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Abstract

conventionally selected line.

improvement of layer chickens.

Background: Genomic selection (GS) using estimated breeding values (GS-EBV) based on dense marker data is a
promising approach for genetic improvement. A simulation study was undertaken to illustrate the opportunities
offered by GS for designing breeding programs. It consisted of a selection program for a sex-limited trait in layer
chickens, which was developed by deterministic predictions under different scenarios. Later, one of the possible
schemes was implemented in a real population of layer chicken.

Methods: In the simulation, the aim was to double the response to selection per year by reducing the generation
interval by 50 %, while maintaining the same rate of inbreeding per year. We found that GS with retraining could
achieve the set objectives while requiring 75 % fewer reared birds and 82 % fewer phenotyped birds per
year. A multi-trait GS scenario was subsequently implemented in a real population of brown egg laying hens.
The population was split into two sub-lines, one was submitted to conventional phenotypic selection, and
one was selected based on genomic prediction. At the end of the 3-year experiment, the two sub-lines were
compared for multiple performance traits that are relevant for commercial egg production.

Results: Birds that were selected based on genomic prediction outperformed those that were submitted to
conventional selection for most of the 16 traits that were included in the index used for selection. However,
although the two programs were designed to achieve the same rate of inbreeding per year, the realized
inbreeding per year assessed from pedigree was higher in the genomic selected line than in the

Conclusions: The results demonstrate that GS is a promising alternative to conventional breeding for genetic

Background

Genomic selection (GS) as a means of marker-assisted
improvement was introduced by Meuwissen et al. [1]
and has been implemented for dairy cattle [2], among
other species. Genomic prediction of merit requires a
training population that includes genotyped individuals
with individual or offspring phenotypes. Animals are
genotyped with a large number of markers (typically
more than 10 000 single nucleotide polymorphisms,
SNPs) that are located across the genome. Training data
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are used to develop a model to predict breeding values
based on SNP genotypes, and this model is used to pre-
dict breeding values in future generations [1]. One of the
main challenges of implementing GS in breeding pro-
grams for poultry is the large number of selection candi-
dates and the limited value of individual candidates
compared to the cost of genotyping. Nevertheless, using
deterministic simulation, Sitzenstock et al. [3] recently
demonstrated that implementation of GS in breeding
programs in layer chickens can result in extra genetic
and economic gains, in particular when the breeding
program is redesigned to capitalize on the ability of GS
to reduce the generation interval.

Although empirical accuracy of genomic prediction
has been studied in most livestock species (dairy and
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beef cattle, swine, broiler and layer chickens), studies on
the impact of empirical results of GS on genetic gain are
not available. In addition to increasing accuracy of selec-
tion at young ages, GS is expected to reduce rates of
inbreeding per generation because GS provides add-
itional information on Mendelian sampling terms of
selection candidates [4, 5]. GS is predicted to allow a re-
duction in size of breeding programs, without increasing
the rate of inbreeding. The reduced costs in manage-
ment and performance recording for a smaller popula-
tion size should help offset the considerable investment
in genotyping that is required. Alternative or additional
strategies could also involve preselection of candidates
for genotyping.

The objectives of this study were to design, simulate,
implement and retrospectively evaluate a GS program
for layer chickens, which could potentially double the re-
sponse to selection per year, while maintaining the same
annual rate of inbreeding, compared to a typical pedi-
gree and performance-based layer selection program.
The selection lines for the GS and conventional breeding
programs were derived from the same foundation line,
and multiple-trait performance was compared over the
same time period in the terminal generations.

Methods
This research was conducted in four steps as follows:

(1)Design of a genomic selection program for layer
chickens using deterministic prediction models
based on selection theory that would double the
response to selection per year but maintain the same
rate of inbreeding per year compared to a
conventional selection program based on pedigree
and phenotypic information. Our aim was to achieve
these goals while minimizing genotyping and
phenotyping costs by changing the population
structure.

(2)Evaluation of the performance of this GS strategy by
stochastic simulation.

(3)Implementation of the GS and conventional
breeding strategies, in which both selection lines
were derived from the same foundation generation
of a real elite purebred layer chicken population.

(4)Retrospective evaluation of the realized responses to
selection for the two breeding programs.

Design of the genomic selection strategy using
deterministic prediction

Responses to selection and rates of inbreeding were pre-
dicted by deterministic methods for a conventional
BLUP (best linear unbiased prediction) selection pro-
gram and for a range of GS programs in order to identify
a strategy that could double the response to selection
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per year with the same rate of inbreeding per year as the
conventional program. To reflect selection for egg laying
traits, we considered a trait with a heritability of 0.3 and
phenotypes available only on females at 1 year of age.
The program SelAction [6] and procedures of [5] were
used to predict asymptotic rates of response and in-
breeding for the conventional BLUP and GS strategies.

