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Abstract

Background: Estimates of dominance variance in dairy cattle based on pedigree data vary considerably across traits
and amount to up to 50% of the total genetic variance for conformation traits and up to 43% for milk production
traits. Using bovine SNP (single nucleotide polymorphism) genotypes, dominance variance can be estimated both at
the marker level and at the animal level using genomic dominance effect relationship matrices. Yield deviations of
high-density genotyped Fleckvieh cows were used to assess cross-validation accuracy of genomic predictions with
additive and dominance models. The potential use of dominance variance in planned matings was also investigated.

Results: Variance components of nine milk production and conformation traits were estimated with additive and
dominance models using yield deviations of 1996 Fleckvieh cows and ranged from 3.3% to 50.5% of the total
genetic variance. REML and Gibbs sampling estimates showed good concordance. Although standard errors of
estimates of dominance variance were rather large, estimates of dominance variance for milk, fat and protein yields,
somatic cell score and milkability were significantly different from 0. Cross-validation accuracy of predicted breeding
values was higher with genomic models than with the pedigree model. Inclusion of dominance effects did not
increase the accuracy of the predicted breeding and total genetic values. Additive and dominance SNP effects for
milk yield and protein yield were estimated with a BLUP (best linear unbiased prediction) model and used to
calculate expectations of breeding values and total genetic values for putative offspring. Selection on total genetic
value instead of breeding value would result in a larger expected total genetic superiority in progeny, i.e. 14.8% for
milk yield and 27.8% for protein yield and reduce the expected additive genetic gain only by 4.5% for milk yield and
2.6% for protein yield.

Conclusions: Estimated dominance variance was substantial for most of the analyzed traits. Due to small dominance
effect relationships between cows, predictions of individual dominance deviations were very inaccurate and including
dominance in the model did not improve prediction accuracy in the cross-validation study. Exploitation of dominance
variance in assortative matings was promising and did not appear to severely compromise additive genetic gain.
Background
Dominance arises when the effects of alleles at a locus
are not only additive, but interact so that the value of
the heterozygous genotypes deviates from the mean of the
values of the homozygous genotypes. With a and –a being
the genotypic values of homozygous genotypes A1A1 and
A2A2, let d be the genotypic value of the heterozygous
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genotype A1A2 [1]. If d = 0, there is no dominance action
at the locus and the genotypic values at the locus are
purely additive. The additive effects of genotypes at a locus
are expressed as breeding values, which include part of the
dominance effect because animals pass alleles, not geno-
types, to their offspring. Breeding values are 2q[a + d(q-p)]
for genotype A1A1, (q-p)[a + d(q-p)] for genotype A1A2

and -2p[a + d(q-p)] for genotype A2A2, where p is the fre-
quency of allele A1 in the population and q the frequency
of allele A2. The dominance deviation for a given genotype
at the locus is the difference between genotypic value and
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breeding value, and is equal to -2q2d, 2pqd and -2p2d for
genotypes A1A1, A1A2 and A2A2, respectively [1].
Until recently, studies on dominance deviations were

sparse because without genomic information, the avail-
ability of large datasets with sufficient proportions of in-
dividuals with non-null dominance effect relationships,
such as full-sibs, is essential for accurate estimation of
dominance variance. Estimates of dominance variance in
dairy cattle that are based on pedigree data range from
7.3% to 49.8% of the total genetic variance for conform-
ation traits [2,3] and from 3.4% to 42.9% for milk pro-
duction traits [4-6].
At the individual animal level, dominance is hardly

used in animal breeding [7], although it contains a rele-
vant part of genetic variation. The reasons are the heavy
computational demand of large-scale genetic evalua-
tions for dominance, the relatively low accuracy of
resulting estimates of dominance effects, and the com-
plexity of planning and computing the outcome of planned
matings [8].
With the availability of SNP genotypes, dominance at

a marker locus can be readily determined, dominance ef-
fects of markers can be estimated [9,10] and computing
the expected outcome of planned matings based on SNP
genotypes is straightforward [9]. Furthermore, covari-
ance matrices of genomic dominance effects among
individuals can be calculated, similar to matrices of gen-
omic additive relationships, which are widely used in
genomic selection, such that dominance effects can be
estimated in a GBLUP (genomic best linear unbiased
prediction) model [11,12].
In this work, we explored the possibilities of including

dominance effects in genomic evaluation and further-
more in planned matings in dairy cattle. We estimated
variance components, including dominance variance,
in a dataset of genotyped Bavarian Fleckvieh cows, ana-
lyzed the predictions of breeding and total genetic values
using cross-validation, and predicted total genetic values
of specific matings.

