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Abstract

Background: Using haplotype blocks as predictors rather than individual single nucleotide polymorphisms (SNPs)
may improve genomic predictions, since haplotypes are in stronger linkage disequilibrium with the quantitative trait
loci than are individual SNPs. It has also been hypothesized that an appropriate selection of a subset of haplotype
blocks can result in similar or better predictive ability than when using the whole set of haplotype blocks. This study
investigated genomic prediction using a set of haplotype blocks that contained the SNPs with large effects estimated
from an individual SNP prediction model. We analyzed protein yield, fertility and mastitis of Nordic Holstein cattle, and
used high-density markers (about 770k SNPs). To reach an optimum number of haplotype variables for genomic
prediction, predictions were performed using subsets of haplotype blocks that contained a range of 1000 to 50 000
main SNPs.

Results: The use of haplotype blocks improved the prediction reliabilities, even when selection focused on only a
group of haplotype blocks. In this case, the use of haplotype blocks that contained the 20 000 to 50 000 SNPs with the
highest effect was sufficient to outperform the model that used all individual SNPs as predictors (up to 1.3 %
improvement in prediction reliability for mastitis, compared to individual SNP approach), and the achieved reliabilities
were similar to those using all haplotype blocks available in the genome data (from 0.6 % lower to 0.8 % higher
reliability).

Conclusions: Haplotype blocks used as predictors can improve the reliability of genomic prediction compared to
the individual SNP model. Furthermore, the use of a subset of haplotype blocks that contains the main SNP effects
from genomic data could be a feasible approach to genomic prediction in dairy cattle, given an increase in density of
genotype data available. The predictive ability of the models that use a subset of haplotype blocks was similar to that
obtained using either all haplotype blocks or all individual SNPs, with the benefit of having a much lower
computational demand.

Background
Since genomic selection methods were introduced [1],
single nucleotide polymorphisms (SNPs) are usually used
to perform genomic prediction, each as an individual
explanatory variable independent from each other. An
alternative is to use haplotypes as explanatory variables
in genomic prediction. The main benefit of using hap-
lotypes for genomic prediction is that haplotypes are
expected to be in higher linkage disequilibrium (LD) with
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the quantitative trait loci (QTL) than individual SNPs are,
meaning that an individual marker effect is not necessarily
the best predictor of a QTL effect [2]. Hence, haplo-
types used as predictors to estimate breeding values are
expected to improve results.
A previous study based on simulated data showed

that the use of haplotypes leads to higher prediction
reliabilities than individual marker predictors [3]. Using
haplotype blocks (haploblocks) based on LD, from a high-
density (HD) marker data in the Nordic Holstein popu-
lation, reliability of genomic prediction for economically
important traits was increased by 3 % when compared
to predictions using individual SNPs [4]. Based on these
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considerations, it is reasonable to assume that haploblocks
based on LD should be good explanatory variables for
genomic prediction. Assuming a correct marker map, one
of the advantages of using haploblocks based on LD is the
non-fixed number of SNPs in a haploblock which allowed
the grouping of tightly linked adjacent SNPs. Therefore,
it efficiently limits the number of “alleles” per haploblock.
However, it is clear that the construction of haploblocks
based on LD requires an appropriate choice of LD mea-
sure and a minimum threshold of LD between markers.
The choices that were applied in our work are described
in the Methods section. One interesting alternative to
LD-based haploblocks are genomic prediction methods
based on identity-by-descent (IBD) relationships [5, 6];
this alternative benefits from linkage analysis over the
genomic data. However, prediction accuracies of breeding
values depend strongly on the number of phenotyped and
genotyped relatives within the population [6]. Besides,
this method using IBD relationships aims at decreasing
marker density to reduce genotyping cost, whereas the
method based on haploblocks in the current study aims at
reducing prediction variables fromHDmarker data. Thus,
the LD-based haploblocks were preferred in this study.
Genomic prediction using a set of appropriately selected

haploblocks is expected to achieve higher prediction accu-
racy while reducing the amount of predictor variables in
prediction models. A recent study showed that better pre-
dictions in dairy cattle traits can be obtained by using
a set of haploblocks with a fixed size (number of SNPs)
[7]. Our hypothesis is that using haploblocks that con-
tain the main SNP effects (i.e. the SNPs with the highest
absolute effect estimated using the models which esti-
mated effects of all individual SNPs simultaneously, and
the haploblocks containing these SNPs are referred to as
QTL-haploblocks hereafter) can improve genomic predic-
tion. By using QTL-haploblocks, it is possible to identify
the parts of the genome that strongly influence the predic-
tions of livestock traits. In addition, a large proportion of
haploblocks may have no effect on a trait, and removing
them as covariates may reduce the noise in genomic pre-
diction models. The idea of a QTL-haploblock approach
is similar to marker-assisted selection (MAS). However,
MAS performs predictions using only a few genetic mark-
ers with a significant effect, that was previously estimated
by a model including all individual SNPs [8, 9], while the
proposed QTL-haploblock approach uses genome-wide
dense markers and allows a large number of markers into
the model, not necessarily all with a significant effect.
Using pre-selected haploblocks for genomic prediction

is an important area of research, especially when con-
sidering the availability of increasingly denser SNP chips.
Reliability of genomic prediction for a trait is expected
to be improved by identifying the most influential hap-
loblocks for this trait to be included in the prediction

model. In addition, genomic prediction models including
a selected group of haploblocks will reduce computing
time considerably, compared to models using all hap-
loblocks. This is not necessarily relevant when dealing
with moderate-density marker data but plays an impor-
tant role when dealing with high-density marker data, and
is more important when using whole-genome sequence
data.
Therefore, this study compared genomic predictions

using an individual SNP approach, a haploblock approach
with all available haploblocks, and a haploblock approach
using a set of haploblocks that contained the main SNPs.
The analyses were performed using data from the Nordic
Holstein population. The key objective of this work was
to assess prediction reliability obtained by using QTL-
haploblocks as covariates, and to compare them to those
achieved when using all individual SNPs or all haploblocks
from a high-density marker chip.

