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Abstract

a SEM.

plausible than the multi-trait model.

Background: Knowledge regarding causal relationships among traits is important to understand complex
biological systems. Structural equation models (SEM) can be used to quantify the causal relations between traits,
which allow prediction of outcomes to interventions applied to such a network. Such models are fitted
conditionally on a causal structure among traits, represented by a directed acyclic graph and an Inductive
Causation (IC) algorithm can be used to search for causal structures. The aim of this study was to explore the space
of causal structures involving bovine milk fatty acids and to select a network supported by data as the structure of

Results: The IC algorithm adapted to mixed models settings was applied to study 14 correlated bovine milk fatty
acids, resulting in an undirected network. The undirected pathway from C4:0 to C12:0 resembled the de novo
synthesis pathway of short and medium chain saturated fatty acids. By using prior knowledge, directions were
assigned to that part of the network and the resulting structure was used to fit a SEM that led to structural
coefficients ranging from 0.85 to 1.05. The deviance information criterion indicated that the SEM was more

Conclusions: The IC algorithm output pointed towards causal relations between the studied traits. This changed
the focus from marginal associations between traits to direct relationships, thus towards relationships that may
result in changes when external interventions are applied. The causal structure can give more insight into
underlying mechanisms and the SEM can predict conditional changes due to such interventions.

Background

In animal breeding and genetics, relationships between
traits are traditionally studied using multi-trait mixed
models [1]. Such models do not allow for recursive rela-
tionships between traits that are generally present in bio-
logical systems. Structural equation modelling (SEM) is
a statistical technique for testing and estimating such re-
cursive relationships [2-4]. Gianola and Sorensen [5] de-
scribed SEM in a quantitative genetics context in order
to account for possible feedback or recursive relations
among traits in multi-trait mixed models settings. In
most applications of SEM in animal breeding and genetics,
only few hypothesized networks are typically tested and
compared, and those that best fit the data are declared as
most plausible [6-10]. Although such an approach avoids
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the computational challenges involved in testing every pos-
sible network, it does not explore the full space of possible
networks. However, data driven exploration of the space is
possible using the Inductive Causation (IC) algorithm [11].

The IC algorithm is based on conditional indepen-
dencies tests, such that under multivariate normality, it
can be implemented by using partial correlations tests.
When all partial correlations between a pair of traits are
non-null for each conditioning subset of traits (i.e., they
are dependent conditionally on all possible sets of other
traits), then a direct causal relation between this pair of
traits is declared. When a partial correlation between
two traits is null (i.e., they are independent conditionally
on at least one set of other traits), then there is no direct
causal relation between this pair of traits. Therefore, par-
tial correlations can be explored to study how a set of
traits is causally related and this can be qualitatively rep-
resented by a graph or network [3]. If the resulting net-
work is completely directed, it can be used as a causal
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structure of a SEM, and the magnitude of causal relation-
ships among traits (represented by structural coefficients)
can be estimated by fitting such a model. Furthermore,
visualization of the causal relationships among variables
on a graph could help understand and interpret complex
biological systems, while their quantification allows pre-
diction of outcomes of external interventions applied to
such a causal network.

The inferred structural coefficients associated with
connections between traits in a network only carry a
causal interpretation under specific causal assumptions.
For example, structural coefficients inferred from a SEM
with an acyclic causal structure and independent resid-
uals only keep their causal meaning under the assump-
tion that there are no hidden causal effects that have a
direct influence on two or more traits in the network.
In livestock, removing such confounding effects can be
achieved by performing randomised experiments. How-
ever, most livestock data come from non-randomised field
studies and are prone to the influence of several sources
of systematic variation. When measured, the confounding
generated by these systematic sources of variation can be
controlled by correcting for them in a model. One ex-
ample of hidden factors that may affect two or more traits
in the network is correlated genetic effects. Thus, the
genetic covariances are background sources of phenotypic
covariances among traits that confound not only the infer-
ence of causal effects between pairs of traits, but also the
search for causal structures, because algorithms may inter-
pret such covariances as due to causal relations among
phenotypes. Therefore, Valente et al. [12] proposed to use
the inferred residual (co)variance matrix of a standard
multi-trait mixed model (which represents the covariance
matrix among traits conditionally on the genetic con-
founders) as input for the IC algorithm, instead of the ob-
served data, when searching for causal structures in mixed
effects settings. Valente et al. [12,13] used simulated data
to show that applying the IC algorithm to the posterior
distribution of the residual (co)variance matrix of a multi-
trait mixed model recovered the correct network, and
Valente et al. [13] used the methodology on real data from
quails to study causal networks involving five traits.

Here, we applied the same approach to a set of 14
highly correlated milk fatty acids to analyse their causal
relations. Fatty acids are important components in hu-
man diets with either beneficial or unfavourable effects
on human health, depending on the fatty acid. Studying
causal relations between bovine fatty acids in milk can
provide valuable information about the synthesis of fatty
acids, which could be useful for approaches aimed at
changing the fatty acid composition of dairy products
and ultimately at improving human health. Since a con-
siderable amount of knowledge about the synthesis of
fatty acids is available, the network obtained from the
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adapted IC algorithm can be compared to known bio-
logical pathways. However, the network may also reveal
new relations that could confirm existing hypotheses or
create new ones. The known biological pathways include
de novo synthesis, biohydrogenation and desaturation of
milk fatty acids. Most of these pathways are reflected in
the results of analyses that involve phenotypic and genetic
correlations between milk fatty acids [14-16], clustering
techniques [17,18], or principal component analysis [19].
These studies suggest that certain fatty acids have a com-
mon origin, but they cannot distinguish between direct
and indirect relationships.