Methods
Estimation of variance components
First-lactating cows from 145 Bavarian dairy herds (all
first-lactating cows of each herd were genotyped), born
in 2008 and 2009, were genotyped with the Illumina
BovineHD Genotyping BeadChip that includes 777 962
SNPs. SNPs with a call rate lower than 0.9, a minor allele
frequency higher than 0.005 and a highly significant
deviation (P < 10−5) from the Hardy-Weinberg equi-
librium, and SNPs that were not annotated (UMD3) on
the autosomes or on the pseudo-autosomal region of the
X-chromosome were excluded from the analysis. A total of
629 028 SNPs remained in the dataset after editing. High-
density SNP genotypes and yield deviations (YD) for nine
traits (milk yield, fat yield, protein yield, somatic cell score,
milkability, stature, udder score, udder depth and feet and
legs score) from 1996 Bavarian Fleckvieh cows were avail-
able to (a) estimate variance components, including dom-
inance variance and (b) perform cross-validation in order
to evaluate the predictive ability of a model with domin-
ance effects in comparison to a purely additive model. Both
studies were done within a GBLUP framework. YD were
calculated based on test-day observations adjusted for non-
genetic effects, but not for permanent environmental ef-
fects, for each lactation and interpolated by the method of
best prediction [13,14]. A weighted mean was calculated
across lactation YD of a cow in order to obtain one multi-
lactation YD per cow. The effective number of own
performances (EOP) [15] was provided as a weight for the
multi-lactation YD. For conformation traits, a permanent
environmental effect was not modeled because repeated
measurements are not available for cows.
Additive genetic (σ2

A ) and residual (σ2E ) variance com-
ponents were estimated with models MA and MG.

MA : y ¼ μ þZuþ e

MG : y ¼ μþZuþ e;

where y is a vector of multi-lactation YD, μ is the overall
mean, Z is a design matrix relating YD to breeding
values, u is a vector of breeding values of cows, and e is
a vector of residuals. Covariance matrices of additive ef-
fects were V uð Þ ¼ Aσ2A in model MA and V uð Þ ¼ Gσ2A
in model MG, where A is the numerator relationship
matrix and G is the genomic relationship matrix. The
genomic relationship matrix G* was calculated based on
the approach of VanRaden [16] using PREGSF90 [17]:

G� ¼ WaWa
0

2
Xm

k¼1
pkqk

;

where matrix Wa has dimensions of the number of indi-
viduals (n) by the number of loci (m), with elements that
are equal to 2-2pk and -2pk for opposite homozygous
and 1-2pk for heterozygous genotypes, pk is the minor
allele frequency of locus k, and qk =1-pk. Matrix G* was
scaled so that the means of diagonals and off-diagonals
are the same as in A [18,19] and then combined with
A to G = 0.95G* + 0.05 A in order to improve numer-
ical stability. The variance matrix of residual effects was
V eð Þ ¼ Fσ2E for both models, where F is a diagonal
matrix with reciprocals of the EOP as weights. Extending
model MG with dominance effects leads to model MGD:

MGD : y ¼ μþZuþ Zv þ e;

where v is a vector of dominance deviations of cows. V(u)
and V(e) are defined as in model MG. The covariance
matrix of dominance effects is V vð Þ ¼ Dσ2D; where D is
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the genomic dominance relationship matrix and σ2D is the
dominance variance. Matrix D* was calculated as:

D� ¼ WdWd
0

4
Xm

k¼1
p2kq

2
k

;

where Wd has dimensions of the number of individ-
uals (n) by the number of loci (m), with elements
that are equal to −2q2k for genotype A1A1, 2pkqk for
genotype A1A2, and −2p2k for genotype A2A2. Matrix
D* was then combined with the identity matrix I as
D = 0.95 D* + 0.05 I to improve numerical stability.
Estimation of variance components was performed

with REMLF90 [20]. Goodness of fit of the respective
models to the data was measured by the likelihood. The
superiority of model MGD over model MG was tested
by a likelihood ratio test, which was calculated as -2ln
(likelihood for MG) + 2ln(likelihood for MGD). The like-
lihood ratio follows a mixture of χ2-distributions with 0
and 1 degree of freedom [21]. In addition, variance com-
ponents of model MGD were estimated by Gibbs sam-
pling using the GIBBS1F90 software [20] in order to
compare them with REML results and to calculate
standard errors of the estimates. A total of 200 000 itera-
tions of the sampler were run, with the first 20 000 itera-
tions discarded as burn-in samples and every 50th sample
included in the posterior analysis. Convergence to the final
distribution was checked with the Geweke diagnostics [22]
of the R package coda [23,24].
Additive and dominance variance components at the

