into two main steps: (1) assigning SNPs to their 
corresponding annotated genes and assigning these genes 
to their corresponding biological pathways (KEGG), and 
(2) statistical testing for the biological pathway (set of 
genes with assigned list of SNP) based on the test statis-
tics obtained in the genome-wide association analysis.

Assigning SNPs to genes and biological pathways
The SNPs used in the GWAS were mapped to the 
ICGSC Gallus_gallus-4.0 chicken genome assembly 
(GCA_000002315.2) using the NCBI2R R package [29]. 
A list of annotated genes corresponding to the SNPs 
used in the genome-wide analysis was retrieved. For this 
study, the publicly available biological KEGG pathways 
were downloaded using the Bioconductor KEGGREST 

(2)K =
1

p

p∑

t=1

(xi − 1nxi)(xi − 1nxi)
T
.

package [30], and the curated genes were assigned to spe-
cific pathways. The biological KEGG pathways represent 
a collection of biological pathway maps that integrate 
many units, including genes, proteins, RNAs, chemical 
compounds, and chemical reactions, as well as disease 
genes and drug targets, which are stored as individual 
entries in other KEGG databases. The chicken genome 
KEGG PATHWAY contains 162 pathways associated 
with 4342 genes. The list of genes with assigned SNPs 
from the GWAS and the list of genes with assigned bio-
logical pathways (KEGG) were combined, ultimately 
resulting in a list of 52,204 SNPs assigned to 162 biologi-
cal KEGG pathways (See Additional file 3: Table S3).

Statistical analysis for biological pathway analysis
As described in the previous step, a set of SNPs that 
were mapped to genes were further assigned to the 
corresponding biological pathways. For each biologi-
cal pathway that was characterized by a set of SNPs, an 
appropriate summary of statistics was constructed as 
described in detail by Jensen et  al. [31]. The statistics 
summary was based on the negative log-transformed 
p values from the association of individual SNPs to the 
traits. By summing these negative log-transformed p val-
ues, we imitated a genetic model that captures variants 
with small to moderate effects [32, 33].

The observed summary statistics for a particular set of 
SNPs were compared with an empirical distribution for 
the summary statistics of random samples of SNP sets of 
the same size using a permutation approach. Considering 
that the distribution of summary statistics is affected by a 
correlation structure of closely linked SNPs, as the con-
sequence of linkage disequilibrium, the following proce-
dure was used for statistical testing.

The vector of observed SNPs with corresponding test 
statistics was ordered according to the physical posi-
tion on the genome. SNPs were then mapped to genes 
and consequently to a biological pathway as described 
in the first step. The elements in this vector were num-
bered 1,2,…,N, and the permutation was performed in 
two steps. The first step included randomly picking an 
element (ej) from this vector. This jth test statistic was 
the first element in the permuted vector, and the remain-
ing elements were ordered ej+1, ej+2, …, eN, e1, e2, …, ej-1  
according to their original numbering. Therefore, all 
elements from the original vector were then shifted to 
a new position starting with ej; however, the gene posi-
tion was kept fixed with respect to the original one. The 
second step involved the computation of summary statis-
tics for each set of SNPs based on the original position 
of the set of SNPs in the original vector of test statistics. 
The connections between SNPs and genes were broken 
while keeping the correlation structure among the test 
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statistics. Steps 1 and 2 were repeated 1000 times, and 
from this empirical distribution of summary test statis-
tics for each set of SNPs, a p value was obtained. This 
empirical p value corresponds to a one-sided test of the 
proportion of randomly sampled summary statistics that 
were larger than the observed summary statistic with the 
arbitrary significance level set to 0.01.

Network‑based analysis
The network modeling was performed using the inge-
nuity pathway analysis (IPA) tool as a complementary 
approach to the KEGG biological pathway analysis. The 
ingenuity pathways database is the manually curated 
database of previously published relationships on human 
and mouse biology [34]. The gene input list included 
genes that contained SNPs with p values below the 
inferred genome-wide threshold (P  <  10−4) for all traits 
on which GWAS was performed (See Additional file  4: 
Table S4). In this manner, we restricted the list of putative 
candidate genes and exploited their documented interac-
tions in biological pathways related to the study. The lists 
of SNPs (P < 10−4) were assigned to their respective genes 
using the biomaRt R package [35], producing the gene list 
for each trait used in the GWAS. The obtained Human 
Genome Gene Nomenclature Committee (HGNC) iden-
tifiers were mapped onto networks that are available in 
the Ingenuity Pathway repository. In the case of PC, we 
merged all gene lists obtained for individual wavelengths 
into one collective gene list. Furthermore, we also created 
a global list of genes by combining all gene lists together. 
In summary, we performed IPA using 27 gene lists of 
which 25 gene lists corresponded to each individual trait, 
a gene list for PC obtained by combining gene lists for all 
wavelengths and the global list of genes.

Results
Experimental population and phenotyping
In this study, we analyzed the data collected during the 
large-scale challenge study on Cobb500 broilers with E. 
maxima as the infective agent [19]. The experimental 
scheme of the large-scale challenge study is illustrated 
in Fig. 1. The traits were measured at two levels: “global 
phenotyping” performed on all 1936 challenged animals 
and “detailed phenotyping” performed on a subset of 176 
animals (Fig. 1). To form the subset of 176 animals, two 
animals among those with the lowest and two animals 
among those with the highest body weight gain (BWG) 
were selected from each pen containing challenged 
animals.