Our aim was to explore causal networks between milk
fatty acids by applying for the first time the adapted IC
algorithm as presented by Valente et al. [12] to 14 highly
correlated traits. In addition, the selected network was
used as the causal structure of a SEM to quantify the re-
lationships between the milk fatty acids.

Methods

Data

Data on the fat composition of winter milk samples from
1902 first-lactation Dutch Holstein Friesian cows were
used. The cows were housed on 397 commercial farms
throughout the Netherlands. At least three cows between
63 and 282 days in milk were sampled per farm. The pedi-
gree of the cows was supplied by CRV (Cooperative cattle
improvement organization, Arnhem, the Netherlands) and
included information from the last four generations (4676
animals).

Milk fat composition was measured by gas chromatog-
raphy (details about the phenotyping are in Stoop et al.
[16]). Fourteen fatty acids with the highest concentration
in milk fat were considered: even-chain saturated fatty
acids C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C16:0, C18:0,
even-chain (cis9) monounsaturated fatty acids C10:1,
C12:1, C14:1, C16:1, C18:1, and the polyunsaturated fatty
acid CLA (conjugated linoleic acid, C18:2cis9,transll).
Gas chromatography was performed on fat samples and
provided relative amounts of fatty acids expressed on a fat
basis in g/100 g fat. However, these relative amounts do
not properly represent the biological relationships among
fatty acids; therefore the fatty acids were expressed on a
milk basis in g/kg milk. Table 1 presents the mean and ad-
justed phenotypic standard deviation for the fatty acids in-
cluded in this study.

Multi-trait analysis

Genetic and residual (co)variances among traits were es-
timated by fitting a Bayesian multi-trait mixed model that
uses latent variables to fit (co)variance structures and a ran-
dom walk Metropolis-Hastings algorithm to obtain Markov
chain Monte Carlo (MCMC) samples for variance compo-
nents, similar to the latent variable models to estimate
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Table 1 Mean and phenotypic standard deviation® for
bovine milk fatty acids (in g/kg milk)

Trait Mean o,

40 153 0.26
60 0.97 0.17
(€X0) 0.60 0.11
100 132 0.28
120 179 037
C140 505 0.77
160 14.27 284
180 3.80 084
101 0.16 0.04
[@PA 0.05 001
141 059 013
aien 063 0.19
(@3 7.87 1.20
CLA 0.17 0.04

6, — /ol t o2
op = /02 + 02

genomic (co)variances in Serensen et al. [20]. Latent vari-
ables were used to fit (co)variance structures because most
of the milk fatty acids were strongly correlated, both genet-
ically and residually. Fitting a standard multi-trait model for
14 milk fatty acids resulted in convergence issues, but using
latent variables to reduce the dimensionality of the data im-
proved convergence of the Bayesian multi-trait mixed model.

Phenotypes were standardised to traits with a mean of
0 and a standard deviation of 1 to reduce scale differ-
ences between the milk fatty acids in the multi-trait
mixed model. The following multi-trait model was fitted:

y=XB + Zu + e,

with the joint distribution of vectors u and e as:

HE ARl

where y is a vector of phenotypes; B is a vector for sys-
tematic effects, for each trait the same systematic effects
were included: a covariate for days in milk modelled
with a Wilmink curve [21], a covariate for age at first
calving, a covariate for age at first calving squared, a
fixed effect for calving season (June-Aug 2004, Sept-Nov
2004, or Dec 2004-Jan 2005), a fixed effect for sire code
(accounting for differences in the genetic level between
proven sire daughters and test-sire daughters), and a
fixed effect for herd; X is a known incidence matrix of 8
on y; u is a vector of random additive genetic effects; Z
is a known incidence matrix of u on y; and e is a vector
of random residuals. Gy is the additive genetic (co)vari-
ance matrix; A is the additive genetic relationship matrix;
R, is the residual (co)variance matrix; I is an identity
matrix. The (co)variances between genetic effects and
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between residuals were modelled employing k latent vec-
tors v to model residual (co)variances, and k latent vec-
tors wyi to model genetic (co)variances, such that
erN(Zkrkak, 2 1) and ui~N(zksk,iwk, T;A), with v ~ N(0, I)
and wg~ N(0, A) as standard Normal latent vectors, ry;
and s; as regressions or “loadings” on the latent vectors
with uniform priors [—eo, o], and Tzi and Tii as the inde-
pendent remaining variances for residuals and genetic ef-
fects per trait i. From the latent variable model, the
residual variance for trait i is ¥r%;+ 2, and the residual
covariance between traits i and j is Zirere;. In a similar
manner, the variances (stfﬁ,. + Tﬁ,) and covariances (Zisk.s«,)
were obtained for the additive genetic effects.

In order to maintain mixing in the MCMC sampling

algorithm, the remaining independent variances 7} and

72 must remain well above 0. Initially, this large set of

7
highly correlated traits resulted in residual and polygenic
variances 7, and 7. that were close to 0, thus it was ne-
cessary to set a minimum value for them and uniform
priors [0.02, «] were used on these parameters to
achieve this. Because standardised traits were used, these
bounds imply that at least 2% of the residual variance
for each trait was not explained by residual covariances
with other traits, and likewise at least 2% of the genetic
variance for each trait was not explained by genetic co-
variances with other traits. All fixed and random effects
(including latent variables) and the regression loadings
were conditionally normal, and conditional distributions
for variance parameters were scaled inverse Chi square
in the MCMC implementation.