marker level (σ2a and σ2d ) were also estimated with the
GS3 software [25] in a Markov chain Monte Carlo algo-
rithm, using a model at the marker level (referred to as the
MGD-SNP model hereinafter), in contrast to the previous
animal level models:

y ¼ 1μþ Taþ Xdþ e;

where a and d are vectors of additive and dominant ef-
fects of the SNPs, and T and X are incidence matrices
coded as {−1, 0, 1} and {0, 1, 0} for the three possible ge-
notypes. The assumed variance-covariance structure was
V að Þ ¼ Iσ2

a and V dð Þ ¼ Iσ2
d . From the resulting esti-

mates, additive and dominance variance components on
the animal level were calculated as:

σ2
A ¼ Pm

k ¼ 1 2pkqkð Þσ2
a

þ Pm
k ¼ 1 2pkqk qk−pkð Þ2� �

σ2
d

and σ2D ¼ Pm
k ¼ 1 4p2kq

2
k

� �
σ2d [12].

A total of 300 000 iterations of Gibbs sampling were
performed for each trait. The first 20 000 iterations were
discarded as burn-in samples and from the remaining
280 000 every 50th sample was considered for analysis of
the posterior distribution.
Prediction of breeding values and total genetic
values – cross-validation
Genotyped cows with YD for the respective traits were
randomly divided in ten groups in order to perform
cross-validation analysis. Typically, splitting at random
implies that some validation animals have descendants
in the training dataset, which means that the cross-
validation is based on descendants, a case of no interest in
reality and which will inflate accuracies [26]. In our data-
set, genotyped cows were from a single generation. There-
fore, a predicted cow could not have daughters (but, e.g.,
half- or full-sibs) in the training dataset – hence limiting
upward bias in the estimation caused by progeny of valid-
ation animals in the training data. In this setting, the
cross-validation accuracy measures the accuracy to predict
contemporary cows including half- and full-sibs of training
cows. Each group served once as validation group and the
calibration group consisted of the other nine groups.
Breeding values and total genetic values for the validation
group were predicted based on models MA, MG, and
MGD with their respective variance components esti-
mated with REMLF90. The correlation between predicted
breeding values and YD in the validation group [r YD; ûð Þ]
was calculated, as well as the regression of YD on pre-
dicted breeding values [b YD; ûð Þ ]. For model MGD, the
correlation between predicted total genetic values and YD
[ r YD; ĝð Þ ] and the regression of YD on predicted total
genetic values [b YD; ĝð Þ] were also calculated. These mea-
sures were averaged over the ten validation groups.

Prediction of total genetic values of matings
Genotype probabilities and expectations of purely additive
breeding values (u) and total genetic values (g), that include
dominance deviations, were calculated for the offspring of
all possible matings between 1996 cows and 50 bulls for
milk yield and protein yield. The bulls were genotyped and
selected for the respective trait on their conventional
breeding value after progeny test (including the records of
1996 genotyped cows) from the German-Austrian genetic
evaluation. SNP effects a and d were estimated in a BLUP
model (BLUP-SNP; equal to model MGD-SNP but with
variance components known) using GS3. Variance compo-
nents σ2a and σ2

d were fixed to values calculated from
REMLF90 variance components σ2A and σ2

D (model MGD):

σ2d ¼ σ2DX
22p2kq

2
k

� � ; σ2a ¼ σ2A−
X

2pkqk qk−pkð Þ2� �
σ2
dX

2pkqkð Þ :

The total genetic value gij of progeny from a mating
between bull i and cow j was predicted as in Toro and
Varona [9]:

ĝ ij ¼
X

k
Prijk AAð Þâk þ Prijk Aað Þd̂k−Prijk aað Þâk

h i
;
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where Prijk() is the probability of the corresponding
genotype at locus k. Analogously, the breeding value uij
of progeny from a mating between bull i and cow j was
predicted as:

ûij ¼
P

k

�
Prijk AAð Þ 2−2pkð Þα̂k

þPrijk Aað Þ 1−2pkð Þα̂k þ Prijk aað Þ −2pkð Þα̂k
�
;

where α̂k ¼ âk þ d̂k qk − pkð Þ.
Matings can be selected on û to maximize additive

genetic gain or on ĝ to maximize total genetic superior-
ity. The latter maximizes the productive performance of
the offspring, which might be a farmer’s interest. How-
ever, ĝ can be maximized only for the next generation
because gain in the dominance part of ĝ cannot be ac-
cumulated in subsequent generations. In our example,
additive gain is assured by pre-selection of bulls on
their conventional breeding value. Selection on û leads
to maximum additive gain, which can be accumulated
in subsequent generations, and thus optimizes cumula-
tive multi-generational genetic gain. A desirable object-
ive might be to maximize ĝ of matings and at the same
time to keep the expected û of the offspring as high as
possible.
In order to compare the results of these two possible

selection strategies, ĝ and û of all possible matings be-
tween the 1996 cows and 50 bulls were calculated for
milk and protein yields. For each cow, the top mating
was selected with respect to ĝ or û, with the restriction
that a single bull was not mated to more than 200 cows.
The expected additive genetic gains and total genetic su-
periorities with selection on û or ĝ were calculated as
the difference between the mean û or ĝ of selected mat-
ings and the mean û or ĝ of all possible matings.

Results
Estimation of variance components
Figure 1 shows the histograms of off-diagonal elements
of the additive and dominance genomic relationship
matrices. Means of off-diagonals of G (before scaling)
and D were equal to 0, which implies that the popula-
tion was in Hardy-Weinberg equilibrium. The standard
deviation of off-diagonals of G was equal to 0.036, which
is five times larger than the standard deviation of off-
diagonals of D, i.e. 0.007. The proportion of off-diagonals
that were smaller than −0.05 or larger than 0.05 was 6.27%
for G but only 0.02% for D. Therefore, matrix D was less
informative than G.
Estimated variance components for model MGD are

in Table 1. Dominance variance (expressed as a percent-
age of total genetic variance) for milk production traits
ranged from 28.1% for fat yield to 40.9% for protein
yield. For somatic cell score and milkability, dominance
variance was estimated at 39.0 and 50.5% of the genetic
variance. Estimates of dominance variance for conform-
ation traits were quite small, except for udder depth,
ranging from 3.3% for stature to 15.3% for feet and legs
score. For udder depth, dominance variance was esti-
mated at 23.8% of the genetic variance. For comparison,
additive variances estimated with models MA and MG
are also in Table 1. With the exception of milkability,
the estimates of additive variance from model MG were
consistent with additive variance estimates from the
dominance model. Estimates of additive variance ob-
tained with the pedigree model MA differed to some
extent from those obtained with the genomic models.
Estimates of variance components obtained using Gibbs
sampling with model MGD and with an equivalent
MGD-SNP model are in Table 2 and were similar to
REML estimates with model MGD. Geweke statistics
[22] showed convergence for model MGD but for the
MGD-SNP model, the Gibbs chains did not converge
even after 300 000 iterations. However, the means of the
Gibbs chains for the MGD-SNP model were similar to
those for the MGD model. For stature, udder score and
feet and legs score, the estimated dominance variance
was clearly larger with both Gibbs sampling analyses than
with REML estimation because of a skewed posterior
distribution of the Gibbs samples. Estimates of the ratio
between dominance and total genetic variance had stand-
ard errors around 0.10, which is fairly good for such a
small dataset.
For all traits, model MG, which exploited genomic in-

formation, fitted the data better than model MA, which
included pedigree information only. The superiority of
model MGD, which included a dominance effect, com-
pared to model MG was significant for milk yield, fat
yield, protein yield, somatic cell score and milkability,
based on the likelihood ratio test. Likelihood measures
and statistics of the likelihood ratio test between models
MG and MGD are in Table 3. The likelihood ratio test
statistics were asymptotically χ2-distributed [27]. The χ2-
distribution function can take only non-negative values
because it is defined as a sum of squared values. For two
traits (stature and udder score), the likelihood ratio test
statistics were negative (but very close to 0), which was
due to numerical rounding or not finding the mode of
the likelihood exactly.