The traits measured on all challenged animals included 
BWG, plasma coloration (PC) measured as optical den-
sity (OD) of blood plasma in the 380–600  nm range, 
body temperature (BT) and hematocrit level (HEMA). 

In addition to these traits, animals from the subset of 
176 were phenotyped for lesion score (LS), oocyst count 
(OC), blood composition (BC) and plasma protein pro-
files (PPP) (See Additional file 5: Table S5). BC included 
two sets of measurements: blood cell count (BCC) and 
red blood indices (RBI). BCC included erythrocyte, leu-
kocyte, lymphocyte, heterophil, and thrombocyte counts 
as well as the percentage of lymphocytes and heterophils 
of the total number of leukocytes. RBI included hemo-
globin content, mean corpuscular volume (MCV), mean 
corpuscular hemoglobin (MCH) and mean corpuscular 
hemoglobin concentration (MCHC). PPP were assessed 
using protein capillary zone electrophoresis, and the pro-
files included the following fractions: prealbumin, albu-
min, α1-globulin, α2-globulin, α3-globulin, β1-globulin, 
β2-globulin, and γ-globulin. Detailed results from the 
large-scale challenge study were reported by Hamzic 
et al. [19]. Descriptive statistics of the traits measured on 
the challenged animals are in Table S5 (See Additional 
file 5: Table S5).

Genome‑wide association study (GWAS)
In total, 22 SNPs were significantly associated (q value 
<0.1) with the measured traits and were distributed over 
five chicken chromosomes (See Additional file  6: Table 
S6). The most significant SNPs were associated with 
BWG, PC for wavelengths from 465 to 510 nm and the 
percentage of β2-globulin in blood plasma of one of the 
PPP fractions.

The GWAS identified five SNPs that were significantly 
associated with BWG (Fig. 2), and the quantile–quantile 
(Q–Q) plot for BWG showed a large deviation from the 
distribution under the null hypothesis, indicating that 
strong associations were observed (See Additional file 7: 
Figure S1). The five observed SNPs are located on GGA1, 
3 and 5. These SNPs explain 7.5 % of the total variance for 
BWG between days 15 and 23 of the challenge study. The 
significantly associated genomic region on GGA5 was 
located in the upstream region of the THBS1 gene, which 
encodes the multi-domain matrix glycoprotein termed 
thrombospondin-1. Similarly, the significantly associated 
genomic regions on GGA1 and GGA3 are in the vicinity 
of MGAT4C and KCNK3, respectively.

For PC, the AX-75604378 SNP located on GGA10 was 
significantly associated with PC values measured for 
wavelengths ranging from 465 to 510 nm (Fig. 3). Figure 3 
shows the Manhattan plot and Q–Q plot for PC meas-
ured at 485 nm. The Q–Q plot shows a strong deviation 
from the distribution under the null hypothesis, which 
indicates the presence of a strong association between 
the SNP and PC values (See Additional file 8: Figure S2). 
The associated SNP explains between 2.1 and 2.3 % of the 
total variance depending on the measured wavelength 
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(See Additional file 6: Table S6). The AX-75604378 SNP 
is a non-synonymous polymorphism present in the 
MAN2C1 gene.

Among the traits measured in the subset of 176 ani-
mals, the genomic region located between 52.31 and 
52.63  Mb on GGA1 and the SNP AX-76165289 that 
mapped to GGA2 were significantly associated with the 
percentage of β2-globulin in the blood plasma (Fig.  4). 
The genomic region on GGA1 contains 16 SNPs that 
were associated with the percentage of β2-globulin in 
blood plasma. Individually, the SNPs on GGA1 explain 
approximately 13.4  % of the total variance, and SNP 
AX-76165289 explains 14.2  % of the total variance. The 
Q–Q plot for β2-globulin also shows that strong asso-
ciations were observed (See Additional file 9: Figure S3). 
SNP AX-76165289 is located in the FHOD3 gene on 
GGA2, while five SNPs on GGA1 (between 52.31 and 
52.63 Mb) are located in the LARGE gene (See Additional 
file 6: Table S6).

Biological pathway analysis
To conduct the biological pathway analysis, we used all 
SNPs that were included in the GWAS. These SNPs were 
mapped to their corresponding genes using the latest 

genome assembly. This list of SNPs and their correspond-
ing genes was combined with the publicly available bio-
logical KEGG pathway database. Finally, we obtained 
a list containing 52,204 SNPs that were included in the 
GWAS; these were assigned to 162 of the biological path-
ways associated with 4342 genes in the chicken genome 
KEGG PATHWAY repository (see “Methods”). The list 
of KEGG pathways which were significantly (P  <  0.05) 
enriched with genes in genomic regions associated with 
the measured traits is in Table S7 (See Additional file 10: 
Table S7). The distributions of the most frequent signifi-
cant biological pathways differed considerably accord-
ing to whether all measured traits or all measured traits 
except PC measurements were considered (See Addi-
tional file 11: Figure S4). Several biological pathways were 
characteristic of the genomic regions associated with PC 
measurements (See Additional file  11: Figure S4), and 
due to the multiple wavelength measurements, they were 
more frequent, which was not the case when the results 
were summarized without considering PC measure-
ments (See Additional file  11: Figure S4). For example, 
the phenylalanine, tyrosine and tryptophan biosynthesis 
pathway was one of the most frequent pathways when 
considering only the PC measurement results and was 