The dimension of latent variables k is to be pre-set but
good indications for this dimension can be obtained by a
principal component analysis on the traits analysed, which
gives information on the number of latent variables suit-
able to model the joint (co)variance structure. In order to
limit the constraints on the covariance structure, the
number of principal components was chosen such that to-
gether they explained 90% of the variance. Principal com-
ponent analysis of the 14 fatty acids showed that the first
four principal components explained ~90% of the vari-
ance; therefore four latent factors were chosen.

The MCMC software Bayz 2.1 [22] was used for par-
ameter inference. Eight chains of 1 million iterations
each were run, with a burn-in of 100 000 for each chain,
and a thinning of 1000 iterations. Convergence was
checked by visual inspection of the sample trace plots,
of posterior density plots and by determining effective
sample size using the Coda package in R [23].

Inductive causation (IC) algorithm
By fitting the multi-trait mixed model described above,
the data can be corrected for systematic effects and for
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genetic (co)variances and thus, inferences regarding the
joint distribution of the traits conditionally on genetic
and systematic effects can be made. This is important to
search for the causal structure using the IC algorithm,
because correlated genetic effects are confounding fac-
tors, since they are sources of phenotypic correlation
due to the genetic background but not due to recursive
relations among traits [12]. The relevant information to
be used in a causal structure search is in the residual
(co)variance matrix that results from a multi-trait mixed
model. Therefore Valente et al. [12] proposed to use this
matrix as input for the IC algorithm to search for causal
networks, instead of using the observed data.

The IC algorithm performs a series of statistical deci-
sions based on partial correlations between traits. The
posterior distributions of partial correlations were ob-
tained using the posterior samples of residual (co)vari-
ance matrices from the multi-trait analysis and these
were then used to test for non-null partial correlations.
A partial correlation was declared non-null whenever
the highest posterior density (HPD) interval did not in-
clude zero. The expected output for the IC algorithm is
a partially oriented graph that represents a set of statisti-
cally equivalent causal structures.

The IC algorithm consisted of three steps [3]:

Step 1

Partial correlations were used to search for edges that
connect adjacent variables (two vertices that are end-
points of an edge) to obtain an undirected graph (e.g.,
Y,-Ys). If all partial correlations of two traits conditional
on each possible set of other traits were different from
zero, an edge was placed between the traits.

Step 2

Partial correlations were also used to search for un-
shielded colliders (three connected variables in a path
directed as Y; — Y, « Y3) to orient some edges of the
undirected graph provided by step 1. If partial correla-
tions of two non-adjacent traits (e.g., Y; and Y3) that
have a common adjacent trait (Y5) in such an undirected
graph are dependent conditional on any possible set that
includes the adjacent trait (Y,), the edges should be ori-
ented towards the common adjacent trait (Y,), such as
inY; =Y, Y;

Step 3

When possible, remaining undirected edges were ori-
ented in a way that introduced no new unshielded col-
liders or cycles. This step could only be performed when
the graph obtained in step 2 contained unshielded col-
liders and the orientation followed unambiguously from
the graph.
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Structural equation model

Relationships represented by the causal network ob-
tained from the IC algorithm were quantified using a
SEM, as in Gianola and Sorensen [5]. The SEM was fit-
ted using Bayesian methods that fit a multi-trait mixed
model in software Bayz 2.1 [22], where causal parents
(e.g., Y7 is causal parent of Y3 in Y; — Y5) of a given trait
were considered as covariates in the equations assigned to
this trait, and a diagonal residual (co)variance matrix was
imposed. Therefore, the following model was fitted:

y=(A®I)y + X" + Zu" + e,

with the joint distribution of vectors u and e as:

wl ) [0] |GioA 0
e o' o Y1 (’

where the model was similar to the multi-trait model as
described above but with the addition of (A ® I)y, where
A is a tx t (with ¢ equal to the number of traits) matrix
with 0’s on the diagonal and with structural coefficients
or 0’s on the off-diagonals. The causal structure defines
which of the off-diagonal entries of A must be estimated
and which ones are set to 0. G; is the SEM additive gen-
etic (co)variance matrix and ¥y is a diagonal matrix with
the SEM residual variances. The residual covariances be-
tween the traits in the SEM were assumed to be 0, which
confers identifiability to the structural coefficients in the
likelihood function. The priors used for the SEM were
the same as those used for the multi-trait model.

The SEM was compared with the multi-trait model using
the deviance information criterion (DIC) [24]. The DIC
takes the trade-off between model goodness-of-fit and cor-
responding complexity of model into account. Models with
smaller DIC are better supported by the data.

Results

Multi-trait analysis

Eight independent MCMC chains of the Bayesian multi-
trait animal model for the 14 bovine milk fatty acids
converged to similar estimates of the variance compo-
nents, which was confirmed by trace and density plots.
The effective sample size for heritabilities, correlations
and (co)variance components ranged from 391 to 2431
samples. Posterior means of the heritabilities, genetic
correlations and residual correlations between milk fatty
acids are shown in Table 2. Fatty acids that are consecu-
tively synthesized de novo (e.g., C4:0 and C6:0, C6:0 and
C8:0, etc.) generally showed strong positive correlations,
both genetically and residually. Residual correlations be-
tween medium chain unsaturated fatty acids (C10:1,
C12:1, C14:1) and long chain fatty acids (C18:0, C18:1,
CLA), and between CLA and C8:0, C10:0, and C12:0
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Table 2 Multi-trait genetic parameters’ for bovine milk fatty acids*?