Prediction of breeding values and total genetic
values – cross-validation
Mean accuracies of predicted breeding values [r YD; ûð Þ]
and slopes of the regression of YD on predicted breeding
values [b YD; ûð Þ] are in Table 4. For model MA, r YD; ûð Þ
ranged from 0.102 for somatic cell score to 0.228 for fat
yield, with an average of 0.165. Replacing pedigree with
genomic relationships increased r YD; ûð Þ to between 0.108
(feet and legs) and 0.327 (milkability), with an average of
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Figure 1 Histograms of off-diagonal elements of relationship matrices G (unscaled) (a) and D (b).
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0.242. r YD; ûð Þ did not change when dominance ef-
fects were added to the model. Average standard er-
rors of r YD; ûð Þ were equal to 0.024, 0.021 and 0.021
in models MA, MG and MGD, respectively. r YD; ûð Þ
with the dominance model ranged from 0.109 for feet
and legs score to 0.325 for fat yield. The difference be-
tween r YD; ĝð Þ and r YD; ûð Þ in model MGD ranged
from −0.004 for protein yield to 0.003 for udder score.
The standard errors of r YD; ĝð Þ were similar to those
for r YD; ûð Þ, with a mean of 0.021.
For models MA and MG, b YD; ûð Þ ranged from 0.563

(milkability) to 1.201 (feet and legs score) and from
0.744 (milkability) to 1.068 (fat yield), respectively, with
means of 0.964 and 0.971. b YD; ûð Þ for model MGD
ranged from 0.924 (protein yield) to 1.085 (fat yield),
with a mean of 1.016. The standard errors of b YD; ûð Þ
were rather large, with means of 0.151, 0.106 and 0.111
for models MA, MG and MGD, respectively. The slope
Table 1 Estimates of additive and dominance variance
components obtained using REMLF90 for models MA,
MG and MGD

Trait MA MG MGD

σ2
A σ2

A σ2
A σ2

D σ2
E

σ2
D

σ2
Aþσ2

D

Milk yield 261500 214200 208900 92640 164700 0.308

Fat yield 279 274 267 104 198 0.281

Protein yield 213 175 166 115 154 0.409

Somatic cell score 0.230 0.264 0.256 0.261 0.555 0.505

Milkability 0.0193 0.0216 0.0122 0.0076 0.0029 0.390

Stature 3.41 5.73 5.80 0.20 6.51 0.033

Udder score 1.85 2.00 1.99 0.27 9.29 0.118

Udder depth 0.313 0.380 0.380 0.119 0.517 0.238

Feet and legs score 1.32 1.20 1.19 0.21 9.89 0.153
of the regression of YD on predicted total genetic values
ranged from 0.889 (protein yield) to 1.060 (feet and legs
score), with a mean of 0.995 and was slightly smaller
than b YD; ûð Þ for most traits for the same model. The
fact that slopes were generally not significantly different
from 1 suggests that predictions were essentially un-
biased, except for milkability.

Prediction of total genetic values of matings
For milk yield, 16 bulls were chosen as mating partners
when matings were selected on ĝ . The restriction of at
most 200 cows per bull was reached for seven bulls. The
remaining nine bulls were mated to 197, 147, 139, 86,
19, 4, 2, 1 and 1 cows. When matings were selected on
û , nine bulls were mated to the maximum number of
200 cows and two other bulls to 176 and 20 cows, re-
spectively. For protein yield, 24 bulls were chosen as
mating partners when matings were selected on ĝ . The
restriction of 200 cows per bull was reached for seven
bulls. The remaining 17 bulls were mated to 134, 115,
114, 63, 62, 29, 26, 21, 8, 7, 4, 3, 3, 3, 2, 1 and 1 cows.
When matings were selected on û , eight bulls were
mated to the maximum number of 200 cows and the
four other bulls to 190, 157, 33 and 16 cows.
Expected total genetic superiorities and additive gen-

etic gains obtained with the selected matings are in
Table 5, both in absolute numbers and relative to the
standard deviations (SD) of û and ĝ . When matings were
selected on ĝ for milk yield, the expected total genetic
superiority was estimated to be equal to 165.2 kg, which
is equivalent to 1.01 SD of ĝ . The expected total gen-
etic superiority was reduced to 143.8 kg (0.88 SD)
when matings were selected on û . The expected addi-
tive genetic gain was less sensitive to the selection cri-
terion applied since it was only slightly reduced when
selection was done on ĝ (137.7 kg; 0.85 SD) instead of



Table 2 Estimates of additive and dominance variance components from Gibbs sampling for models MGD and MGD-SNP

Trait MGD MGD-SNP

σ2
A σ2

D σ2
E

σ2
D

σ2
Aþσ2

D
σ2
A σ2

D σ2
E

σ2
D

σ2
Aþσ2

D

Milk yield 211124 ± 28668 98430 ± 45503 161657 ± 33376 0.306 ± 0.108 202367 ± 23929 115345 ± 32156 152862 ± 27651 0.358 ± 0.067