Fig. 2  Manhattan plot for body weight gain. Manhattan plot of genome-wide −log10 (p values) for body weight gain. P values were adjusted 
using the false-discovery rate (FDR) at a significance level of q value <0.1. SNPs labeled in green have q value <0.1

Fig. 3  Manhattan plot for plasma coloration (485 nm). Manhattan plot of genome-wide −log10 (p values) for plasma coloration (485 nm). P values 
were adjusted using the false-discovery rate (FDR) at a significance level of q value <0.1. SNPs labeled in green have q value <0.1
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not common for other measured traits [(See Additional 
file 11: Figure S4) and Fig. 5]. Therefore, we present the 
PC results (Fig. 5) and all other measured pathways sepa-
rately (Fig. 6).

For PC measured from 380 to 600 nm, we detected 20 
significant biological pathways (See Additional file  10: 
Table S7). The most frequent significant biological path-
ways for PC across all measured wavelengths were: 
phenylalanine, tyrosine and tryptophan biosynthesis, 
endocytosis, purine metabolism, glycosphingolipid bio-
synthesis—lacto and neolacto series, ether lipid metab-
olism, caffeine metabolism, spliceosome, and the p53 
signaling pathway (Fig. 5). Each of the mentioned biologi-
cal pathways occurred more than 10 times as significant 
when considering all PC measurements (See Additional 
file 10: Table S7).

In total, seven biological pathways were significantly 
associated with BWG (See Additional file 10: Table S7). 
Glycosaminoglycan biosynthesis—heparan sulfate/
heparin, glycerolipid metabolism, primary bile acid bio-
synthesis, melanogenesis, proteasome and regulation 
of autophagy were the most frequent significantly asso-
ciated pathways across all measured traits except PC 
(Fig. 6). In total, 13 and 12 biological pathways were sig-
nificantly associated with BT and HEMA, respectively 
(See Additional file  10: Table S7). For BT, the strongest 
associations were observed with metabolic pathways 
(P = 0.002) and the ErbB signaling pathway (P = 0.003). 
For HEMA, the strongest associations were observed 
with vascular smooth muscle contraction (P  <  0.001) 
and pantothenate and CoA biosynthesis (P = 0.004) (See 
Additional file 10: Table S7). For duodenal and jejunal LS, 
five and four biological pathways were significant, respec-
tively (See Additional file  10: Table S7). Among these, 
vascular smooth muscle contraction and porphyrin and 
chlorophyll metabolism were significantly enriched for 
both duodenal and jejunal LS (See Additional file  10: 
Table S7).

Considering the long list of measured traits for BC 
and PPP, we summarize the most interesting results. 
Regarding the percentage of lymphocytes and hetero-
phils, we observed 15 and 13 significant biological path-
ways, respectively, with 13 pathways being common for 
both traits (Fig. 6). Furthermore, the percentages of lym-
phocytes and heterophils were associated with the larg-
est number of significant biological pathways (Fig.  6). 
Regarding the number of thrombocytes and erythro-
cytes, 13 and 10 significant biological pathways were 
observed, respectively (See Additional file  10: Table 
S7), and these two traits had four significant pathways 
in common (Fig.  6). Regarding PPP, both the percent-
ages of α1-globulin and α2-globulin were associated 
with 10 significant biological pathways (See Additional 
file 10: Table S7). Percentages of prealbumin and albumin 
shared the following significant pathways: amino sugar 
and nucleotide sugar metabolism, glycosaminoglycan 
biosynthesis—chondroitin sulfate/dermatan sulfate and 
glycosylphosphatidylinositol (GPI)-anchor biosynthesis 
(Fig. 6).

The three most frequent significant pathways, consid-
ering all measured traits, including PC, were phenylala-
nine, tyrosine and tryptophan biosynthesis, endocytosis 
and purine metabolism (See Additional file  11: Figure 
S4). The most frequent significant pathways, considering 
all traits except PC, included purine metabolism, glycosa-
minoglycan biosynthesis—heparan sulfate/heparin, the 
pentose phosphate pathway, and peroxisome and vascu-
lar smooth muscle contraction (Fig.  6) and (See Addi-
tional file 11: Figure S4).