The conventional BLUP strategy assumed selection
and mating of 60 males and 360 females per 56-week
long generation cycle. The 60 males were selected from
1080 selection candidates (three sons raised per hen)
based on their BLUP estimated breeding values (EBV)
from phenotypic data on female ancestors and sibs (indi-
vidual phenotypes or progeny with phenotypes were not
available at the time of selection). The 360 females were
selected from 2880 selection candidates (eight daughters
per hen) based on BLUP EBV from the phenotypes of
female ancestors and sibs, as well as individual pheno-
types. Deterministic predictions of this program using
SelAction showed an expected response of 0.48 pheno-
typic standard deviation per generation and a rate of
inbreeding of 1.38 % per generation.

Using the response to selection and rate of inbreeding
of the conventional program as targets, predicted re-
sponses and rates of inbreeding per generation were
evaluated for a large number of GS strategies; the num-
ber of sires selected was varied from 25 to 60, the num-
ber of dams selected from 40 to 120, and the number of
male and female offspring per dam that were genotyped
was varied from 3 to 12. The initial accuracy of genomic
EBV that were assumed to be available on all selection
candidates was set equal to 0.7, which resulted in an
asymptotic accuracy after accounting for the Bulmer
effect between 0.58 and 0.60 for all GS strategies. Based
on deterministic predictions, a GS breeding program
with 50 males and 50 females that were selected at each
generation from 300 selection candidates per sex (six
male and six female progeny from each single sire-dam
mating) was predicted to result in a similar rate of
response per generation as the conventional BLUP pro-
gram (0.43 vs. 0.48 phenotypic SD), with less than half
the rate of inbreeding per 28-week generation cycle
(0.59 versus 1.38 %), while minimizing the number of
individuals genotyped per generation. Thus, with the gen-
eration interval for the GS program being half that of the
conventional 56-week program, this GS program was pre-
dicted to nearly double the response to selection per year,
with a slightly lower rate of inbreeding per year.

Evaluation of the genomic selection strategy by
stochastic simulation

The conventional and GS programs described above
were compared by stochastic simulation to validate these
deterministic predictions. A genome that comprised 20
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chromosomes of 37.5 cM each, for a total of 750 cM,
was simulated. In the foundation generation of the base
population (g0), 6001 equally spaced SNPs per chromo-
some were simulated for 500 individuals, with allele fre-
quencies of 0.5 and in linkage and Hardy-Weinberg
equilibrium. To generate mutation-drift equilibrium, the
subsequent 1000 generations (gl-g1000) were simulated
with random mating, mutation (rate = 2.5*107%), and re-
combination, with effective population sizes of 500 for
g1-g900 and 100 for g901-g1000. To create the training
data, the population was expanded to 1000 individuals
in g1001. Breeding values were generated by designating
200 random segregating (minor allele frequency >0.1)
SNPs as quantitative trait loci (QTL). Each QTL was
assigned an effect that was drawn from a Gamma distri-
bution with shape parameter 0.4 and inverse scale par-
ameter 1.66, following Hayes and Goddard [7]. The QTL
effects were scaled such that the genetic variance in
g1001 was 3/7. Each phenotype was simulated by adding
a random environmental effect drawn from a standard
normal distribution, assuming heritability to be equal to
0.3. Another 6000 segregating SNPs across the whole
genome were sampled in the same base population and
used as markers starting in g1001, which resulted in an
average of eight SNPs per cM and is equivalent to 24
000 segregating SNPs for typical livestock genomes.
These SNPs were used for training the genomic predic-
tion models to reflect the real situation in which it is
likely that causal mutations are not included in the SNP
panels but markers with different levels of LD with the
causal loci are. A total of 1000 females with phenotypic
data were available to provide training data in g1001.

Starting in g1002, the conventional phenotype-based
BLUP selection program (generation interval of one
year) and the GS program (generation interval of
0.5 year) were simulated. Response and rate of inbreed-
ing were evaluated over four generations of conventional
selection and eight generations of GS because the gener-
ation interval was reduced by 50 % in GS.

For conventional selection, EBV were estimated at
each generation by fitting the conventional animal
model to available phenotypic data [8, 9], using a numer-
ator relationship matrix based on pedigree going back to
g1001, with generation as a fixed effect. Heritability was
set equal to the true heritability of 0.3 in the base popu-
lation. For GS, the BayesB method of [1] was used, by
fitting the following model to the phenotype of individ-
ual i in the training data:

Vi=u+t ijijgj + e,

where p is the generation effect, summation ¥ is over
all genotyped SNPs, X;; is the number (0, 1 or 2) of cop-
ies of allele 1 that individual i carries at SNP j, g; is the
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allele substitution effect for SNP j, and e; is a random
residual. Allele substitution effects g; were assumed to
be normally distributed with mean 0 and variance oy
with probability 1-m=0.05 or to be null with probability
1t = 0.95. Preliminary analyses found that the choice of it
had a limited impact on the results. The prior for the
variance of the substitution effects op; was X *(4.234,
0.0429). Estimates of allele substitution effects for each
SNP, g, were obtained as posterior means from 1000 -
cycles of a Gibbs chain, of which the first 100 cycles
were discarded as burn-in, combined with 10 cycles of a
Metropolis-Hastings algorithm within each Gibbs cycle
to obtain samples of ng. Preliminary analyses showed
that these numbers of cycles led to converged estimates
of EBV. For selection candidates, EBV were computed
based on their SNP genotypes as:

EBV; = Z}X,,-gj

GS was evaluated with and without retraining. With-
out retraining, the SNP effects that were estimated based
on g1001 were used for all eight cycles of selection. With
retraining, SNP effects were re-estimated at each gener-
ation, after adding phenotypes of the 300 female candi-
dates from the previous generation to the training
dataset.