Fat yield 270.2 ± 36.9 112.5 ± 53.3 193.5 ± 36.9 0.283 ± 0.105 261.9 ± 31.0 119.1 ± 34.4 192.4 ± 29.6 0.308 ± 0.064

Protein yield 168.2 ± 26.3 117.8 ± 43.7 152.7 ± 28.9 0.401 ± 0.105 166.2 ± 23.0 105.6 ± 30.5 160.9 ± 25.0 0.383 ± 0.072

Somatic cell score 0.268 ± 0.067 0.261 ± 0.121 0.554 ± 0.096 0.471 ± 0.155 0.220 ± 0.070 0.130 ± 0.068 0.680 ± 0.088 0.352 ± 0.101

Milkability 0.01228 ± 0.00188 0.00735 ± 0.00169 0.00315 ± 0.00102 0.375 ± 0.082 0.0116 ± 0.00119 0.00724 ± 0.00149 0.00397 ± 0.00123 0.382 ± 0.061

Stature 5.874 ± 0.869 0.616 ± 0.493 6.119 ± 0.802 0.091 ± 0.065 5.754 ± 0.749 1.325 ± 0.497 5.517 ± 0.809 0.184 ± 0.058

Udder score 2.016 ± 0.521 1.089 ± 0.787 8.527 ± 0.921 0.322 ± 0.161 2.010 ± 0.498 1.134 ± 0.452 8.466 ± 0.819 0.352 ± 0.070

Udder depth 0.3852 ± 0.0608 0.1656 ± 0.0952 0.4730 ± 0.1024 0.285 ± 0.120 0.387 ± 0.055 0.181 ± 0.059 0.457 ± 0.082 0.312 ± 0.067

Feet and legs score 1.212 ± 0.451 0.947 ± 0.676 9.209 ± 0.831 0.407 ± 0.192 1.320 ± 0.382 0.936 ± 0.370 9.118 ± 0.700 0.408 ± 0.070

The results are given as estimate ± standard error.
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Table 3 Goodness of fit of models MA, MG, and MGD and
likelihood ratio test (χ2-value and P-value) between
models MG and MGD

−2 log likelihood Likelihood ratio test

MA MG MGD χ2-value P-value

Milk yield 31531.5 31488.1 31484.3 3.8 0.026

Fat yield 18363.1 18299.5 18295.9 3.6 0.029

Protein yield 17852.5 17824.6 17817.6 7.0 0.004

Somatic cell score 6072.9 6055.0 6050.6 4.4 0.018

Milkability −1243.5 −1297.6 −1323.9 26.3 1.46*10−7

Stature 9979.0 9907.9 9908.4 −0.5 1.000

Udder score 9916.5 9902.4 9902.5 −0.1 1.000

Udder depth 5287.9 5239.7 5238.5 1.2 0.137

Feet and legs score 9884.9 9880.9 9880.9 0.0 1.000

The measures of goodness of fit (−2 log likelihood) for models MA, MG and
MGD are reported as well as the likelihood ratio test statistics (χ2−value ¼ −2 ln
likelihood for MG
likelihood for MGD) between models MG and MGD and the corresponding P-values.

Table 5 Expected total genetic superiority (ΔG) and additive
genetic gain (ΔU) with selection on total genetic value (ĝ) or
breeding value (û)

ΔG ΔU

absolute
(kg)

relative
to SD

absolute
(kg)

relative
to SD

Milk yield

Selection on ĝ 165.2 1.01 137.7 0.85

Selection on û 143.8 0.88 143.8 0.89

Protein yield

Selection on ĝ 4.15 1.01 3.09 0.74

Selection on û 3.24 0.79 3.16 0.76

Expected total genetic superiority (ΔG) and expected additive genetic gain
(ΔU) for the alternative selection criteria total genetic value (ĝ) and breeding
value (û) in absolute value (kg) and relative to the standard deviations (SD) of
ĝ and û of all possible matings; the maximum number of matings per bull was
restricted to 200.
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on û (143.8 kg; 0.89 SD). The results were similar for
protein yield. With selection on ĝ , the expected additive
genetic gain was slightly smaller (0.74 vs. 0.76 SD) but
the expected total genetic superiority was clearly larger
(1.01 vs. 0.79 SD) compared to selection on û.