Network‑based analysis
The network-based analysis was performed using the 
ingenuity pathway analysis (IPA) tool. Gene lists used 
as input files for the IPA tool were obtained by extract-
ing genes containing SNPs, with an inferred genome-
wide significance level (P  <  10−4) for all QTL. The IPA 

Fig. 4  Manhattan plot for the percentage of β-globulin. Manhattan plot of genome-wide −log10 (p values) for the percentage of β-globulin. P 
values were adjusted using the false-discovery rate (FDR) at a significance level of q value <0.1. SNPs labeled in green have q value <0.1
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tool produced 76 putative networks using 27 gene lists. 
The majority of networks were related to general molec-
ular and cellular processes such as cell to cell signaling, 
nucleic acid metabolism and replication, cell cycle, with 
several of the networks involved in more specific path-
ways such as gastrointestinal diseases and organismal 
injury and abnormalities. In the context of the large-scale 
challenge study, the most informative networks were the 
network of interacting molecules grouped around large 
tumor suppressor kinases 1 (LATS1) and 2 (LATS2) with 

IPA score 41 (Fig. 7) and the second network with myo-
sin heavy chain 6 (MYH6) in the center with IPA score 51 
(Fig. 8).

Discussion
Identifying genomic regions that underlie the response to 
Eimeria maxima in broilers allows us to understand the 
associated molecular mechanisms and provides us with 
candidate genes and genomic regions that can be used 
in breeding for improved resistance to coccidiosis. The 
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Fig. 5  Distribution of the biological pathways that were significantly enriched with genes in genomic regions associated with plasma coloration 
(PC). Distribution of the biological pathways significantly (P < 0.05) that were enriched with genes in genomic regions associated with plasma 
measurement for all 45 wavelengths. Coloration of blood plasma was measured as the level of absorbance for 45 wavelengths in the range from 
380 to 600 nm. This figure illustrates significant KEGG pathways for PC measurements in the range from 380 to 600 nm
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host response to Eimeria is a complex trait controlled by 
a wide range of biological processes, which are in turn 
controlled by many genes with a small effect and a small 
number of genes with a moderate or large effect. Several 
QTL regions that are significantly associated with traits 
measured after the response to Eimeria challenge were 
detected in F2 crosses obtained from experimental lines 
with different degrees of susceptibility to coccidiosis [16, 
17, 36]. In addition, similar approaches have been used 
for the identification of genomic regions associated with 
innate and adaptive immunity in laying hens [37] as well 
as survival rate  and aimed at improving general robust-
ness, especially in laying hens [38]. In addition, infor-
mation regarding the genomic regions that are strongly 
associated with desirable traits can be incorporated in 
commercial poultry breeding programs. Regarding broil-
ers, haplotypes that are associated with desirable traits 
identified in the final product of the four-crossway breed-
ing scheme can be traced back in pedigreed populations 

for which selection would be performed within the pure 
lines. This approach may potentially improve general 
innate immunity as well as resistance to specific patho-
gens such as Eimeria species.

However, a more detailed understanding of the genetic 
mechanisms that control the response to Eimeria infec-
tion, as in the case of all other complex traits, requires 
a sufficiently large sample size, dense SNP coverage that 
can exploit the linkage disequilibrium and informative 
phenotypes [39]. Therefore, we performed the large-
scale challenge study on 1936 commercial Cobb500 ani-
mals, which were genotyped using the 580K Affymetrix® 
Axiom® high-density genotyping array, providing con-
siderable statistical power for GWAS for traits measured 
on all 1936 animals. Taking advantage of the size and 
structure of the challenge experiment [19], we conducted 
a GWAS to obtain more information on the underlying 
genetic determinism of the response to E. maxima in 
broilers. In addition, a post-GWAS functional analysis 

Fig. 6  Distribution of the biological pathways that were significantly enriched with genes in genomic regions associated to all measured traits 
except plasma coloration (PC). Distribution of significantly (P < 0.05) that were enriched with genes in genomic regions associated with all meas‑
ured traits except plasma coloration (PC). This figure summarizes significant biological pathways that occurred more than three times for measured 
traits
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was performed to further understand the biology of the 
response to E. maxima in broilers.

GWAS
Previous QTL studies have reported that several genomic 
regions are associated with BWG in response to coccidi-
osis [15, 20]. Comparing our results with these previous 
studies, only one highly significant SNP that overlaps 
with a QTL on GGA3 (between 263 and 282cM; 98.1 and 
107.0  Mb), detected by Pinard-van der Laan et  al. [16] 
and Bacciu et al. [17], was observed. However, these dif-
ferent results were not completely unexpected consider-
ing that the previously conducted challenge study was 
performed with animals at a different age and that origi-
nated from very different experimental lines.

The MGAT4C gene is close to the significantly asso-
ciated genomic region on GGA1. This gene encodes a 
glycosyltransferase that is involved in the transfer of 
N-acetylglucosamine (GlcNAc) to the core mannose resi-
dues of N-linked glycans, also known as N-linked glyco-
sylation. N-linked glycosylation has been shown to be 
essential to HIV-1 pathogenesis [40]. Furthermore, there 
is a wide range of well-described disorders that affect pri-
marily N-glycan assembly, with several including gastro-
intestinal disorders [41]. In addition, a study on humans 
showed a strong association between the apolipoprotein 
B level and SNP variants in the MGAT4C gene [42].

The KCNK3 gene is the closest gene to the GGA3 
genomic region, which was significantly associated with 
BWG. The KCNK3 gene encodes a member of the potas-
sium channel superfamily, which has been associated 
with pulmonary hypertension in humans [43]. Broil-
ers are known to suffer from cardiovascular disorders 
[44, 45], which may be related to the KCNK3 gene. Fur-
thermore, this gene may be associated with the general 
robustness of broilers and their ability to cope with stress 
induced by the E. maxima challenge.