C4:0 C6:0 c8:0 Cc10:0 C12:0 C14:0 C16:0 C18:0 C10:1 c12:1 C14:1 C16:1 C18:1 CLA
C40 0.53 0.91 0.83 0.77 0.71 0.87 0.89 0.66 0.50 0.39 048 0.50 0.54 0.28
C6.0 0.91 0.49 0.94 0.90 0.86 0.93 0.87 0.63 0.63 0.54 0.54 049 043 0.16
80 0.78 091 0.48 0.95 092 093 0.81 0.59 0.67 0.61 0.53 045 035 0.08
C10.0 0.56 0.76 0.89 0.43 0.94 0.92 0.76 0.58 0.64 0.62 0.50 040 0.30 0.02
C120 047 0.66 0.81 0.88 0.42 0.89 0.71 0.54 0.62 0.63 048 0.37 0.26 -0.01
C14.0 0.56 0.74 0.87 091 0.90 0.39 0.88 0.65 0.60 0.57 0.56 0.53 046 0.16
C16.0 0.87 0.82 0.69 049 047 0.53 0.33 0.55 061 0.55 0.69 0.73 0.53 0.31
C180 0.80 0.75 0.63 044 0.30 041 0.69 0.37 -0.01 -0.06 0.02 0.13 0.70 0.23
C10:1 0.63 0.70 0.74 0.65 0.70 0.73 0.62 041 0.61 0.88 0.81 0.62 0.00 0.04
121 0.39 048 0.57 0.57 0.71 0.68 047 0.16 0.88 0.63 0.82 0.63 -0.03 0.00
C14:1 045 049 053 047 0.60 0.60 0.50 0.26 0.90 093 0.67 083 0.22 0.23
cle:l 0.61 0.61 057 048 0.54 052 0.71 0.31 0.54 0.53 046 0.49 043 037
ci8:1 0.82 0.86 0.84 0.72 0.71 0.76 0.79 0.60 0.79 0.66 0.66 0.72 0.52 048
CLA 0.39 049 0.58 061 0.69 0.66 042 0.09 0.57 0.62 0.50 0.66 0.66 0.56

'Heritabilities are shown in bold on the diagonal, genetic correlations below the diagonal and residual correlations above diagonal; %In g/kg milk; *Time-series
standard errors for the variance components and correlations ranged from 0.0007 to 0.0091 and posterior standard deviations for the variance components and

correlations ranged between 0.018 and 0.211.

were weak and showed large standard deviations. There
were no strong negative correlations between fatty acids.

Inductive causation (IC)

The IC algorithm based on the 95% HPD interval re-
trieved the undirected network presented in Figure 1
(black solid edges). Consecutive fatty acids C4:0, C6:0,
C8:0, C10:0 and C12:0 formed a path of connected
nodes. The fatty acids C10:1 and C12:1, as well as C14:1
and C16:1, were also connected to each other. The HPD
interval content was reduced to see if there were add-
itional less strong connections between the fatty acids,
which may give better results if posterior distributions
are not very sharp [13,25]. Reducing the HPD to a prob-
ability of 90% resulted in the same network as the HPD
interval of 95% (black solid edges in Figure 1). Reducing
the HPD interval to 85% resulted in four additional edges:
between C4:0 and C16:0, between C6:0 and C14:0, be-
tween C8:0 and C12:0, and between C18:0 and C18:1 (grey
dashed edges in Figure 1). Reducing the interval further
to 80% resulted in two additional edges: between C8:0
and C14:0 and between C18:1 and CLA (blue dotted edges
in Figure 1).

No unshielded colliders were recovered from the data
in step 2 of the IC algorithm. Therefore, step 3 of the IC
algorithm did not result in any additional edge orienting
and the resulting network remained undirected.

Structural equation model (SEM)

A SEM was used to quantify the causal relationships be-
tween the milk fatty acids based on a causal structure that
was chosen based on the outputs of the IC algorithm.

Since a fully oriented structure is required to specify a
SEM, the undirected network obtained with the 95% HPD
interval (Figure 1, black solid edges) was oriented accord-
ing to prior biological knowledge about the sequence in
which the fatty acids are synthesized in the mammary
gland. In this sense, the path C4:0—C6:0—C8:0—C10:0—
C12:0 agreed with the de novo synthesis of milk fatty acids.
According to the de novo synthesis, C4:0 should precede
C6:0, C6:0 should precede C8:0, and so on. On this basis,
the path C4:0—C6:0—C8:0—C10:0—C12:0 could be di-
rected from C4:0 to C12:0, that is C4:0 — C6:0 — C8:0 —
C10:0 — C12:0. The five traits involved in this path were
analysed with both a multi-trait model and a SEM. Both
models were compared in terms of fit and parameter
inferences.

The causal network chosen for the SEM shown in
Figure 2 resulted in the following structure for the A-
matrix:

0 0 0 0 0

Acs:0,ca:0 0 0 0 0

A= 0 Acs:0,c6:0 0 0 0
0 0 Ac10:0,c8:0 0 0

0 0 0 Acizocioo O

The posterior densities of the structural coefficients
that resulted from the SEM are in Figure 3. The poster-
ior means of these parameters ranged from 0.85 to 1.05
(Figure 3).