Discussion
This study analyzed the importance of dominance vari-
ation for several milk production and conformation
traits in the Fleckvieh breed using the GBLUP method-
ology. Additive and dominance genomic relationship
matrices were calculated similar to Su et al. [11], ex-
cept that standard quantitative genetic approaches were
used, with the dominance variance at locus k defined as
(2pk qk d)

2 [1,12]. This resulted in the reported estimates
Table 4 Accuracies and regression coefficients of predicted b
MG, and MGD

Trait r(YD, û)1 r(YD

MA MG MGD MGD

Milk yield 0.221 ± 0.029 0.277 ± 0.030 0.278 ± 0.031 0.275

Fat yield 0.228 ± 0.018 0.325 ± 0.020 0.325 ± 0.019 0.325

Protein yield 0.202 ± 0.031 0.236 ± 0.016 0.238 ± 0.016 0.234

Somatic cell score 0.102 ± 0.018 0.169 ± 0.020 0.169 ± 0.019 0.168

Milkability 0.133 ± 0.042 0.327 ± 0.025 0.324 ± 0.028 0.322

Stature 0.180 ± 0.017 0.308 ± 0.014 0.308 ± 0.014 0.308

Udder score 0.121 ± 0.017 0.159 ± 0.022 0.159 ± 0.022 0.158

Udder depth 0.192 ± 0.017 0.269 ± 0.020 0.269 ± 0.020 0.272

Feet and legs score 0.106 ± 0.026 0.108 ± 0.023 0.108 ± 0.023 0.109

The results are given as mean ± standard error.
1r YD; ûð Þ = accuracy of predicted breeding values (cross-validation correlation betw
2r YD; ĝð Þ = accuracy of predicted total genetic values (cross-validation correlation b
3b YD; ûð Þ = regression coefficient of YD on predicted breeding values.
4b YD; ĝð Þ = regression coefficient of YD on predicted total genetic values.
of dominance variance to be compatible with pedigree-
based estimates.
Independence between u and v is the classical treat-

ment [1] and it is convenient because it allows orthog-
onality of the estimates and thus an easy translation into
variances and covariances of u and v. However, this in-
dependence is contradictory with the phenomena of
inbreeding depression and hybrid vigor; presence of in-
breeding depression indicates that dominance is direc-
tional, e.g. [28]. Wellmann and Bennewitz [10,29] reviewed
biological information on milk yield and productive life in
Holstein cattle to suggest a priori dependencies between
a and d (which would result in dependencies between u
and v) and Bayesian regression models that could accom-
modate those dependencies. The treatment of dependen-
cies between breeding values and dominance deviations
reeding values and total genetic values for models MA,

, ĝ)2 b(YD, û)3 b(YD, ĝ)4

MA MG MGD MGD

± 0.032 0.925 ± 0.109 0.955 ± 0.099 0.967 ± 0.101 0.950 ± 0.104

± 0.019 1.031 ± 0.085 1.068 ± 0.078 1.085 ± 0.079 1.072 ± 0.075

± 0.016 0.958 ± 0.148 0.889 ± 0.070 0.924 ± 0.072 0.889 ± 0.069

± 0.015 0.866 ± 0.165 1.007 ± 0.131 1.031 ± 0.133 0.973 ± 0.107

± 0.027 0.563 ± 0.182 0.744 ± 0.057 1.053 ± 0.099 1.004 ± 0.087

± 0.014 1.082 ± 0.117 1.030 ± 0.059 1.023 ± 0.059 1.021 ± 0.059

± 0.022 1.023 ± 0.144 1.004 ± 0.142 1.007 ± 0.142 1.002 ± 0.146

± 0.020 1.031 ± 0.119 0.988 ± 0.095 0.991 ± 0.094 0.988 ± 0.095

± 0.024 1.201 ± 0.290 1.055 ± 0.221 1.063 ± 0.223 1.060 ± 0.225

een YD and predicted breeding values).
etween YD and predicted total genetic values).
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is rather complex and the computational requirements
are large, thus, we did not consider this method although
it should be a field of further research.
Estimates of dominance variance varied from 3.3 to