The THBS1 gene is located upstream of the signifi-
cantly associated region GGA5 [between 28.95 and 
29.11 Mb, (See Additional file 6: Table S6)]. In addition, 
we also analyzed putative GENSCAN Gene Predictions 
that are supported by a few spliced EST (See Additional 
file  12: Figure S5); however, no similarity was observed 
with known proteins, which indicates that THBS1 was 
a better candidate. Human THBS1 is involved in the 
regulation of angiogenesis and tumorigenesis in healthy 
tissues and cell adhesion [46, 47]. Furthermore, in the 
study by Heams et  al. [18], THBS1 was among the top 
10 of 1473 significantly differentially expressed genes in 
the caecum between Fayoumi (resistant) and Leghorn 
(susceptible) animals infected with E. tenella. Moreo-
ver, a porcine transcriptome study showed that THBS1 
is strongly repressed in the in  vitro stimulation of por-
cine peripheral-blood mononuclear cells (PBMC) with 

Fig. 7  Network of interactions between GWAS candidate genes using ingenuity pathway analysis (IPA). The network shows molecular interac‑
tions between the products of the candidate genes enriched for significantly associated SNPs (P < 10−4) with large tumor suppressor kinases 1 
(LATS1) and 2 (LATS2) as the most interesting candidates. Relationships were determined using information contained in the IPA repository. The blue 
label indicates the genes that were enriched for significantly associated SNPs. The network was obtained using the global gene list determined by 
combining gene lists for all traits
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tetradecanoyl phorbol acetate (TPA)/ionomycin [48]. 
Finally, a recent study showed that human THBS1 plays 
an important role in the innate immune response dur-
ing respiratory bacterial infection [49], which may be 
of interest regarding Eimeria infection. Based on these 
observations, THBS1 is a good candidate gene for further 
functional studies.

Regarding PC, our GWAS results show little overlap 
with previous QTL mapping studies [16]. We observed 
the strongest signal with the SNP in the MAN2C1 gene 
(See Additional file  6: Table S6) in association with PC 
measured in the range from 465 to 510 nm. The associ-
ated SNP is described as a non-synonymous polymor-
phism (http://www.ncbi.nlm.nih.gov/projects/SNP/
snp_ref.cgi?rs=314637018). The MAN2C1 gene encodes 
the α-mannosidase class 2C enzyme, which is one of 
the key enzymes involved in N-glycan degradation [50]. 
Recent studies have indicated that MAN2C1 expression 
is crucial for maintaining efficient protein N-glycosyla-
tion [51] as well as cell–cell adhesion [52]. Glycans are 
important molecules in numerous essential biological 
processes, including cell adhesion, molecular trafficking 

and clearance, receptor activation, signal transduction, 
and endocytosis [53]. In contrast, changes in the PC 
reflect the status of intestinal absorption, changes in the 
production of protein carriers and their antioxidant effect 
in response to Eimeria infection [54] and reflect several 
of the processes that MAN2C1 may impact. Further-
more, several significant glycol-related pathways were 
significantly enriched in the biological pathway analysis 
for PC measurements (Fig. 5).

Regarding the percentage of β-globulins, we identified 
FHOD3 and LARGE as potential candidate genes (See 
Additional file  6: Table S6). FHOD3 encodes a protein 
that is a member of a formin subfamily and is involved 
in the regulation of cell actin dynamics [55]. How-
ever, how FHOD3 may be involved in the regulation of 
plasma β-globulin levels is difficult to discern because 
the current knowledge regarding FHOD3 is scarce and 
restricted to human and mouse functional studies [56, 
57]. The LARGE gene encodes an enzyme glycosyltrans-
ferase that is involved in alpha-dystroglycan glycosyla-
tion and is capable of synthesizing glycoprotein and 
glycosphingolipid sugar chains [58]. The exact function 

Fig. 8  Network of interactions between GWAS candidate genes using ingenuity pathway analysis (IPA). The network shows molecular interactions 
between the products of the candidate genes enriched for significantly associated SNPs (P < 10−4) with myosin-6 (MYH6) as the most interesting 
candidate. Relationships were determined using information contained in the IPA repository. The blue label indicates the genes that were enriched 
for significantly associated SNPs. The network was obtained using the global gene list determined by combining gene lists for all traits

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi%3frs%3d314637018
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi%3frs%3d314637018
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of LARGE is not fully known; however, mutations in the 
human LARGE gene have been described to cause con-
genital muscular dystrophy type 1D (MDC1D) [59].