Responses to selection were evaluated based on the
mean true breeding value of selection candidates at each
generation based on 48 replicates of the simulation. The
level of inbreeding at each generation was based on the
average pedigree-based inbreeding coefficients of selec-
tion candidates, using gl001 as the founder generation.
Standard deviations of response and inbreeding were
evaluated across the 48 replicates.

Implementation of genomic selection

Based on the simulation results, a GS program was im-
plemented in an experimental pure-bred commercial
brown egg layer chicken line that was previously under
conventional BLUP selection. To allow side-by-side
comparison of the conventional and GS programs, the
line was split into two sub-lines (later denoted as gen-
omic and pedigree lines) by random splitting of full-sib
families. The pedigree line underwent two subsequent
generations of conventional selection, whereas the gen-
omic line underwent four generations of GS. All birds
were produced, reared, and managed in facilities of the
Hy-Line breeding program by Hy-Line staff, using stand-
ard protocols implemented by Hy-Line International.

Population structure and selection strategy

Different population structures were implemented for
the two sub-lines, with numbers of contributing sires
and dams and the total number of selection candidates
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shown on Fig. 1. In the pedigree line, 1000 male and
3000 female candidates were produced at each gener-
ation from 60 male and 360 female parents that were
selected on a multi-trait index of phenotype-BLUP EBV,
after records on female candidates were collected, with a
restriction on the number of full-sibs selected. Selected
males and females were mated in a hierarchical manner
(six females per male), with some restriction to avoid
matings between full- or half-sibs.

The GS program that was implemented was a slight
modification of the one used in the simulation because
it applied two-stage female selection. No changes in se-
lection strategy were implemented on the male side: 50
males were selected at a young age on a multi-trait index
of genomic EBV (GEBV). In the first stage of female
selection, 150 of the 300 female candidates were selected
at a young age based on a multi-trait index of GEBV. All
150 females were mated to produce progeny for the next
generation and before being recorded for phenotypes,
which resulted in a generation interval of 28 weeks. A
partially cross-classified mating design was implemented
to reduce rates of inbreeding and capitalize on the ability
of the GS procedure to assign parentage based on
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genotypes. For this mating design, the 50 selected males
and 150 females were divided into five mating groups of
10 males and 30 females. Within each mating group,
each male was mated to a different set of three females
by artificial insemination. Males were rotated between
the sets of females within a mating group. Parentage of
the chicks was established based on SNP genotypes. In
the second stage, at 42 to 46 weeks of age, after most
individual phenotypes had been recorded, the 150 fe-
males were re-evaluated based on a combination of
GEBV and own performance. From the best 50 dams
300 male and 300 female progeny (now 14 weeks of age)
were selected for genotyping and phenotyping. The
remaining progeny were kept only for phenotyping. This
two-stage selection strategy made it possible to reduce
the generation interval by 50 %, while increasing the
accuracy of female selection, although at the cost of
doubling the number of progeny that were produced
and reared.

Using progeny that could be uniquely assigned to the
parents and excluding animals which had no progeny,
each sire had on average 12.4 progeny (ranging from 1
to 31) and each dam 10.8 progeny (ranging from 1 to
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15), with 1.9 (ranging from 1 to 7) full-sib progeny on
average per sire-dam combination. The numbers of se-
lection candidates, and final numbers of contributing
sires and dams are in Fig. 1. Generation 3 of GS (G3GS)
had additional phenotypes from non-genotyped progeny.

Selection criteria

All phenotypes used in this study were obtained from
routine data collection of Hy-Line International. Both
sub-lines were selected based on the same multi-trait
index combining 16 production and quality traits mea-
sured at early (e) or later (1) ages: age of sexual maturity
(eSM, d), body weight at late age (IBW,g), shell color
(based on an index obtained from the I, a, b Minolta®
Colormeter system) for the first three eggs (eC3), at
early (eCO) and late age (ICO), egg weight (g) for the
first three eggs (eE3), at early (eEW) and late age (IEW),
puncture score at early (ePS) and late age (IPS), albumen
height (mm) at early (eAH) and late age (I1AH), and yolk
weight (g) at early (eYW) and late age (IYW). Egg pro-
duction was expressed as ePD and IPD, which are the
egg production rates (ratio of the number of saleable
eggs to number of days in lay). Early measurements for
egg quality traits were taken at 26 to 28 weeks of age.
Late measurements for egg quality traits were taken at
42 to 46 weeks of age on birds not culled after early
measurements. In addition, egg number (eEN and IEN,
which are the total numbers of eggs (regardless of
saleability) laid in weeks 1 to 10 and in weeks 11 to 20
of production, respectively) were monitored for corre-
lated response. Complete records for late egg production
were not available on GS females at the final stage of se-
lection. Early and late egg quality measurements were
averages of three to five eggs. Observations that deviated
from the within-hatch generation mean by more than
three standard deviations were excluded from breeding
value estimation and treated as outliers, but all biologic-
ally feasible values were retained for line comparison in
the final generation.