Table 3 shows the posterior means for the parameters
from both the multi-trait model and the SEM for C4:0,
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1

with a HPD interval of 80% in blue dotted lines.

Figure 1 Network obtained from the inductive causation (IC) algorithm with different highest posterior density (HPD) intervals. The
connections obtained with a HPD interval of 95% and 90% are given in black solid lines, with a HPD interval of 85% in grey dashed lines, and

C6:0, C8:0, C10:0 and C12:0. As pointed out by Valente
et al. [26], genetic effects from multi-trait models and
SEM have different meanings: the latter represent direct
genetic effects (i.e., genetic effects that are not mediated
by other traits in the causal network), while the former
represent overall genetic effects (i.e., a combination of all
direct and indirect genetic effects on each trait). Model
specific genetic (co)variances refer to the (co)dispersion of
the genetic effects of each model, and therefore have dis-
tinct meanings as well. The posterior means of the genetic
variances of the multi-trait model for C4:0, C6:0, C8:0,
C10:0 and C12:0 were fairly similar to each other (i.e., be-
tween 0.360 for C4:0 and 0.276 for C12:0), while the

posterior means of the SEM genetic variances for C4:0,
C6:0, C8:0, C10:0 and C12:0 showed a gradual decrease
(i.e., 0.460 for C4:0, 0.114 for C6:0, 0.073 for C8:0,
0.066 for C10:0 and 0.004 for C12:0), indicating that in-
direct genetic effects from upstream traits were gradually
explaining a larger portion of genetic variability. Such re-
duction was even stronger for the SEM residual variance.
Statistically, this result was expected because conditioning
on the strongly correlated traits in the SEM removed a
large proportion of the observed variance. On the basis of
the given causal structure, this indicates that the vari-
ability of each of these fatty acids can be almost fully
explained by the conditioning (parent) fatty acid. The

Figure 2 The fitted causal structure of the structural equation model. The edges in the fitted structure represent the causal relations for the
observed variables (C4:0-C12:0), with independent residuals (ec4o-€c12:0) and correlated additive genetic effects (Ucao-Uct20)-
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Figure 3 Posterior densities of structural coefficients for the fitted causal structure of the structural equation model.

posterior means of the genetic and residual variances
of C4:0 for the SEM were similar to those for the multi-
trait model, because C4:0 was not conditioned on any
of the other traits. The posterior means of the genetic cor-
relations from the SEM refer to the genetic covariance
that is left after conditioning on the appropriate fatty
acids, i.e, it expresses the correlation between direct gen-
etic effects for each trait. For that reason, the SEM genetic
correlations were different from the correlations estimated
with the multi-trait model.

The DIC for the multi-trait model for C4:0, C6:0,
C8:0, C10:0 and C12:0 was -21 083, while the DIC for
the SEM using the structure depicted in Figure 2 was -32
406, indicating that the studied structure is plausible [24].
This lower DIC for the SEM is partly due to a lower pen-
alty for model complexity in the DIC for the SEM. Al-
though the SEM introduces sources of covariance from
the causal associations, the residuals of the SEM were as-
sumed to be uncorrelated, which resulted in a model that
was more parsimonious than the multi-trait model. This
lower penalty for model complexity was reflected by a
lower effective number of parameters (5152 for the SEM
and 6829 for the multi-trait model).

Discussion

The aim of this study was to explore causal networks of
milk fatty acids by applying the IC algorithm in a mixed
model context. Undirected acyclic graphs were obtained
for several HPD intervals. A subset of five fatty acids
formed a structure that could be directed based on prior
knowledge and this structure was then used in a SEM to
quantify the relationships between them.

Direction of network based on prior knowledge

The networks obtained for the 14 fatty acids were undir-
ected. Based on the known sequence of the synthesis of
fatty acids, edges could be directed without creating cycles
or unshielded colliders that were not supported by the
data. Fatty acid C4:0 precedes C6:0, which in turn pre-
cedes C8:0 and so on in the de novo synthesis, which led
us to suggest that the path containing C4:0, C6:0, C8:0,
C10:0 and C12:0 is directed from C4:0 to C12:0. This
means that the final network is not completely data-
driven. However, the structure for this subset of fatty acids
that is plausible based on biological knowledge does not
have colliders, so the fact that the algorithm could not de-
tect directions was expected. Therefore, not finding any
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Table 3 Posterior means of the variance components for the multi-trait and the structural equation model of