Taking all measured traits into account, we identified 
22 highly associated SNPs; however, GWAS was per-
formed on two sets of traits: the first set of traits was 
measured on all 2024 animals, and the second set was 
measured on the subset of 176 animals, for which the sta-
tistical power to detect potential candidate genes differed 
due to the different sample sizes. Regarding BWG and 
PC that were measured on all animals, two functionally 
well-supported candidate genes (THBS1 and MAN2C1) 
were detected. However, we did not identify any can-
didate regions for BT and HEMA, potentially because 
these traits have not been as affected in challenged ani-
mals compared with PC and BWG [19]. Furthermore, 
an infection caused by E. maxima is often characterized 
by intestinal malabsorption and not by severe bloody 
diarrhoea, which is the case with E. tenella. This find-
ing further indicates that HEMA is not very informative 
when measuring the response to E. maxima infection 
[19]. Similarly, BT is difficult to interpret with respect to 
Eimeria infection because this trait may be influenced 
by other factors as discussed by Hamzic et al. 2015 [19]. 
However, we have not identified many candidate genes 
or genomic regions in the GWAS performed by using 
traits measured in the 176 animals, which may be pri-
marily due to the sample size, which was 10 times smaller 
in comparison to the traits measured on all animals, and 
to the complexity of the genetic parameters that con-
trol these traits. In addition, this absence of identifiable 
candidate genes may be partially due to the precision of 
measured traits and rather stringent significance thresh-
olds used in GWAS. Therefore, we performed biological 
pathway analysis, which enabled an increase in the statis-
tical power to detect significant association. An increase 
in the statistical power is possible because we decreased 
the number of statistical tests performed by compressing 
individual SNPs into biological pathways [60].

The final aim is to transfer the acquired knowledge to 
the poultry breeding industry. The identified candidate 
genes and genomic regions can be used in breeding for 
improved resistance to coccidiosis. The primary obstacle 
in achieving this goal is relating the knowledge regard-
ing the candidate genes identified in the final product 
(Cobb500) with the grand-parent pure lines where the 
actual selection is performed. This task becomes rather 
complex, considering that the poultry populations and 
the crossing design are not in the public domain, and due 
to the proprietary nature of information regarding the 
grandparent lines. Future studies will identify the best 
approach to trace the identified regions to the grandpar-
ent lines.

Biological pathway analysis
The biological pathway studies based on the GWAS 
results can potentially extend the knowledge obtained 
from GWAS studies by identifying the cumulative effect 
of gene sets [61]. Furthermore, understanding the biolog-
ical pathways increases the power to detect statistically 
significant associations because fewer statistical tests are 
performed as a consequence of assigning individual SNPs 
to the respective biological pathways. Therefore, the 
number of tests is decreased from over 400,000 (num-
ber of SNPs) to approximately 160 (number of pathways) 
using a priori biological information. For this purpose, we 
assigned genes, containing SNPs used in GWAS, to the 
biological KEGG pathways. Therefore, biological KEGG 
pathways are considered as a set of genes that have been 
used for further analysis. However, we have to be aware 
that the biological pathway analysis should still be pri-
marily viewed as an exploratory technique because the 
current statistical methodologies used for gene set/path-
way analysis need further development [61]. Moreover, 
the available biological pathway databases necessary for 
this kind of analysis are not completely annotated and do 
not contain all the genes present in the chicken genome. 
In this study, we used a statistical modeling methodol-
ogy that assesses the cumulative effect of sets of SNPs on 
the measured traits as presented by Jensen et al. [31] and 
Buitenhuis et al. [62]. For this purpose, we succeeded in 
assigning 52,204 SNPs from GWAS to 4342 annotated 
genes in the chicken genome.

For PC, the top four most frequently affected pathways 
across all wavelengths include phenylalanine, tyrosine 
and tryptophan biosynthesis, endocytosis, purine metab-
olism, and glycosphingolipid biosynthesis—lacto and 
neolacto series (Fig. 5).

Phenylalanine, tyrosine and tryptophan biosynthesis 
is the most commonly affected pathway when only PC is 
considered (Fig. 5) and (See Additional file 11: Figure S4). 
Phenylalanine, tyrosine and tryptophan have important 
roles in the regulation of the immune response [63]. Phe-
nylalanine is indirectly involved in the regulation of nitric 
oxide (NO) synthesis [64], and NO is known to have mul-
tiple roles related to the immune response such as signal-
ing properties, regulating cytokine production and killing 
pathogens [65]. Tyrosine is used as a precursor for the 
production of dopamine, catecholamines and melanin. 
Dopamine is a neurotransmitter known to be involved 
in the regulation of immune response, and melanin 
has antioxidant properties [63]. In addition, interferon 
gamma (IFN-γ) suppresses the growth of Toxoplasma 
gondii through the intracellular depletion of tryptophan 
[66]. Deprivation of tryptophan produces a deleterious 
effect on Toxoplasma gondii replication. Toxoplasma 
gondii belongs to the same order (Eucoccidiorida) of 
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intracellular single-cell parasites as E. maxima. Fur-
thermore, Laurent et  al. [67] reported a strong increase 
in IFN-γ mRNA expression in chickens infected with 
Eimeria spp. Based on this finding and the results from 
the biological pathway analysis, tryptophan depletion 
may also be involved in the innate immune response dur-
ing E. maxima infection.