Methods
Marker and phenotypic data
The genomic prediction models performed in this study
were based on marker and phenotypic data from the
Nordic Holstein population. The original marker data was
obtained from a 54k SNP chip and then imputed to high-
density (HD) data of 777k SNPs (Ilumina BovineHDBead-
Chip [10]), by applying the Beagle package [11], using 557
HD genotyped reference bulls from the EuroGenomics
project [12]. The imputed data was then edited by remov-
ing SNPs with a minor allele frequency (MAF) less than
0.01 and also SNPs that were in complete LDwith adjacent
ones [13]. After editing, the final marker data set included
492 057 SNPs for 5214 bulls.
The phenotypic values to perform genomic predic-

tion for protein yield, fertility and mastitis were pseudo-
observations in the form of deregressed proofs (DRP),
obtained from the estimated breeding values (EBV) and
effective daughter contributions [14–16]. All three traits
are index traits. The EBV for protein yield and masti-
tis were composed of EBV for each parity. The EBV for
fertility comprised the EBV for interval from calving
to first insemination, interval from first to last insem-
inations, and number of inseminations (heifer and cow
separately, pooled over parities for cow). The DRP
of all the animals (both training and validation) were
derived from the EBV of the official evaluation in
August 2010 by the Nordic Cattle Genetic Evaluation
(NAV).
To validate the predictive ability of the prediction mod-

els, the marker and phenotypic data sets were divided into
training and test subsets by the cut-off birth date of bulls
on October 1, 2001. The size of training and test data
sets are in Table 1, as well as trait reliabilities for these
populations.
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Table 1 Size, reliability of deregressed proofs and heritability (h2)
of the training and test data sets used for genomic prediction

Protein (h2 = 0.39) Fertility (h2 = 0.04) Mastitis (h2 = 0.04)

pop. size r2DRP pop. size r2DRP pop. size r2DRP

Train 3003 0.940 3037 0.683 3006 0.824

Test 1395 0.924 1378 0.608 1491 0.750

Total 4398 0.935 4415 0.659 4497 0.800

Animal ethics
The phenotypic data were obtained from routine records
of dairy cattle farms. Genotyped animals used in this
work were progeny-tested bulls, and the semen samples
for genotyping were obtained from routine bull semen
collection. Therefore, no ethical approval was necessary.

Genomic prediction covariates
Genomic predictions were performed using individual
SNPs and haploblocks. Haploblocks were built based on
LD and then selected according to specific criteria. In this
section, first we briefly describe the construction of hap-
loblocks and then their selection for genomic prediction.
There are three common pairwise LD measures, D, r2

and D′ [17, 18]. In this study, D′ was chosen to define hap-
loblocks according to a previous study [19], and due to
the fact that it depends less on individual allele frequen-
cies than D. In addition, a pilot study was performed to
compare predictions using haploblocks that were defined
using r2 andD′, and no difference on predictive ability was
observed. Because the use of r2 led to many more hap-
loblocks, D′ was finally chosen as the most adequate LD
measure to build haploblocks.
Following our previous study [4], a haploblock was

defined as a group of adjacent SNPs such that the LD
between any pair of SNPs in this group satisfies |D′| ≥
0.45. This threshold of 0.45 was considered as optimal,
considering the prediction reliability, to predict genomic
breeding values for the three traits of interest using all the
haploblocks built from the HD marker data [4].
Using this LD criterion to define the haploblocks

resulted in a total of 76 062 haploblocks. Because hap-
loblocks are “multi-allelic” it summed up a total of 368 709
haploblock variables. The number of SNPs in a haploblock
ranged from 1 to 78, with amean of 6. The number of vari-
ants within a haploblock ranged from 1 to 16, with a mean
number of 5 [4]. Haploblocks that had only one variant
were excluded.
Selection of haploblocks was based on the estimated

SNP effects obtained from prediction models using either
Bayesian best linear unbiased prediction (Bayesian BLUP)
or a Bayesian mixture model, based on the training
dataset. Detailed description of the models is provided in
the next section, entitled Genomic prediction models. For
each trait, the absolute values of the estimated SNP effects

were ranked. Then, a determined number k of SNPs with
the highest effects was defined. Finally, the haploblocks
containing those SNPs were selected to perform genomic
prediction. The number k of SNP effects used to select
the haploblocks varied from 1000 to 50 000. In the follow-
ing, the haploblocks selected according to the SNP effects
estimated from the training dataset will be referred to as
QTL-haploblocks.
Haploblocks that were selected by SNP effects estimated

by the Bayesian BLUP model were used for genomic pre-
diction using the Bayesian BLUP model. Analogously,
haploblocks that were selected by SNP effects estimated
by the Bayesian mixture model were used for genomic
prediction using the Bayesian mixture model. Because the
estimates of SNP effects differed according to trait and
model, the ranking of SNP effects differed as well, thus the
number of main SNPs within a haploblock varied. This
resulted in different selected haploblocks for each trait,
and the number of haploblocks, used to perform genomic
prediction.
In order to confirm that genomic prediction using QTL-

haploblocks obtains more accurate results than selecting
the haploblocks randomly, protein yield was analysed
using haploblocks containing 1000 to 50 000 randomly
selected SNPs. This procedure was repeated 10 times,
and the reliabilities of the predictions were compared
to the reliabilities of predictions obtained using QTL-
haploblocks.