Breeding values of selection candidates in the pedigree
sub-line were estimated using the pedigree-based multi-
trait BLUP that is used for routine evaluation in the
Hy-Line International breeding programs. Hatch-by-
generation was used as the only fixed effect to ac-
count for contemporary group effects.

Selection candidates in the genomic sub-line were
genotyped using a custom high-density Illumina SNP
panel which provided 23 356 segregating SNPs (minor
allele frequency > 0.025; maximum proportion of missing
genotypes < 0.05; maximum mismatch rate between
parent-offspring pairs < 0.05; parentage probability > 0.95).
The same panel was also used to establish the training
population for the first generation, which consisted of all
selected parents from the previous five generations: 2708
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genotyped animals, of which 1563 were females with
individual phenotypes and 1145 were males without
phenotypes. In addition, phenotypes of 11 486 pro-
geny of the genotyped individuals were included as
progeny means in the training data. In subsequent
generations, phenotypes and genotypes of the 300 ge-
notyped female selection candidates were added to
the training population, i.e., the retraining option for
GS was used.

In the final generation, the GS line was expanded to
produce enough progeny to make comparisons with the
pedigree sub-line valid. A total of 2318 progeny were
hatched, of which 1977 were assigned to 49 sires and
148 dams based on low-density SNP genotypes (71
SNPs). Animals that were not genotyped or that had one
or more parents not matching the mating scheme were
excluded.

At each generation, the accuracy of several genomic
evaluation methods was evaluated by using pheno-
types of the last available generation for validation
and the method with the highest accuracy was used
for training on a dataset that included the phenotypes
of the last generation for each trait. The genomic
evaluation methods that were used included: univari-
ate and bivariate GBLUP (using the early and late
phenotypes for a given trait), GBLUP with a modified
genomic relationship matrix [10], univariate BayesA,
BayesB, and BayesCPi [11]. BayesCpi and GBLUP
tended to have the highest accuracy and were there-
fore the predominant methods used. Variance compo-
nents were estimated from the data using a multi-
trait animal model. Because not all individuals were
genotyped, both individual performance and progeny
means were used for genomic evaluation by applying
methods described by [12].

Bayesian analyses were performed using the GenSel
software [13], while conventional BLUP and GBLUP
analyses, which estimated variance components simul-
taneously, were done using ASReml [14]. Because the
scale of GEBV can differ from the scale of the ob-
served phenotypes, the GEBV of each trait were
rescaled at each generation by multiplying by the co-
efficient of regression of adjusted (for hatch effects)
phenotypes on GEBV obtained from the latest valid-
ation analysis.

For the second stage selection of females, the rescaled
first stage GEBV were combined with each hen’s ad-
justed own phenotypes, using a simple index of GEBV
and own phenotype for each trait. The weights assigned
to own phenotype (b;) and GEBV (b,) in this index were
derived using selection index theory [5], based on the ac-
curacy of GEBV obtained in the latest validation analysis
(r) and the associated estimate of pedigree-based herit-

ability (?):
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Evaluation of response to selection

In the final generation of the experiment, the two sub-
lines were hatched and housed together for a direct
comparison of performance. Since the environmental
conditions were the same, least square means for the
line from a model including effects of line and hatch
were assumed to reflect genetic differences resulting
from the two methods of selection. Calculations were
performed with SAS [15]. In order to have a reference
point for response to selection since the start of the ex-
periment, the data from the pedigree line were analyzed
with a multi-trait pedigree-based animal model, with
variance components estimated from the data, and re-
sponse to selection in the pedigree line was estimated
based on the difference in average EBV in the last and
first generations of the experiment. Estimates of the line
difference from the final generations were then added to
responses to selection for the three generations in the
pedigree line to obtain estimates of response to selection
in the genomic line. Responses were expressed in genetic
standard deviations.
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Evaluation of inbreeding rate

Pedigree-based inbreeding was evaluated in both lines
using the CFC software [16]. For the genomic line, gen-
omic measures of inbreeding were calculated using
PLINK [17], including average homozygosity, number
and size of homozygosity runs of at least 50 consecutive
SNPs, and inbreeding coefficients based on expected vs.
observed homozygosity.