C4:0 to C12:0

Variance Multi-trait SEM

1
component Mean sD? Time-series SE? Mean sD? Time-series SE3
Og C4:.0 0.549 0.108 0.003 0455 0.091 0.002
Og C6:0 0.606 0.102 0.004 0.003 0.002 0.000
Og C8:0 0.599 0.100 0.004 0.000 0.000 0.000
Og C10:0 0.560 0.102 0.004 0.006 0.002 0.000
Og C120 0459 0.087 0.003 0.059 0.004 0.000
ro C4:0,C6:0 0.938 0.019 0.001
r. C4:0,C80 0.885 0.046 0.001
ro C4:0,C10:0 0.808 0.084 0.002
re C4:0,C12:0 0.754 0.101 0.003
r. C6:0,C8:0 0.950 0014 0.000
r. C6:0,C10:0 0.906 0.036 0.001
r. C6:0,C12:0 0.859 0.053 0.002
r. C80,C10:0 0.950 0.014 0.000
r. C80,C12:0 0911 0.028 0.001
r. C10:0,C12:0 0.934 0017 0.001
O; 40 0.360 0.151 0.005 0.460 0.122 0.002
Oé C6:0 0.325 0.143 0.005 0.114 0.023 0.001
Oé C8:0 0.310 0.140 0.005 0.073 0.009 0.000
O; C10:0 0319 0.141 0.005 0.066 0.008 0.000
O; C12:0 0.276 0.121 0.004 0.026 0.005 0.000
Iy C4:0,C6:0 0.855 0.074 0.002 —0.440 0.123 0.004
rg C4:0,C8:0 0.675 0.157 0.005 —-0417 0.116 0.004
Iy C4:0,C10.0 0424 0.237 0.007 —0.400 0.109 0.003
Iy C4:0,C120 0.331 0.255 0.008 —0.084 0.089 0.002
rq C6:0,C8:0 0.863 0.069 0.002 0.761 0.033 0.001
Iy C6:0,C10:0 0.697 0.148 0.004 0.730 0.036 0.001
Iy C6:0,C12:0 0617 0.179 0.006 0.160 0.154 0.004
ry C8:0,L100 0.862 0.071 0.002 0.692 0.036 0.001
ry C8:0,120 0.805 0.102 0.003 0.152 0.147 0.004
Iy C10:0C12:0 0.899 0.052 0.002 0.148 0.142 0.004

10§ is residual variance, ag is genetic variance, r, is residual correlation, r is genetic correlation; 25D is the posterior standard deviations of the component;

3Time-series SE is the time-series standard error of the component.

unshielded colliders among these fatty acids supports the
hypothesis of a path directed from C4:0 to C12:0.

Linearity

The search space does not contain cyclic structures and
non-linear relations are also not considered in the spe-
cific application presented here. Instead, as in most stud-
ies, it was assumed that relationships between traits were
linear but in reality they could be non-linear. In contrast
to the assumptions of the adapted IC algorithm applied
here, SEM can be extended to include, for instance, inter-
actions, feedback mechanisms (cyclic relations), quadratic

terms or polynomials to determine which model fits the
data best [27,28]. In addition, the search algorithm could
make decisions based on alternative tests for conditional
independence instead of on partial correlations [3].

Causal sufficiency assumption

Connections between variables are often referred to as
causal relations, but the only widely accepted method for
declaring causation between two variables is a randomised
experiment. This involves random assignment of each sub-
ject to different treatment groups, coupled with random
assignment of treatment level to each group, and results in
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averaging out potential sources of confounding effects. In
the analysed data, variables that act as confounders are not
averaged out, but when they are measured, they can be in-
cluded in the model to correct for this confounding effect.
Based on model assumptions, causation can be inferred,
but because of the impossibility of declaring with absolute
certainty that there are no additional unmeasured causal
variables, these assumptions cannot be guaranteed. The IC
algorithm is based on the assumption that there are no
hidden variables that affect more that one of the variables
considered in the model, which is called the causal suffi-
ciency assumption [29]. If this assumption does not hold,
there may be direct connections between variables that are
not causal relations but that are due to other sources, such
as common hidden causes. Although a SEM does not re-
quire this assumption, it is commonly applied for the sake
of model identifiability.

Comparison between the network obtained and known
biological networks

Metabolic pathways involved in the synthesis of milk
fatty acids, such as de novo synthesis, desaturation and
biohydrogenation, could be reflected in the structure
provided by the IC algorithm. In the following, the net-
work obtained with the IC algorithm will be compared
with known metabolic pathways of milk fat synthesis.
For this comparison, two aspects should be noted. First,
the variables studied here are fatty acids excreted in the
milk, which are not necessarily the same variables as the
corresponding fatty acids involved in the milk fat synthe-
sis pathways, e.g., C6:0 measured in milk is not the same
as a C6:0 in the elongation cycle of the de novo synthesis
being transformed into C8:0. This is especially important
considering that the SEM expresses the causal effect be-
tween fatty acids excreted in the milk, which are the re-
corded phenotypes. These causal effects reflect expected
results of (ideal) external interventions. However, the
expected consequences of modifying a fatty acid that
is excreted in the milk on other fatty acids may not be
the same as the consequences of manipulating the amount
of a specific fatty acid during synthesis in the mammary
gland.

The second aspect is that the proposition that an ob-
ject B originates from an object A does not necessarily
imply that causal effects between measurements 2 and b
made respectively on A and B must be directed as a — b.
Therefore, if fatty acid B originates from fatty acid A in
the synthesis process in the mammary gland, measure-
ments of the concentration of these fatty acids in the milk
(a and b) are not necessarily directed as a — b if they are
causally connected. So it is possible that edges may actu-
ally have alternative directions, and that is not a strict
contradiction of known biochemical paths. For example,
inoculating C8:0 in the mammary gland could affect the
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amount of C6:0 released in the milk, which would be an
effect that is opposite to the description of how C8:0 origi-
nates from C6:0, but does not deny that C8:0 originates
from C6:0. Although one could defend such an alter-
native structure (and other statistically equivalent ones),
the structure chosen to fit the model is credible given its
expected intervention outcome. For instance, the chosen
structure expresses that if C8:0 is inoculated in the mam-
mary gland, then C4:0 and C6:0 would remain the same,
but such intervention would affect C10:0 and also, indir-
ectly, C12:0. This is compatible with a scenario in which
C8:0 is inoculated: C4:0, and C6:0 would be normally pro-
duced since their synthesis occurs earlier in the cycle, and
less C8:0 would be released in the milk, since its concen-
tration is already high due to the inoculation (in case there
is some regulation of fatty acids production by the con-
centration of free fatty acids). This would leave more
“substrate” remaining within the cycle for the subsequent
fatty acids and would result in increasing C10:0, and so
forth. This is compatible with the causal meaning of
the chosen structure (and the inferred structural coef-
ficients, if they are positive). It should be noted that
in this case, the meaning of the graph C4:0 — C6:0 —
C8:0 — C10:0 — C12:0 depends on whether it is inter-
preted as a biochemical pathway that shows how fatty
acids are originated or as a SEM that involves the concen-
trations of such fatty acids, although both interpretations
could be represented with the same nodes and directed
connections. For the structure of the SEM fitted (C4:0 —
C6:0 — C8:0 — C10:0 — C12:0), directions were chosen
that mirror the de novo pathway, because it is plausible
(although not necessary) based on how the fatty acids are
generated and on that basis, if the underlying causal struc-
ture indeed reflected the metabolic pathway, the expected
output of the search algorithm would be exactly C4:0—
C6:0—C8:0—C10:0—C12:0.