Genomic prediction models
For the three traits mentioned previously, genomic predic-
tions were performed using a Bayesian BLUP or a Bayesian
mixture model, both including the QTL-haploblocks
effect and a polygenic effect. The two models used a
Bayesian algorithm and were performed using the BayZ
package [20], running a single Markov chain Monte Carlo
(MCMC) with a length of 50 000, of which the first
20 000 cycles were taken as the burn-in of the chain.
Estimates were assessed by the posterior means of the
non-discarded 30 000 cycles. Convergence and length of
MCMC were monitored by graphical inspection of the
dispersion parameter in the models and the correlation
between the genomic estimated breeding values (GEBV)
from two separate rounds in a pilot study.

Bayesian BLUPmodel
The Bayesian BLUP model is defined by the equation

y = 1μ + Mg + Za + ε, (1)

where y represents the vector containing the DRP of train-
ing bulls, μ a general mean, M the haploblock matrix, g
the vector of additive haploblock effects, Z the incidence
matrix linking a to y, a the vector of residual polygenic
additive genetic effects and ε the vector of random errors
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of the model. It is assumed that the distributions are as
follows,

g ∼ N
(
0, Iσ 2

g

)

a ∼ N
(
0,Aσ 2

a
)

ε ∼ N
(
0,Dσ 2

ε

)
μ, σ 2

g , σ 2
a , σ 2

ε ∼ Uniform,

(2)

where A is the genetic relationship matrix constructed
according to pedigree, D is a diagonal matrix with dii =
1/wi and wi = r2DRPi/(1 − r2DRPi) [16, 21]. Furthermore,
wi is a weighting factor accounting for heterogeneous
residual variances due to differences in r2DRPi, the i −
th DRP’s reliability [22]. The prior uniform distributions
were always improper, care was taken to ensure that the
overall mean was within the real values and the variances
were positive real values.
Taking into account that each haploblock may have

more than two variants, matrix M may have more than
one column for each haploblock and had dimension n× q
(n = number of animals, q = total number of haploblock
variables).

Bayesianmixturemodel
The Bayesian mixture model is defined by the same
equation and variables as the Bayesian BLUP model but
differs in the assumed distribution of g, the additive hap-
loblock effects, given by

g ∼
∑4

k=1
πkN

(
0, Iσ 2

πk

)
. (3)

This Bayesianmixturemodel [23] is an extended version
of simpler ones [24, 25], and intends to facilitate the mix-
ing of the MCMC on the high-density marker data. The
mixing proportions πk were fixed at π1 = 0.889, π2 = 0.1,
π3 = 0.01 as π4 = 0.001, and the variances were estimated
under the constraint σ 2

π1 < σ 2
π2 < σ 2

π3 < σ 2
π4 assuming a

non-informative prior uniform distribution.

Evaluation of prediction models
GEBV obtained from the prediction models were calcu-
lated as GEBVi = ∑

j mijĝj + âi, the performance of each
model was assessed by the estimated reliability of GEBV,
r2 and the bias of GEBV. The bias was assessed as b − 1,
where b is the regression coefficient b of DRP on the
GEBV [22].
The reliability of the prediction for breeding values was

obtained as the squared correlation between DRP and
GEBV of individuals in the test population corrected for
the average reliability of DRP of the test animals

(
r2DRP

)
[16]. Thus, the average reliability of GEBV in the test
population was calculated as,

r2 = Cor2(DRP,GEBV )

r2DRP
. (4)

One of the objectives of this study was to test if fitting a
group of selected haploblocks performed as well or better
than fitting all haploblocks from the marker data. Thus,
reliabilities of models with selected haploblocks were
compared to the reliability of the model using all hap-
loblocks with the Hotelling-Williams’ t-test [26, 27]. Testing
whether r2[prediction 1]= r2[prediction 2] is equiva-
lent to testing whether Cor(DRP,GEBV [prediction 1]) =
Cor(DRP,GEBV [prediction 2]). Let ρdrp,i = Cor(DRP,
GEBV [prediction i]) and ρij = Cor(GEBV [prediction i] ,
GEBV [prediction j]), the statistic to test whether H0 :
ρdrp,i = ρdrp,j is true versus H1 : ρdrp,i �= ρdrp,j, is given by,

T = (rdrp,i − rdrp,j)
√

(n − 3)(1 + rij)/2|R|√
1 + (n − 3)(rdrp,i + rdrp,j)2(1 − rij)3/[ 8(n − 1)|R|]

,

(5)

where r∗∗ refers to the observed values of the correlations
ρ∗∗, as described above, n the number of observations
and |R| is the determinant of the correlation matrix R for
DRP and GEBV for models i and j. If the null hypothe-
sis is true, then T ∼ tn−3, hence if |T | ≥ t0, such that
P(|T | ≥ t0) ≤ α, then H0 is rejected and it is considered
that ρdrp,i �= ρdrp,j at a significance level α. T statistics and
their associated p-values were calculated using R [28].