Results

Simulation results

Observed average responses to selection and inbreeding
rates based on stochastic simulation for the conventional
and GS breeding programs are in Fig. 2. Results are
shown on a per year basis and account for the fact that
the generation interval for GS was reduced by 50 %
compared to that of the conventional BLUP selection.
The simulated conventional BLUP-based breeding pro-
gram resulted in responses to selection that were similar
to those predicted by SelAction. Two main scenarios are
summarized in Fig. 2: genomic selection with retraining
(GS-all) and without retraining (GS-1). For both GS-1
and GS-all, the accuracy of GS-EBV in year O (the gener-
ation following training) was equal to 0.77, which was
slightly higher than the starting accuracy used to obtain

—X— BLUP-all

—0—GS-1

—@— GS-all

— — SelAction BLUP-all
SelAction GS

Response (phen. SD)

» GS-all

0.08
o
£
°
g
Qo
£

0.04

Year

Fig. 2 Expected responses to selection and inbreeding based on stochastic and deterministic simulation using conventional and genomic
selection. Cumulative responses to selection (in phenotypic standard deviations, the scale on the left axis, top 5 lines) and inbreeding based on
stochastic simulation (48 replicates, the scale on the right axis, bottom 5 lines) for conventional BLUP selection and genomic selection (GS) in
layer chickens; GS-1 =GS with training on data from generation —1; GS-all = GS with retraining using data from all generations, up to but not
including the current one; generation interval is 1 year for conventional BLUP and 0.5 years for GS; analytical predictions obtained from SelAction
are also included; error bars are standard deviations of response across replicates
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deterministic predictions with the SelAction program
(0.7). Accuracy in year 0 was the same for GS-1 and GS-
all because retraining in a particular generation was
done before females from that generation had their own
performance records. Accuracy remained fairly constant
for GS-all through year 2.5 (results not shown) and then
gradually dropped to 0.73 by year 4. For GS-1, accuracy
gradually dropped to 0.34 in year 4. Resulting responses
to selection for GS-all were similar to those predicted by
SelAction. For GS-1, observed responses were similar to
those predicted by SelAction through year 1.5 but
dropped off after that because of the decline in accuracy.
Consistent with the target, the rate of inbreeding on
an annual basis was of the same order of magnitude for
GS and BLUP approaches (Fig. 2). Observed rates of
inbreeding were, however, greater than predicted by
SelAction for all programs, but in particular for BLUP
and GS-all. For BLUP, the observed rate of inbreeding
was 1.95 % per year when ignoring the lower rate in year
1, compared to a prediction of 1.44 % by SelAction. For
GS-all, the observed rate was equal to 0.89 % per gener-
ation compared to that of 0.58 % predicted by SelAction.
For GS-1, the observed rate was equal to 0.69 % when
the substantially higher rates in the first two generations
were ignored, which was only marginally greater than
the rate of 0.58 % predicted by SelAction. The higher
rates for GS-all and for GS-1 in the first two generations
are likely caused by the implicit prediction of pedigree
when data from recent ancestors are used for training.
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Standard deviations of the cumulative response across
replicates increased over generations for all strategies as
a result of drift (Fig. 2). Standard deviations of the re-
sponse were similar for GS-1 and GS-all in the initial
generations but increased slightly faster for GS-all than
for GS-1 and reached 0.43 and 0.37 phenotypic standard
deviation units for GS-all and for GS-1, respectively.
When strategies were compared at the same generation
of selection, the standard deviation of the response for
BLUP was similar to that for GS-1, despite the much
greater level of inbreeding at a given generation for
BLUP compared to GS.

Experimental results

Estimates of heritability and genetic correlations be-
tween traits using all data from the pedigree selected line
are in Table 1. All traits, except PD and PS, had moder-
ate to high heritability estimates. Estimates of genetic
correlations between measurements of the same trait at
two ages (early versus late) were high. Egg quality traits
were in general positively correlated with each other but
negatively correlated with egg production.

The standardized responses to selection by the end of
the experiment are in Fig. 3. On average, trait means
were changed in the desired direction by the end of the
experiment for all traits. For most traits, the genomic
line significantly outperformed the pedigree line, with a
doubled response to selection for some traits, such as
EW and YW. Body weight increased for both lines, with

Table 1 Pedigree-based estimates of heritability and correlations® between traits based on data from the pedigree sub-line