De novo synthesis

Short and medium chain saturated fatty acids (C4:0-
C14:0 and about half of the C16:0 present in milk) are
produced in the de novo synthesis pathway. In this meta-
bolic pathway, the carbon chain is elongated in a sequen-
tial cyclic reaction from acetate and p-hydroxybutyrate
until a C16:0 fatty acid is formed by fatty acid synthase in
the mammary gland e.g., [30,31]. In the bovine, all inter-
mediate fatty acids can leave the elongation cycle by a
chain termination mechanism [32] and thus end up in bo-
vine milk. The path from C4:0 to C12:0 that was obtained
from the IC algorithm with a HPD interval of 95% (black
solid edges in Figure 1) mirrored this de novo synthesis.
One could argue that the path obtained from the IC algo-
rithm should also include C14:0 and C16:0 but part of
C14:0 and C16:0 originate from the cows’ diet, which
might have reduced the degree of association with the



Bouwman et al. Genetics Selection Evolution 2014, 46:2
http://www.gsejournal.org/content/46/1/2

remaining pathway, thus leading the search algorithm to
declare them disconnected from the remaining variables,
i.e. excluding them from the pathway. The structural coef-
ficients that were estimated using the SEM with the causal
structure C4:0 — C6:0 — C8:0 — C10:0 — C12:0 indicate
that if C4:0 increases 1 g/kg milk, then C6:0 would re-
spond by increasing 1.05 g/kg milk (Figure 3). However,
the molar mass of C6:0 is 1.32 times the molar mass of
C4:0, so although the relationship is nearly one to one
unit-wise, is less than one based on molar mass. The
structural coefficients Acio.0c8:0 and Aciz.oci0.0 were
slightly lower than Acs.oca.0 and Acg.oce.0 pOssibly be-
cause a small part of C10:0 and C12:0 is desaturated into
C10:1 and C12:1 in the mammary gland. These structural
coefficients suggest that an intervention that increases
the amount of C4:0 secreted in milk would result in
an increase in C6:0 secreted in milk and that would
in turn result in an increase in C8:0, C10:0 and C12:0
secreted in milk.

Desaturation

Medium chain saturated fatty acids (C10:0-C16:0) are
desaturated by coenzyme A desaturase 1 (SCDI) into their
equivalent mono-unsaturated fatty acids (C10:1-C16:1) in
the mammary gland [31,33]. Structures that mirror this
desaturation pathway (e.g., C10:0 — C10:1) were not re-
covered by the IC algorithm (Figure 1). The obtained
structures (C10:1—C12:1 and C14:1—C16:1) showed that
the amount of mono-unsaturated medium chain fatty acids
measured in milk are not causally associated with the
amount of their equivalent saturated fatty acid, but suggest
that the mono-unsaturated medium chain fatty acids may
have a common hidden causal variable among them.

Biohydrogenation
Long chain fatty acids (half of the C16:0 present in milk
and all fatty acids with 18 or more carbons) originate
from the diet fed to cows and are biohydrogenated by
micro-flora in the rumen into C18:0 and multiple inter-
mediate products [31]. Some edges were recovered be-
tween the long chain fatty acids, e.g. between C18:0 and
C18:1, and between C18:1 and CLA, which likely repre-
sent this biohydrogenation process. These edges were re-
covered when the HPD interval was relaxed to 80-85%,
which indicates weak evidence for these edges (Figure 1).

Reducing the HPD interval resulted in additional
edges. The edges that involve long chain fatty acids
might be plausible associations but the edges between
C4:0 and C16:0, C6:0 and C14:0, C8:0 and C12:0, C8:0
and C14:0 appear to be false positive associations due to
the lowered threshold.

To conclude, although the fatty acids were measured
when secreted in milk and not during their synthesis in
the mammary gland, concentrations of fatty acids in
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milk mirror some of the metabolic pathways, and resem-
blance with the de mnovo synthesis pathway obtained
most evidence.

Convergence issues of the multi-trait model

The search for causal structures among a set of variables
makes sense if associations exist between them. However,
if many traits have strong correlations with each other, fit-
ting multi-trait mixed models may encounter convergence
issues, which was the case in the current study. Most milk
fatty acids were strongly correlated with each other, both
genetically and residually. Fitting a standard multi-trait
model for 14 milk fatty acids resulted in slow MCMC con-
vergence, strong auto lag correlations in the chain and
thus in a small number of effective samples.