Results
Table 2 presents the number of QTL-haploblocks selected
for each trait and for both statistical models used for
genomic prediction. Because the selection of haploblocks
was based on the SNP effects obtained from two models
that included all individual SNPs, the haploblocks selected
differed by trait and model. It can be observed that when
using up to 10 000 main SNPs to select QTL-haploblocks,
the number of haploblocks did not differ much from the
number ofmain SNPs. Between 20 000 and 50 000 this dif-
ference was more pronounced, which means that the first
10 000 SNPs with the highest effects were located in dif-
ferent haploblocks, while thereafter more than one main
SNP fell in the same haploblock.
Table 3 shows the total number of haploblock vari-

ables. Since haploblocks are “multi-allelic”, the numbers in
Table 3 represent the sum of these alleles, for the selected
haploblocks. These were the total number of covariates
used in the genomic prediction models.
Table 4 presents the prediction reliabilities and bias for

the three traits using each prediction model. The row
with 492 057 main SNPs corresponds in fact to the hap-
loblock approach using all haploblocks (full haploblocks
model) and the last row is the SNP approach. These results
were the basis for the comparison of predictions using
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Table 2 Total number of selected haploblocks to be used in the
prediction models of the three traits using Bayesian BLUP or
mixture models, according to number of main SNP effects

Main Protein Fertility Mastitis

SNPs† BLUP 4 mixture BLUP 4 mixture BLUP 4 mixture

1000 987 988 989 994 991 985

2000 1951 1951 1952 1965 1954 1949

3000 2893 2903 2906 2928 2913 2897

4000 3828 3845 3848 3870 3843 3827

5000 4753 4763 4763 4771 4761 4730

6000 5643 5661 5658 5669 5646 5627

7000 6538 6541 6529 6545 6543 6501

8000 7398 7411 7378 7388 7411 7354

9000 8219 8264 8231 8241 8256 8218

10 000 9043 9101 9061 9078 9067 9037

20 000 16 577 16 686 16 641 16 660 16 584 16 553

30 000 22 958 23 015 23 016 23 017 22 974 22 866

40 000 28 386 28 531 28 468 28 436 28 380 28 349

50 000 33 120 33 189 33 276 33 110 33 092 33 059

492 057 76 062 76 062 76 062 76 062 76 062 76 062
†
number of highest (absolute) SNP effects used to select haploblocks

selected QTL-haploblocks. In this table, we observe that
prediction reliabilities using QTL-haploblocks selected
by 20 000 to 50 000 main SNPs were greater (up to
1.3 % observed in the prediction of mastitis) than those
achieved by using the individual SNP approach, in most

Table 3 Total number of haploblock variables to be used in the
prediction models of the three traits using Bayesian BLUP or
mixture models, according to number of main SNP effects

Main Protein Fertility Mastitis

SNPs† BLUP 4 mixture BLUP 4 mixture BLUP 4 mixture

1000 5701 5761 5824 6007 5815 5816

2000 11 479 11 387 11 478 11 657 11 514 11 475

3000 17 012 16 854 17 016 17 258 17 000 17 081

4000 22 464 22 311 22 494 22 720 22 378 22 603

5000 27 777 27 741 27 790 27 976 27 754 27 775

6000 32 956 32 941 33 046 33 232 32 910 32 957

7000 38 223 38 024 38 097 38 222 38 197 37 946

8000 43 166 43 099 42 938 43 121 43 265 42 893

9000 47 838 48 044 47 966 48 076 48 101 47 879

10 000 52 553 52 938 52 697 52 783 52 769 52 573

20 000 95 234 95 882 95 669 95 710 95 459 95 055

30 000 130 572 130 865 131 045 130 969 130 735 129 994

40 000 160 108 160 600 160 355 160 195 160 000 159 680

50 000 185 225 185 603 185 839 185 000 184 935 184 661

492 057 368 709 368 709 368 709 368 709 368 709 368 709
†
number of highest (absolute) SNP effects used to select haploblocks

cases. An exception was observed for the prediction of
fertility using 40 000 main SNPs, for which case the pre-
diction reliability was 0.1 % lower than that achieved by
the individual SNP approach. In addition, the differences
between the bias obtained by the QTL-haploblock model
and the full haploblock model were very small for the
three traits. The observed biases, measured as the devia-
tion of the regression coefficients of DRP on GEBV, to 1,
was between 0.002 and 0.181 among the three traits.
Figures 1, 2 and 3 present the prediction reliabilities

in graphs, for protein yield, fertility and mastitis, respec-
tively. These figures show the fast increase of prediction
reliabilities when using up to 10 000 main SNP effects to
select QTL-haploblocks. Thereafter, the curves stabilize
around the reliabilities obtained by the models that used
all haploblocks.
Figures 4 and 5 compare the results obtained using

QTL-haploblocks (blue lines) and randomly selected hap-
loblocks (shaded areas and black lines). Figure 4 shows the
results using Bayesian BLUP and Fig. 5 shows the results
using the Bayesian mixture model. The random subset of
haploblocks was repeated 10 times for each number of
SNPs used to select haploblocks (1000 to 50 000), and
predictions were performed for each subset. For both
Bayesian BLUP and Bayesian mixture models, the mean
reliability of the randomly selected haploblocks was lower
than those achieved by the QTL-haploblocks, and most
of the shaded area is below the blue lines. This confirmed
that QTL-haploblocks are better explanatory variables for
genomic prediction than haploblocks selected by a ran-
dom subset of SNPs. It was expected that an advantage
of QTL-haploblocks over randomly selected haploblocks
would be observed, based on the use of selected indi-
vidual SNPs for genomic prediction. As shown in Figs. 4
and 5, when a group of individual SNPs were selected
based on their estimated effects, the genomic prediction
obtained using this group was superior than would be
observed if using a randomly selected group of individual
SNPs.
Table 5 presents P-values of the two-tailed Hotelling-