Trait®  eE3 eEW IEW eC3 eCO ICO eAH IAH eYW YW ePS IPS ePD IPD BW eSM
eE3 065 087 0.83 0.10 0.10 0.05 041 037 042 042 0.12 0.10 -036 -023 043 038
eEW 040 072 096 0.09 0.08 0.04 040 033 0.56 0.55 0.20 0.13 -030 -020 049 0.13
[EW 0.34 048 073 0.3 0.12 0.09 037 030 0.56 0.65 0.21 022 -038 -031 050 0.17
eC3 0.06 0.00 0.00 066 081 0.74 0.15 0.08 0.07 0.12 -007 004 =015 -004 018 0.04
eCO 0.08 -001 =001 033 0.71 0.96 0.13 0.06 0.05 0.10 0.04 0.09 -011 =003 015 0.11
ICO 0.09 0.03 0.09 0.24 042 0.70 008 0.02 0.06 0.11 0.09 0.15 -0.12 =007 014 0.05
eAH 0.22 0.21 0.15 0.00 -0.01 000 0.55 0.94 0.02 0.04 -012 =010 -007 -001 O 0.1
IAH 0.20 0.22 0.18 0.01 0.04 0.04 0.34 0.55 -003 -002 -013 -007 -011 -004 005 0.12
eYW 006 045 0.06 -001 -001 -001 -006 -001 048 089 0.18 0.13 -009 -006 044 -0.04
Yw 0.03 0.05 046 0.04 0.02 0.05 -006 -004 017 054 0.19 022 -028 -027 052 0.05
ePS 0.04 0.13 0.06 -001 008 0.00 -008 001 0.05 0.01 027 082 -019 =025 002 001
IPS 0.03 0.05 0.09 -001 004 0.15 -004 -004 0.00 0.00 0.09 034 028 -038 003 004
ePD -0.07 001 -0.14 005 0.10 -001 -002 -006 007 -0.08 003 0.04 036 087 -021 -023
IPD -002 -001 010 003 0.03 0.01 -002 -006 003 -007 004 0.06 049 039 014 -013
IBW 0.04 0.04 0.08 0.07 0.10 0.07 0.01 0.05 0.10 0.18 -0.03 001 0.00 0.06 062 004
eSM 042 0.09 0.10 0.02 0.10 0.06 0.11 0.06 -003 -003 004 0.02 0.01 0.00 0.01 0.57

2Estimates of heritability are on the diagonal, genetic correlations above the diagonal, and residual correlations below the diagonal
PEgg weight for first three eggs (e£3), at early (eEW) and late age (IEW), shell colour for first three eggs (eC3), at early (eCO) and late age (/CO), albumen height at
early (eAH) and late age (/AH), yolk weight at early (eYW) and late age (/YW) puncture score at early (ePS) and late age (IPS), ePD and IPD are egg production rates

(ratio of the number of saleable eggs to number of days in lay) body weight at late age (IBW), age at first egg (eSM)
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Fig. 3 Responses to selection in the experimental breeding program, as deviation of trait means and expressed in genetic standard deviation
units. Responses to selection are based on deviations of trait means from trait means at the start of the selection experiment, expressed in
genetic standard deviation units of each trait; trait abbreviations: egg weight for first three eggs (eE3), at early (eEW) and late age (IEW), shell
color for first three eggs (eC3), at early (eCO) and late age (ICO), albumen height at early age (eAH), yolk weight at early (€YW) and late age (IYW)
puncture score at early age (ePS), egg production rates at early (ePD) and late (IPD), egg numbers at early (eEN) and late (IEN) age, body weight
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a larger response in the genomic line. This reflects selec-
tion for a revised objective, i.e., in the past, layer chicken
lines were selected for lower BW, while, more recently,
selection has aimed at increasing BW at a young age to
allow pullets to develop adequately. For egg production
rate (ePD and IPD), the pedigree selection line showed a
positive response, while the genomic selection line
showed a negative response to selection. It should be
noted that, for this trait, phenotypes were available for
the pedigree selection line at the time of selection but
not for the genomic line. However, these results were
not supported by the results of egg production measured
by egg number (eEN and 1EN), for which both lines
showed a positive response, with a greater response for
the genomic line. This difference in responses in egg
production rate versus egg number was explained by

both a higher frequency of egg defects in the genomic
line (5.7 vs 4.0 %) and earlier age at sexual maturity of
birds in the genomic line (141 vs. 145 days).

In the first 1.5 years of the selection experiment, in-
breeding rate per year was similar between the two lines
(Table 2), although the genomic line had twice as many
generations and a smaller population size. However, in
the final generation, the genomic line had a higher level
of inbreeding than the pedigree line. The recorded pedi-
gree of both lines traces back to 131 founders. In the
pedigree line, all founders were represented in all three
generations, with a variance of contributions in the final
generation of 8.2E-05. In the genomic line, four of the
founders were lost after six generations of selection but
the variance of contributions at the end of the experiment
was equal to 7.6E-05, which according to optimal
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Table 2 Molecular and pedigree-based estimates of inbreeding
in the genomic sub-line

Generation  Fpeq  Genkq  NSEG  MB MBAVG F AvHom
—5° 0000 1 275 1818 667 0028 0.758
—47 0.000 2 282 1729 6.15 0.021 0.757
-3° 0005 3 283 1723 610 0023 0.758
-2° 0011 4 295 1723 588 0.028 0.759
-1 0015 5 298 1720 577 0.030 0.760
GOGS 0018 6 298 1591 534 0023 0.758
GOPed 0019 6

G1GS 0020 7 311 1569 5.03 0023 0.758
G2GS 0023 8 313 1598 5.10 0.030 0761
G1Ped 0022 7

G3GS 0028 9 318 1633 514 0.036 0.761
GAGS 0041 10 330 1704 517 0.055 0.766
G2Ped 0026 8

“Only selected parents were genotyped, Fp, average pedigree based
inbreeding, GenEq average discrete generation equivalent, NSEG average
number of segments with homozygosity runs longer than 50 consecutive
SNPs, MB total length of homozygosity runs (Mb), MBAVG average length of
homozygosity runs (Mb), F molecular inbreeding, AvHom

average homozygosity

contributions theory [18] should help to control inbreed-
ing. At the end of the experiment, the most influential
founder contributed 7 % of its genes to both lines.