The second most commonly affected pathway when 
considering PC is the purine metabolism pathway (Fig. 5) 
and (See Additional file 11: Figure S4). This pathway reg-
ulates nucleotide metabolism and is important for suc-
cessful cell division. In addition, we observed that the 
purine metabolism pathway is significantly associated 
with erythrocyte number, mean corpuscular hemoglobin 
(MCH), mean corpuscular hemoglobin concentration 
(MCHC) and mean cellular volume (MCV) (Fig. 6). This 
association may be explained by an increased demand 
for cell division of blood cell progenitors and the regen-
eration of the intestinal epithelium due to the effects of 
the infection because the E. maxima infection has been 
characterized by severe lesions of the intestinal lining in 
broilers [19].

Endocytosis has been shown to play an important role 
in both innate and adaptive immune responses [68], 
which may explain why endocytosis may be among the 
most commonly affected pathways when PC measure-
ments are considered (Fig.  5). Finally, glycosphingolipid 
biosynthesis—lacto and neolacto series, like other glycol-
related pathways (Fig.  5), is involved in the production 
of glycoconjugate receptors, which are used by microbes 
to enter the host cell and are of critical importance in 
the early stage of the innate immune response [69, 70]. 
Moreover, similar paths of the host cell invasion have 
been previously described in the cases of Eimeria and 
Toxoplasma [71, 72].

We also summarized the frequency of the most com-
mon significant biological pathways excluding PC (Fig. 6). 
In this case, glycosaminoglycan biosynthesis involving 
heparan sulfate/heparin, the pentose phosphate pathway 
and the peroxisome are the most frequent significantly 
enriched biological pathways. The pentose phosphate 
pathway is a metabolic pathway that regulates the pro-
duction of nicotinamide adenine dinucleotide phos-
phate (NADPH) and pentose, which are essential for the 
synthesis of nucleic and ribonucleic acids, respectively. 
The pentose phosphate pathway seems to play a role in 
plasma protein component and heterophil and lympho-
cyte production, which may be explained as a response 
to the increased production of these components during 
the primary response to the challenge (Fig.  6) [73]. The 
peroxisome pathway controls the metabolism of reac-
tive oxygen components, which are known to be toxic to 
bacteria and several parasites and play a significant role 

in resilience and immunity to infectious diseases [73]. 
Moreover, the peroxisome pathway was significantly 
associated with blood components such as number of 
erythrocytes and percentage of heterophils and lympho-
cytes (Fig. 6).

These findings demonstrate that the response to 
Eimeria infection is characterized by a strong effect on 
essential metabolic pathways as well as innate immune 
response-related pathways. Among the essential meta-
bolic pathways, the most frequently affected are pheny-
lalanine, tyrosine and tryptophan biosynthesis, purine 
metabolism and the pentose phosphate pathway. In addi-
tion, the most frequent innate immune response-related 
pathways are glycol-related pathways, the peroxisome 
pathway and the endocytosis pathway.

Network‑based analysis
The network-based analysis was performed as a com-
plementary approach to the biological pathway analysis 
to build gene networks associated with responses to the 
E. maxima challenge using bibliography-based proven 
relationships that are available through the Ingenuity 
Pathway repository. The network-based analysis was per-
formed independently from the biological pathway analy-
sis and was based on a list of genes enriched for SNPs that 
are associated (p < 10−4) with the traits measured during 
the E. maxima challenge (See Additional file 4: Table S4). 
The network-based analysis approach, implemented in 
the IPA tool, assumes that genes used as an input interact 
with each other, and these interactions are reconstructed 
based on the relationships shown in the literature [34]. 
The network-based analysis aims at exploring the cumu-
lative effect of sets of genes that individually explain a 
moderate part of the variation for a measured trait and 
that cannot be identified during GWAS when the strict 
significance threshold was applied.

Figure 7 illustrates the network formed by several of the 
molecules grouped around LATS1 and LATS2 with mul-
tiple direct connections with other molecules enriched 
with significantly associated SNPs. LATS1 and LATS2 
are known to be involved in the regulation of intesti-
nal epithelium renewal [74], which may be explained by 
intensified tissue repair upon E. maxima challenge. In 
addition, phenylalanine, tyrosine and tryptophan bio-
synthesis, purine metabolism and the pentose phosphate 
pathway are the most frequent significant pathways asso-
ciated with all measured traits in the KEGG biological 
pathway analysis. All three of these KEGG pathways are 
associated with increased DNA replication, cell metabo-
lism and protein degradation, which are essential during 
the tissue repair process.

The second network has the MYH6 as a key molecule 
connected with several direct significant relationships to 
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the other genes that are enriched for significantly asso-
ciated SNPs (Fig. 8). The MYH6 gene encodes the alpha 
heavy chain subunit of cardiac myosin. In mice, inactiva-
tion of the specific mutant MYH6 transcript suppresses 
hypertrophic cardiomyopathy [75]. In addition, we also 
identified KCKN3, which is associated with pulmonary 
hypertension, as one of the candidate genes because 
heart failure and ascites have been well documented in 
broiler chickens [44, 45]. The primary reason for these 
problems can be attributed to an intensive selection in 
poultry breeding during the last 60 years [76]. Therefore, 
we can potentially indicate which animals are able to 
maintain a normal function of the cardiovascular system 
and have an advantage in the face of Eimeria infection.