Williams t-test to verify if the reliabilities obtained using
QTL-haploblocks were different from those obtained
using all haploblocks. The comparisons were made within
each trait and each statistical model. Strictly, it is assumed
that if the P-value is greater than 0.05, there is no evidence
that the prediction reliabilities are statistically different.
However, the closer to 1 the P-value is, the stronger the
evidence that the prediction reliabilities are not equal.
Table 5 shows that the P-values of the test became
higher as the number of main SNPs used to select QTL-
haploblocks increased. In general, P-values were high
(0.632 to 0.999) when using 20 000 to 50 000 main SNPs,
and low (0.063 to 0.268) when using 1000 to 3000 main
SNPs.
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Table 4 Resultsa of genomic prediction of the three traits using Bayesian BLUP or mixture models, according to number of main
SNP effects

Main Protein Fertility Mastitis

SNPs† BLUP 4 mixture BLUP 4 mixture BLUP 4 mixture

1000 0.347 (-0.124) 0.396 (-0.181) 0.356 (0.060) 0.334 (0.040) 0.319 (0.028) 0.318 (0.085)

2000 0.376 (-0.115) 0.409 (-0.174) 0.364 (0.055) 0.333 (0.056) 0.333 (0.026) 0.346 (0.054)

3000 0.400 (-0.107) 0.413 (-0.171) 0.348 (0.016) 0.359 (0.008) 0.345 (0.009) 0.359 (0.033)

4000 0.410 (-0.107) 0.422 (-0.164) 0.359 (0.026) 0.370 (0.012) 0.348 (0.008) 0.368 (0.019)

5000 0.417 (-0.102) 0.426 (-0.160) 0.368 (0.035) 0.375 (0.022) 0.358 (0.002) 0.371 (0.012)

6000 0.422 (-0.102) 0.430 (-0.161) 0.367 (0.026) 0.376 (0.028) 0.358 (0.009) 0.373 (0.016)

7000 0.423 (-0.108) 0.435 (-0.155) 0.369 (0.031) 0.378 (0.034) 0.363 (0.006) 0.374 (0.006)

8000 0.426 (-0.106) 0.437 (-0.143) 0.373 (0.041) 0.384 (0.044) 0.366 (0.003) 0.378 (0.002)

9000 0.425 (-0.103) 0.440 (-0.136) 0.373 (0.035) 0.384 (0.037) 0.368 (0.008) 0.376 (0.009)

10 000 0.428 (-0.100) 0.441 (-0.137) 0.376 (0.040) 0.389 (0.054) 0.369 (0.006) 0.375 (0.011)

20 000 0.427 (-0.101) 0.446 (-0.122) 0.384 (0.048) 0.384 (0.033) 0.372 (0.012) 0.382 (0.003)

30 000 0.427 (-0.111) 0.448 (-0.116) 0.384 (0.048) 0.388 (0.048) 0.372 (0.018) 0.386 (0.006)

40 000 0.427 (-0.108) 0.446 (-0.114) 0.383 (0.043) 0.390 (0.043) 0.373 (0.008) 0.384 (0.003)

50 000 0.424 (-0.121) 0.447 (-0.115) 0.385 (0.051) 0.387 (0.044) 0.375 (0.008) 0.383 (0.006)

492 057 0.429 (-0.120) 0.447 (-0.127) 0.389 (0.057) 0.390 (0.057) 0.372 (0.005) 0.378 (0.005)

Indiv. SNP
0.423 (-0.122) 0.439 (-0.122) 0.384 (0.059) 0.383 (0.048) 0.368 (0.069) 0.373 (0.026)

approach
a
values displayed as: reliability (prediction bias)

†
number of highest (absolute) SNP effects used to select haploblocks

One interesting point about the selection of QTL-
haploblocks was the relationship between the number of
QTL-haploblocks selected by the main SNPs (Table 2) and
the number of haploblock variables (Table 3). Figure 6
shows the average number of “alleles” per haploblock,
for selection of QTL-haploblocks using 1000 to 10 000

main SNPs. For selection of QTL-haploblocks to predict
fertility, the average number of “alleles” per haploblock
was greater when using the Bayesian mixture model, than
when using Bayesian BLUP. This difference was more
accentuated at small numbers of main SNPs (1000 to
2000) to select QTL-haploblocks, and remained almost