At the genomic level, the average homozygosity and
number of homozygous segments increased over genera-
tions (Table 2), but the size of the homozygosity runs
and genomic inbreeding dropped in generation GO,
which was the first generation of genomic selection.
Until generation GO, genomic inbreeding reflected the
homozygosity level in the selected parents, in contrast to
the following generations, in which all selection candi-
dates were genotyped. The rate of inbreeding (based on
pedigree and all genomic estimates) increased in gener-
ation 4 of the genomic line.

Genotypes were not available for the pedigree line but
it was possible to compare changes in allele frequencies
from generations -5 to 0 when pedigree selection was
practiced with the changes observed with subsequent
genomic selection. The average change in allele fre-
quency was close to zero for both pedigree and genomic
selected generations. The maximum average change in
frequency per generation was equal to 0.062 for the
pedigree selected generations and 0.097 for the genomic
selected generations. Loci with the greatest changes (>5
SD) in allele frequencies were located on chromosomes
8, 9, and Z (six loci) for the pedigree selected genera-
tions and on chromosomes 6, 9, and 12 (four loci) for
the genomic selection generations. Although the SNPs
with the greatest change in frequency differed between
the pedigree and genomic selected generations, several
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regions showed substantial changes in a consistent direc-
tion across the pedigree and genomic selected generations.

Discussion

Optimizing breeding programs with genomic selection
Use of marker information removes many of the limita-
tions of conventional phenotype-based selection pro-
grams, as has been argued and demonstrated by many
simulation studies [19], because phenotypic records on
selection candidates and/or their close relatives are not
required to estimate breeding values. This feature is even
more pronounced for GS and provides opportunities to
substantially change the structure of breeding programs
[3, 20, 21].

In this study, we investigated the various opportunities
that GS offers to improve breeding programs of layer
chicken by changing their structure. Results clearly dem-
onstrate that GS provides interesting opportunities to re-
duce generation intervals and the size of breeding
programs, which impacts the number of animals that
need to be raised and phenotyped on a routine basis.
Maximizing response per year for a given rate of in-
breeding per year was used as the objective for compar-
ing alternative strategies for GS. This has been suggested
as a reasonable objective for balancing short- and long-
term responses to selection [22]. Even when reducing
the generation interval by 50 %, the much lower rate of
inbreeding per generation that resulted from GS because
of the lower within-family correlations of EBV, allowed a
substantial drop in the number of parents selected with
GS for the same rate of inbreeding per year. Further-
more, with GS-EBV of equal accuracy for males and
females and no limitations on reproductive rates, this
resulted in equal numbers of selected males and females
as being optimal. Removing the hierarchical mating re-
striction of one male per female that was used here in
the simulation and allowing for factorial or cross-
classified mating designs is expected to further reduce
rates of inbreeding [23] or could reduce the number of
parents needed for the same rate of inbreeding.

The simulated GS breeding program required much
smaller numbers of selection candidates (500 males and
500 females per year for GS compared to 1080 males
and 2880 females per year for the conventional program)
to achieve rates of genetic gain per generation that
approached those of the conventional program. This was
due to the greater accuracy of EBV with GS, in particu-
lar for males, which had EBV based on pedigree and sibs
in the conventional program. In addition, the numbers
of individuals that were phenotyped were substantially
smaller for the GS program, even with retraining (500
females per year for GS, compared to 2880 per year for
the conventional program). Lower rearing, housing, and
phenotyping requirements would substantially reduce
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the costs of breeding programs. Whether these reduced
costs offset the extra costs associated with genotyping
depends on specific prices. The parameters that we used
for both the conventional and GS programs are given as
examples to illustrate the opportunities provided by GS.
Further analyses that consider specific prices, require-
ments and limitations are needed. The optimal strategy
for retraining, including how often and on which ani-
mals new phenotypic data should be generated, also re-
quires further investigation and will depend on the
species used and the goals of the breeding program.

The GS program was successfully implemented, but
the short generation interval was not very practical in a
commercial breeding program setting. Reproducing fe-
males at a very young age increases selection pressure
on sexual maturity, and requires using suboptimal sized
eggs and hatching them over multiple hatches, which
complicates optimization of animal management, espe-
cially the lighting program. When selection is initiated,
the late maturing females have not started laying yet or
produce eggs that are too small to hatch good quality
chicks. A more feasible approach would be to use young
genomic selected males on older females, which would
also improve accuracy of selection because the females
would already have own records. A novelty in the imple-
mented GS breeding program was the use of cross-
classified mating, in which females are given the oppor-
tunity to leave progeny from more than one male parent.
Parent assignment with a high level of accuracy based
on the number of opposing homozygotes in parent-
offspring pairs was possible for almost all offspring from
the multi-sire matings. The use of cross-classified mat-
ing improves population structure and creates more op-
portunities for varying chromosomal combinations in
the progeny and thus, results in higher effective rates of
recombination.