Running the MCMC Bayz 2.1 [22] program using la-
tent variables to reduce the dimensionality of the data
improved convergence of the Bayesian multi-trait mixed
model. A principal component analysis showed that
using four latent variables was reasonable for the multi-
trait model with 14 fatty acids. Using latent variables has
some effect on the modelled (co)variance structures; be-
cause the latent variable model uses less parameters than
the full (co)variance matrix, the (co)variance structure
is somewhat restricted, similar to using only the main
principal components in a principal component ana-
lysis or frequentist factor analytic model, e.g., [34]. In
this case, the latent variable model used 70 parameters
[(4 latent variables + 1) x 14 traits] for each of the envir-
onmental and genetic (co)variance structures, whereas the
full (co)variance matrix has 105 parameters. For the
multi-trait model for C4:0, C6:0, C8:0, C10:0 and C12:0,
two latent variables were used, resulting in 15 parameters
and thus no restrictions on the (co)variance matrix. The
multi-trait model for C4:0 to C12:0 resulted in the same
pathway as the model with 14 traits, suggesting that the
restriction in parameters due to latent variables did not in-
fluence this particular pathway.

A final measure to improve convergence was to set
minimum bounds on the remaining independent vari-
ances 7 and 77, for residuals and genetic effects through
the prior distributions. These minimum bounds were set
at 0.02 (on standardised phenotypes), which implies that
heritabilities were constrained to be between 2 and 98%,
and that all correlations were forced to remain slightly
below 1. These adaptations were required for the model
to converge such that this dataset could be explored for
causal networks.

Computation time of the adapted Inductive Causation

(IC) algorithm

The approach suggested by Valente et al. [12] is more com-
plex and computationally demanding than the standard use
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of the IC algorithm and other similar methods that simply
work with unconditional point estimates of covariance
matrices, not requiring prior model fitting. Although this
is appealing in the context of mixed effects SEM, there is
a compelling reason to follow the approach of Valente
et al. [12] because mixed effects SEM allow direct genetic
covariances, which are extra genetic sources of associa-
tions among traits, aside from causal effects. Assuming
these genetic associations to be absent would be more dif-
ficult to accept, since genetics most likely affects multiple
traits of a set in a way that is not mediated by other traits
in the set. Using the IC algorithm on raw data assumes
that these correlated direct genetic effects do not exist
and, therefore, requires assumptions that are more diffi-
cult to accept. Furthermore, using the output from such
an IC analysis in a mixed effects SEM with unstructured
genetic covariances implies inconsistency of assumptions
in the different analysis steps.

The computation time of the IC algorithm increases
rapidly with an increasing number of analysed traits, be-
cause of the increasing number of partial correlations to
be tested. The IC algorithm required testing the partial
correlations between each pair of fatty acids conditional
on all possible subsets of the remaining fatty acids. With
14 traits there are 91 distinct pairs of traits [n x (n — 1)/2]
and 4096 possible conditioning sets (2", leading to 372
736 partial correlations to be calculated for each posterior
sample of the residual (co)variance matrix (i.e., 2"~ Ly x
(n - 1)/2). In addition, the size of the posterior sample
also affects computation time. Additional thinning of
the MCMC speeds up computation time for the adapted
IC algorithm. Parallel computing would be a promising
strategy to reduce the computation time of the algorithm.
However, other refinements to the method used here will
be needed when the number of variables increases strongly,
for instance with high-throughput gene expression data,
such as microarray or RNA-seq.

Possibilities

Correlations between traits play a role in livestock man-
agement practices. These correlations can result from
different causal relationships, such as direct or indirect
causal effects between traits, or from a common causal
parent, or even from a combination of these. The con-
centrations of fatty acids in milk are clearly correlated,
but the partial correlations indicate that only a few are
directly connected in the network. Even an undirected
structure is informative and reveals direct and indirect
associations between variables. Nonetheless, prior know-
ledge may be used to orient additional edges, and resulting
causal inferences can then be confirmed with additional
data and studies. Representing the associations between
traits with networks may provide better insights into the
underlying biological mechanisms and offer opportunities
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for management tools to focus on pathways instead of
correlations. Response to interventions applied to a bio-
logical system can be predicted using SEM. Shifting the
focus from correlation matrices to causal diagrams might
result in faster and better understanding of responses
to interventions. The principles of the IC algorithm and
SEM can also be used to investigate gene regulatory net-
works in gene expression studies [35-37]. Understanding
the relationships between genes can, for instance, identify
targets for intervention that could contribute to the devel-
opment of therapies for certain diseases.

Conclusions

Application of the adapted IC algorithm proposed by
Valente et al. [12] resulted in an undirected network for
the 14 milk fatty acids studied. The pathway from C4:0
to C12:0 reflected the de novo synthesis pathway of short
and medium chain saturated fatty acids. By using prior
biological knowledge, directions were assigned to that
part of the network and the resulting structure was used
to fit an SEM. The edges between C10:1 and C12:1
and between Cl14:1 and C16:1 did not correspond to
associations reported in the literature, which might be
due to a common hidden causal variable. Other ex-
pected relations based on biological knowledge were
not found or were detected only when the HPD inter-
val was relaxed.

The output of the IC algorithm suggested causal rela-
tions between the studied traits. This changes the focus
from marginal associations between traits to direct rela-
tionships that may result in changes when external inter-
ventions are applied. The causal structure can give more
insight into underlying mechanisms and the SEM can
predict conditional changes due to such interventions.
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