Fig. 1 Prediction reliabilities obtained using models with QTL-haploblocks as covariates for protein yield. The values on the x-axis are the number of
main SNPs used to select QTL-haploblocks to perform genomic prediction, and the y-axis indicates the reliability of predictions
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Fig. 2 Prediction reliabilities obtained using models with QTL-haploblocks as covariates for fertility. The values on the x-axis are the number of main
SNPs used to select QTL-haploblocks to perform genomic prediction, and the y-axis indicates the reliability of predictions

unchanged up to 6000 main SNPs. For 7000 main SNPs
and more, the average number of “alleles” per haploblock
became similar, for both the Bayesian BLUP and the
Bayesian mixture models. For mastitis, the number of
“alleles” per haploblock is also greater when using the
Bayesian mixture model up to 6000 main SNPs, except
when using 2000 main SNPs, for which the average was
slightly greater when using Bayesian BLUP. This differ-
ence is more accentuated when using 3000 to 5000 of
main SNPs to select QTL-haploblocks. For 7000 main
SNPs and more, the difference started to decrease until
the ratios converged to the same value. For protein yield,

the scenario observed was different, except when using
1000 main SNPs to select QTL-haploblocks, the num-
ber of “alleles” per haploblock was greater when using
the Bayesian BLUP model, this was most pronounced
up to 4000 main SNPs, then converged to the same
value.
Table 6 indicates the computing time required to per-

form the prediction with each model. It was observed
that computing time increased according to the increase
of main SNPs used to select QTL-haploblocks, hence the
increase in predictive variables. It was clear that there was
a reduction in computing time, when QTL-haploblocks

Fig. 3 Prediction reliabilities obtained using models with QTL-haploblocks as covariates for mastitis. The values on the x-axis are the number of main
SNPs used to select QTL-haploblocks to perform genomic prediction, and the y-axis indicates the reliability of predictions
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Fig. 4 Prediction reliabilities obtained using Bayesian BLUP model with QTL-haploblocks and random selected haploblocks as covariates for protein
yield. The values on the x-axis are the number of main SNPs used to select QTL-haploblocks to perform genomic prediction, and the y-axis indicates
the reliability of predictions. The grey shaded area shows the range (minimum to maximum prediction reliabilities) and the black lines indicate the
mean reliabilities obtained of the models using the randomly selected haploblocks

were used to perform genomic prediction, and this is one
relevant benefit of this method.

Discussion
Previous studies have already determined that hap-
loblocks are able to better predict breeding values of
economically important traits in dairy cattle, than individ-
ual SNPs [3, 4, 7]. Similar to results obtained in [7], the

QTL-haploblocks used as predictors in this work may
achieve predictions that are more accurate than those
using all 492 057 individual SNPs, and as good as those
achieved using all 76 062 haploblocks built from the
genomic data.
When compared to the predictions with individual

SNPs, the QTL-haploblocks were able to achieve higher
prediction reliabilities for the three traits, when selected

Fig. 5 Prediction reliabilities obtained using the Bayesian mixture model with QTL-haploblocks and random selected haploblocks as covariates for
protein yield. The values on the x-axis are the number of main SNPs used to select QTL-haploblocks to perform genomic prediction, and the y-axis
indicates the reliability of predictions. The grey shaded area shows the range (minimum to maximum prediction reliabilities) and the black lines
indicate the mean reliabilities obtained of the models using the randomly selected haploblocks
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Table 5 P-values for the Hotelling-Williams’ t-statistic to test H0:
the reliability obtained by the model selecting haploblocks is
equal to the reliability obtained by the model using all the
haploblocks vs. H1: the reliabilities are different, according to
number of main SNP effects

Main Protein Fertility Mastitis

SNPs† BLUP 4 mixture BLUP 4 mixture BLUP 4 mixture

1000 0.00 0.00 0.15 0.01 0.00 0.00

2000 0.00 0.00 0.26 0.01 0.03 0.09

3000 0.03 0.01 0.06 0.16 0.14 0.32

4000 0.15 0.05 0.17 0.36 0.19 0.60

5000 0.34 0.10 0.34 0.49 0.42 0.69

6000 0.55 0.16 0.31 0.51 0.43 0.77

7000 0.60 0.30 0.34 0.57 0.59 0.84

8000 0.79 0.41 0.45 0.79 0.74 0.98

9000 0.74 0.54 0.45 0.79 0.82 0.93

10 000 0.91 0.60 0.54 0.96 0.83 0.85

20 000 0.87 0.93 0.82 0.76 0.98 0.82

30 000 0.85 0.91 0.81 0.93 0.99 0.63

40 000 0.88 0.91 0.76 0.99 0.96 0.72

50 000 0.65 0.98 0.86 0.88 0.87 0.75
†
number of highest (absolute) SNP effects used to select haploblocks

by a range of 20 000 to 50 000 main SNPs. This can
be verified in Table 4 and clearly observed in Figs. 1, 2
and 3. This range of 20 000 to 50 000 main SNPs to
select QTL-haploblocks was also found to result in pre-
diction reliabilities either equal or very close to those
obtained using all haploblocks for protein yield and
fertility. In the prediction of mastitis, the reliabilities

observed in this range were equal or even greater than
those obtained using all haploblocks (up to 0.8 %). This
particular result for mastitis was satisfying, taking into
account that it is a trait with low heritability, and it is
difficult to improve its prediction accuracy using hap-
loblocks [4]. Furthermore, genetic progress is linearly
related to accuracy of genetic evaluation. Considering a
large dairy cattle population, a small improvement in reli-
ability of predictions is considered important for cattle
breeding.
The P-values of the Hotteling-Williams tests in Table 5

were used to compare the results of using only QTL-
haploblocks in prediction reliability, with that when using
all haploblocks. There was a strong interest in verifying
how the increase of variables in the prediction model
affected the evidence (P-value) favouring the hypothe-
sis of equal reliabilities. For all the traits, the P-values
indicated that the prediction reliabilities using QTL-
haploblocks selected by at least 4000 main SNPs (i.e.
the SNPs with the highest effects) were statistically not
different to those obtained using all haploblocks. We
could observe, moreover, that while we used 1000 to
10 000 main SNPs to select QTL-haploblocks, the P-
values comparing the prediction reliabilities to the full
haploblocks model increased regularly. This means that
for up to 20 000 main SNPs, the more SNPs we use
to select QTL-haploblocks, the stronger becomes our
evidence that the prediction reliabilities are not dif-
ferent. In the range of 20 000 to 50 000 main SNPs
used to select QTL-haploblocks, the P-values were high
(greater than 0.6), suggesting that those models predict
as well as or equally well as the model using all
haploblocks.