Genomic prediction models

In the stochastic simulation, the Bayes-B method of [1]
was used to develop the prediction model for GS. This
method has been found to give greater accuracies than
other methods in many simulation studies [1, 24]. The
method was, however, not optimized with respect to the
prior probability 1 that a SNP has zero effect; a value of
1 =0.95 was used throughout, since preliminary analyses
suggested that results were robust to choice of this
parameter.

In the analyses on real data, we found only small dif-
ferences between genomic evaluation models [25] and
some variation in their ranking between generations, but
on average they were consistently better than pedigree-
based EBV. This lack of differences between methods is
often interpreted as evidence that the number of QTL is
large but could also result from genetic relationships
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and within-family effects having large impacts on GEBV
[12]; in contrast to historic linkage disequilibrium, which
is short-range, genetic relationships and within-family ef-
fects do not require markers that are close to the QTL
and, therefore, the effects of QTL can be spread across
markers surrounding the QTL.

Impact of genomic selection on the initial accuracy of
prediction

Analyses of real data showed that accumulation of infor-
mation across generations improved the accuracy of
genomic predictions on average [25]. In general, the
trends observed with real data agree with those of the
simulations but, for most traits, the accuracy of predic-
tion estimated based on real data was lower than ex-
pected for a given heritability estimate, which suggests
that the genetic architecture of traits is more complex
than the simple additive model used in the simulations.
This would also be in line with the poor consistency of
estimates of small QTL over generations [26]. However,
for some of the traits with a lower heritability, decreas-
ing the weight on genomic information from very distant
relatives of the selection candidates was shown to be ad-
vantageous [10]. Across traits, adding phenotypes from
distant relatives (more than four generations apart from
that of the selection candidates) did not improve the ac-
curacy of predictions (Weng personal communication).
Lourenco et al. [27] reported similar observations for
cattle and pig data.

Previous analyses with this data showed a substantial
decline in accuracy of GEBV over generations without
retraining, since the selection candidates were more dis-
tant from the animals in the training population [25].
Although the decline in accuracy of GEBV was lower
than expected based on the decline in genetic relation-
ships and as observed in pedigree-based EBV, the aver-
age accuracy of GEBV in grand-progeny of training
animals was similar to that of pedigree-based EBV in
progeny and thus suggested a need for retraining every
generation. Retraining resulted in increased accuracy of
GEBV in subsequent generations [25] for all traits. Any
decrease in the accuracy due to selection was out-
weighed by an increase in size of the training
population.

Impact on inbreeding and loss of alleles

Figure 2 clearly demonstrates the ability of GS to reduce
rates of inbreeding. Sonesson and Meuwissen [28] ob-
served even larger reductions in rates of inbreeding from
GS because their conventional breeding program con-
sisted of sib-testing for both sexes. The main reason for
the reduction of rates of inbreeding with GS is that SNP
genotypes provide information on Mendelian sampling
terms, which reduces the emphasis placed on family
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information and, as a result, reduces correlations of EBV
among family members and probabilities of co-selection
of relatives, as demonstrated by [4]. This unique feature
of marker genotype data, i.e., to increase accuracy of
EBV and response to selection, while not increasing or
even decreasing rates of inbreeding, is one of the main
advantages of GS. Rates of inbreeding in GS programs
will be greater if the selection candidates have strong
genetic relationships with individuals in the training
population because the information on relationships that
is captured by genomic prediction will then result in
greater correlations of EBV among selection candidates.
This explains, in part, the greater rate of inbreeding for
GS-all than for GS-1 and also the greater rate of in-
breeding for GS-1 in the initial compared to later gener-
ations. Heidaritabar et al. [29] observed more directed
and localized selection pressure on specific regions of
the genome when using genomic information compared
to pedigree-based selection, which agrees with our result
that changes in allele frequencies had a greater range
after implementation of genomic selection. The effects
of such local inbreeding are not yet well understood but
could represent signatures of selection as a result of
large effect QTL.

Conclusions

This study demonstrates the advantages of using gen-
omic selection combined with cross-classified mating in
layer chicken breeding programs, in terms of increased
accuracy of prediction relative to pedigree-based parent
average, providing the potential to shorten generation
intervals and thereby increase response to selection per
year. The advantages were reflected in the phenotypic
superiority of the genomic sub-line for almost all traits
included in the selection index. Genotyping also allowed
sire assignment and relaxed traditional constraints on
hierarchical matings. Using multiple sire matings im-
proves the population structure and is expected to de-
crease inbreeding rate. Nevertheless, a sustainable
breeding program still requires an effective population
of sufficient size. In view of the rapid changes in geno-
typing technologies and costs, breeding programs based
on genomic selection need to be re-evaluated and opti-
mized on a regular basis.
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