Based on the post-GWAS functional analysis, the 
broiler response to E. maxima is centered on tissue 
repair and recovery, general robustness and mainte-
nance of tissue integrity, restoring intestinal homeostasis 
after the challenge. The described processes, which may 
bring a comparative advantage in the broiler’s ability to 
cope with the challenge, can be described as resilience 
to acute Eimeria infection. In contrast to the previously 
conducted studies [16, 17], which reported associations 
with genes involved in the immune response, we primar-
ily observed associations with genes, biological pathways 
and gene networks that are involved in tissue repair and 
recovery and tissue integrity maintenance. However, pre-
vious studies [16, 17] were conducted on experimental 
layer populations challenged with E. tenella at 28 days of 
age. In regard to this, broilers are also able to establish 
complete immunity 16  days after being challenged with 
E. maxima [77]. Therefore, one would assume that this 
challenge study would identify genetic variants associ-
ated with processes related to immune responses, which 
did not occur in this study and may be due to the effect 
of the infection doses (50,000 oocysts), which were opti-
mized to produce severe clinical signs as reported by 
Hamzic et al. [19]. We argue that the more resilient ani-
mals are able to maintain their biological homeostasis 
and manage the consequences of the infection, which, in 
the context of this challenge, exceeded the importance of 
building an adequate immune response.

Conclusions
We identified 22 SNPs significantly associated with four 
different traits at q value <0.1. Two candidate genes, 
MAN2C1 and FHOD3, were significantly associated with 
PC measured in the range from 465 to 510 nm and the 
percentage of β2-globulin in blood plasma, respectively. 
Moreover, we identified three genomic regions on GGA1 
(MGAT4C), GGA3 (KCNK3) and GGA5 (THBS1) that 
are significantly associated with body weight gain and the 
percentage of β2-globulin.

The post-GWAS functional analysis, which combined 
two independent approaches (the biological pathway 
analysis and network-based analysis), indicated that the 
genes and biological pathways involved in tissue repair, 
general robustness as well as the primary immune 
response may play an important role during the primary 
stage of E. maxima infection in broilers.

Studies that focus on the transfer of the acquired 
knowledge to poultry breeding considering the specifici-
ties of the broiler breeding scheme are currently under 
way. Finally, a follow-up transcriptome study is ongoing, 
which aims at integrating results from the GWAS study 
and further investigation of the genetic mechanisms that 
control the response to Eimeria infection in broilers.

Availability of supporting data
No new SNPs were discovered in the preparation of this 
manuscript. The SNPs used in this manuscript are from 
the chicken 580 K Affymetrix® Axiom® HD genotyping 
array: http://media.affymetrix.com/support/technical/
datasheets/axiom_chicken_array_plate_datasheet.pdf. 
SNP names and location can be found at http://www.
affymetrix.com/catalog/prod670010/AFFY/Axiom%26%
23174%3B+Genome%26%2345%3BWide+Chicken+Ge
notyping+Array#1_3.

Additional files

Additional file 1: Table S1. Title: Quality control of genotype data. 
Description: The genotype data were obtained from 1972 animals 
that were alive at day 16 of the challenge study. Genotype data were 
produced using 580 K Affymetrix® Axiom® HD genotyping array. The call 
rate threshold was set at 98 %, and all SNPs and samples with values less 
than 98 % were excluded. The minor allele frequency threshold was set at 
1 % and animals with values less than 1 % were excluded. Heterozygote 
excess was assessed based on the distribution of F-statistics adjusted for 
skewness using adjbox function from the R package robustbase. Control 
animals were also excluded from the analysis. A total of 138,568 SNPs out 
of 580,961 were removed during the quality control.

Additional file 2: Table S2. Title: Descriptive statistics for the distances 
between SNPs across chromosomes. Description: The table contains infor‑
mation on the number of SNPs per chromosome and the mean, median 
and standard deviation (SD) for the average distances between neighbor‑
ing SNPs. Results in the table refer to genotype data after quality control.

Additional file 3: Table S3. Title: List of annotated SNPs used for 
Biological Pathway Analysis. Description: The table contains SNPs used 
in the genome-wide association study with p-values < 10−4 with the 
corresponding information on the genes in which they are located. 
Abbreviations used for column names: RS ID: Reference SNP ID number, 
SYMBOL: HGNC symbol for gene, NCBI GENE ID: NCBI gene ID, CHR: chro‑
mosome, CHR POS: chromosome position, GENE REGION: gene region of 
the corresponding gene, SS ID: submitted SNP ID, AFFYMETRIX: Affymetrix 
SNP ID, ALLELE: SNP alleles. The remaining columns are p-values for each 
trait with column names corresponding to trait abbreviations used in the 
manuscript.

Additional file 4: Table S4. Title: List of annotated SNPs and their cor‑
responding genes used for Ingenuity Pathway Analysis. Description: The 
table contains SNPs with the corresponding information on the genes 
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BWG: body weight gain; HEMA: hematocrit; LS: lesion score; OC: oocyst 
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quantitative trait loci; PPP: plasma protein profiles; BC: blood composition; NO: 
nitric oxide; IFN-γ: interferon gamma; EST: expressed sequence tags; PBMC: 
peripheral blood mononuclear cell; IPA: Ingenuity Pathway Analysis; HGNC: 
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