Fig. 6 Ratio between total number of haploblock variables used in the prediction models and total number of haploblocks containing the main SNP
effects. The values on the x-axis are the number of main SNPs used to select QTL-haploblocks to perform genomic prediction, and the y-axis
indicates the ratio (haploblock variables)/haploblocks
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Table 6 Computing time needed to run the genomic prediction models of the three traits using Bayesian BLUP or mixture models,
according to number of main SNP effects

Main Protein Fertility Mastitis

SNP effects BLUP 4 mixture BLUP 4 mixture BLUP 4 mixture

1000 1h 11m 1h 17m 1h 28m 1h 31m 1h 27m 1h 15m

2000 2h 33m 3h 09m 2h 51m 2h 56m 2h 30m 2h 30m

3000 3h 35m 3h 47m 4h 14m 4h 19m 3h 37m 4h 14m

4000 4h 42m 4h 52m 5h 35m 5h 40m 4h 51m 5h 37m

5000 5h 45m 5h 55m 6h 53m 6h 59m 6h 00m 6h 52m

6000 6h 54m 8h 10m 8h 10m 8h 18m 8h 05m 8h 12m

7000 7h 50m 9h 14m 9h 24m 9h 31m 8h 07m 9h 23m

8000 8h 54m 11h 24m 10h 37m 10h 45m 9h 08m 10h 41m

9000 10h 08m 14h 30m 11h 51m 11h 59m 12h 10m 11h 52m

10 000 10h 52m 17h 05m 12h 59m 13h 09m 12h 59m 12h 58m

20 000 19h 59m 19h 56m 23h 44m 23h 50m 23h 38m 27h 42m

30 000 31h 54m 32h 20m 32h 18m 32h 40m 31h 54m 32h 02m

40 000 39h 02m 39h 31m 39h 32m 39h 54m 39h 22m 39h 34m

50 000 45h 16m 45h 46m 45h 51m 46h 11m 45h 22m 45h 44m

492 057 101h 47m 100h 41m 108h 08m 80h 17m 80h 15m 91h 18m

One important feature of prediction models using QTL-
haploblocks is the reduction in computing time. Com-
pared to the individual SNP approach, the models with
QTL-haploblocks take approximately only 20 to 25 % of
the computing time, and 30 to 41 % when compared to
using all haploblocks. Thus, although the increase in pre-
diction reliability is small compared to the individual SNP
approach (however still very important in cattle breeding),
the increase in computational efficiency was considerable.
Furthermore, in all our models, we used a MCMC with
a fixed length of 50 000 iterations, and the first 20 000
were discarded as burn-in. Because the models that use
QTL-haploblocks have significantly less explanatory vari-
ables, and because these variables are also less correlated
to each other as are individual SNPs, it is expected that
the number of MCMC iterations can be reduced. Con-
sequently, a further reduction in computing time can be
achieved.
For low or moderate density marker data, the computa-

tional gain provided by the use of QTL-haploblocks, from
preparation of data and time to run prediction models,
may not be relevant. However, the predictions using QTL-
haploblocks will be of great importance when it comes to
densermarker data, such as whole-genome sequence data.
Hence, further studies on genomic prediction using hap-
loblocks and QTL-haploblocks based on LD is a natural
next step to evaluate the benefits from these predictors.

Conclusions
The results from this study suggest that when 20 000 to
50 000 main SNPs were used to select QTL-haploblocks,

the use of QTL-haploblocks as predictors is generally suf-
ficient to obtain reliabilities equal or higher than those
obtained using all individual SNPs (up to 0.9 % increase
for proteinyield, equivalent prediction for fertility and up
to 1.3 % increase for mastitis, compared to the individ-
ual SNP approach), and similar to those obtained using all
haploblocks.
In addition, the method presented here had a positive

effect on computing time for prediction models using HD
marker data. Compared to the computing time required
for the models using all haploblocks, the model using
the QTL-haploblocks containing 20 000 to 50 000 main
SNPs took on average 40 % of the total time needed
and obtained statistically similar results. The computing
time for the models using QTL-haploblocks can be fur-
ther reduced by using less MCMC cycles, since there are
less explanatory variables. With denser marker data and
whole-genome sequence data, the reduction in comput-
ing time would be an important issue in practical genomic
prediction.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
BCDC performed the analysis, helped to conceive the study, and wrote the
manuscript. GS and MSL conceived the study, helped in the analysis, and
contributed to the manuscript. All authors read and approved the final
manuscript.

Acknowledgements
We thank the Danish Cattle Federation (Aarhus, Denmark), Faba Co-op
(Helsinki, Finland), Swedish Dairy Association (Stockholm, Sweden), and Nordic
Cattle Genetic Evaluation (Aarhus, Denmark) for providing data. This work is



Cuyabano et al. Genetics Selection Evolution  (2015) 47:61 Page 11 of 11

part of the project “Genomic Selection— From function to efficient utilization
in cattle breeding (grant no. 3405-10-0137)”, funded under the Green
Development and Demonstration Programme of the Danish Directorate for
Food, Fisheries and Agri Business (Copenhagen, Denmark), the Milk Levy Fund
(Aarhus, Denmark), and VikingGenetics (Randers, Denmark).

Received: 18 June 2014 Accepted: 23 July 2015

References
1. Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value

using genome-wide dense marker maps. Genetics. 2001;157:1819–29.
2. Zondervan KT, Cardon LR. The comples interplay among factors that

influence allelic association. Nat Rev Genet. 2004;5:89–101.
3. Villumsen TM, Janss L, Lund MS. The importance of haplotype length

and heritability using genomic selection in dairy cattle. J Anim Breed
Genet. 2008;126:3–13.

4. Cuyabano BCD, Su G, Lund MS. Genomic prediction of genetic merit
using LD-based haplotypes in the Nordic Holstein population. BMC
Genomics. 2014;15:1171.

5. Luan T, Wooliams JA, Ødegård J, Dolezal M, Roman-Ponce SI, Bagnato
A, et al. The importance of identity-by-state information for the accuracy
of genomic selection. Genet Sel Evol. 2012;44:28.

6. Ødegård J, Meuwissen THE. Identity-by-descent genomic selection using
selective and sparse genotyping. Genet Sel Evol. 2014;46:3.

7. Boichard D, Guillaume F, Baur A, Croiseau P, Rossignol MN, Boscher MY,
et al. Genomic selection in French dairy cattle. Anim Prod Sci. 2012;52:
115–20.

8. Dekkers JCM, Hospital F. The use of molecular genetics in the
improvement of agricultural populations. Nat Rev Genet. 2002;3:22–32.

9. Heffner EL, Sorrels ME, Jannink JL. Genomic selection for crop
improvement. Crop Sci. 2009;49:1–12.

10. Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton
MP, et al. Development and characterization of a high density SNP
genotyping assay for cattle. PLoS ONE. 2009;4:e5350.

11. Browning BL, Browning SR. A unified approach to genotype imputation
and haplotype-phase inference for large data sets of trios and unrelated
individuals. Am J Hum Genet. 2009;84:210–23.

12. Lund MS, de Roos APW, de Vries AG, Druet T, Ducrocq V, Fritz S, et al.
A common reference population from four European Holstein
populations increases reliability reliability of genomic predictions. Genet
Sel Evol. 2011;43:43.

13. Su G, Brøndum RF, Ma P, Guldbrandtsen B, Aamand GP, Lund MS.
Comparison of genomic predictions using medium-density (∼ 54,000)
and high-density (∼ 777,000) single nucleotide polymorphism marker
panels in Nordic Holstein and Red Dairy Cattle populations. J Dairy Sci.
2012;95:4657–65.

14. Jairath L, Dekkers JCM, Schaeffer LR, Liu Z, Burnside EB, Kolstad B.
Genetic evaluation for herd life in Canada. J Dairy Sci. 1998;81:550–62.

15. Schaeffer LR. Multiple trait international bull comparisons. Livest Prod Sci.
2001;69:145–53.

16. Garrick DJ, Taylor JF, Fernando RL. Deregressing estimated breeding
values and weighting information for genomic regression analyses.
Genet Sel Evol. 2008;41:55.

17. Hill WG, Robertson A. Linkage disequilibrium in finite populations. Theor
Appl Genet. 1968;38:226–31.

18. Hill WG. Estimation of effective population size from data on linkage
disequilibrium. Genet Res. 1981;38:209–16.

19. Gabriel SB, Schattner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B,
et al. The structure of haplotype blocks in the human genome. Science.
2002;296:2225–9.

20. BayZ Manual, version 2.04. 2013. ed. http://www.bayz.biz/.
21. VanRaden PM. Efficient methods to compute genomic predictions.

J Dairy Sci. 2008;91:4414–23.
22. Su G, Madsen P, Nielsen US, Mäntysaari EA, Aamand GP, Christensen

OF, et al. Genomic prediction for Nordic Red Cattle using one-step and
selection index blending. J Dairy Sci. 2012;95:909–17.

23. Gao H, Su G, Janss L, Zhang Y, Lund MS. Model comparison on genomic
predictions using high-density markers for different groups of bulls in the
Nordic Holstein population. J Dairy Sci. 2013;96:4678–87.

24. George EI, McCulloch RE. Variable selection via Gibbs sampling. J Am
Statist Assoc. 1993;88(423):881–9.

25. Meuwissen THE. Accuracy of breeding values of ‘unrelated’ individuals
predicted by dense SNP genotyping. Genet Sel Evol. 2009;41(1):35.

26. Hotelling H. The selection of variates for use in predictions with some
comments on the problem of nuisance parameters. Ann Math Stat.
1940;11:271–83.

27. Williams EJ. Regression Analysis. New York: John Wiley and Sons, Inc; 1959.
28. R Core Team. R. A language and environment for statistical computing.

Vienna, Austria: R Foundation for Statistical Computing; 2014. http://
www.R-project.org/.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.bayz.biz/
http://www.R-project.org/
http://www.R-project.org/

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Marker and phenotypic data
	Animal ethics
	Genomic prediction covariates
	Genomic prediction models
	Bayesian BLUP model
	Bayesian mixture model

	Evaluation of prediction models

	Results
	Discussion
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References