50.5% of total genetic variance for the analyzed traits.
Estimated dominance variance (as a percentage of total
genetic variance) was greater for milk production traits
than for conformation traits. These results agree with
those of Misztal et al. [7], who found larger dominance
variance for production than for conformation traits.
Moreover, Misztal et al. [3] reported estimates of domin-
ance variance in US Holstein cattle for 14 conformation
traits that ranged from 7.3 (rump angle) to 22.3%
(strength) of the total genetic variance. This is compar-
able to the estimates of dominance variance for the con-
formation traits analyzed in this study. In the literature,
reported estimates of dominance variance for milk pro-
duction traits of Holstein cattle vary considerably ranging
from 1.4 to 42.9% of the total genetic variance [4-7],
which are within the same range but smaller than those
found in our study. Two reasons may explain the rela-
tively large estimates of dominance variance for milk pro-
duction traits obtained in our study compared to values
reported in the literature: (1) Fleckvieh cattle are genetic-
ally more diverse than Holstein cattle, as reflected by
the considerably larger effective population size of the
Fleckvieh breed [30], which is expected to result in more
heterozygosity and in QTL alleles with more intermedi-
ate frequencies; (2) all estimates of dominance variance
available in the literature were obtained using relation-
ship matrices based on pedigree data; the use of genomic
information is expected to improve estimates of domin-
ance effect relationships and reduce potential confound-
ing with additive effects and residuals which is likely to
result in different estimates.
Although moderate changes in estimates of additive

variance were observed between pedigree and genomic
models, estimates of additive variance were consistent
for genomic additive and dominance models, except for
milkability. Su et al. [11] reported a small difference
in estimates of additive variance between additive and
dominance models. However, the additive and domin-
ance variances reported in Su et al. [11] result from an
alternative partitioning of genetic variance and are thus
not directly comparable to the classical partitioning of
genetic variance [12]. In studies based on pedigree infor-
mation, estimates of additive variance have been similar
between additive and dominance models [5,6,31].
Both Gibbs sampling with model MGD and at the

marker level with the MGD-SNP model resulted in esti-
mated variance components that were comparable with
REML estimates for most traits. The relative standard
error (calculated as standard error divided by the estimate)
of dominance variance was on average 2.7 times larger
than the relative standard error of the estimated additive
variance, which is expected based on the properties of G
and D. However, in other studies the ratio between relative
standard errors of dominance and additive variances was
even larger, i.e. 4.1 in Misztal [32] and 4.5 in Su et al.
[11]. In order to estimate dominance variance more ac-
curately, more dominance-specific information is needed.
This could be achieved, e.g., by increasing the number of
full-sibs in the dataset. The present dataset contained 3%
full-sibs.
Despite the large estimates of dominance variance for

most analyzed traits (significantly larger than 0 for five
traits), prediction accuracy of breeding values and total
genetic values did not change when dominance effects
were included in the model. Estimates of additive vari-
ance did not differ much between models MG and
MGD, which means that additive variance is already cap-
tured quite accurately in the additive model. Thus, addi-
tive effects are relatively well predicted, whether the
dominance effect is modeled or not. The accuracy of
predictions of total genetic values in cross-validation
was not higher with the dominance than with the addi-
tive model because the proportion of full-sibs and domin-
ance effect relationship coefficients between the training
and validation datasets were small. Thus, little information
was transferred from the reference to the validation group
in cross-validation for prediction of dominance effects. Su
et al. [11], who analyzed non-additive effects for average
daily gain with a dataset of 1911 purebred pigs, observed
that the estimates of the additive variance with the addi-
tive and dominance models remained fairly constant and
that gains in accuracies of predicted breeding values and
predicted total genetic values reached only 0.004 and
0.011 with the dominance model. The proportion of full-
sibs in the pig dataset was not reported in Su et al. [11]
but is expected to be substantially larger than in our cow
dataset, which might be the reason for the gain in accur-
acy of predicted total genetic values with inclusion of
dominance in the model. Based on a simulation study,
Varona et al. [33] observed that relevant changes in breed-
ing values when switching from an additive to a domin-
ance model were obtained only for animals that had full-
sibs or full-sib progeny and little other information. A cow
dataset with a larger proportion of full-sibs would contain
more information in order to accurately estimate domin-
ance effects but in practice such data is not available. Ana-
lysis of full-sib progeny from elite animals, which generally
are available, would not be representative for the whole
population.
The regression coefficient of YD on predicted breeding

values was generally close to 1, with a few exceptions.
With the dominance model, this regression coefficient
was slightly closer to 1 for most traits but differences
were small, which is similar to the data reported by Su
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et al. [11], i.e. 0.927 and 0.983 with the additive and
dominance models, respectively. In our study, the regres-
sion coefficient of YD on predicted total genetic values for
model MGD was slightly smaller than the regression on
predicted breeding values, which agrees with Su et al. [11],
but it remained close to the expectation, which means that
predictions were unbiased. In general, bias can originate
from preferential treatment, unrecognized pre-selection of
validation animals, or inappropriate modeling of predic-
tions (i.e. using incorrect variance components).
The results show that selection of matings on ĝ in-

stead of û led to 14.8% (milk yield) and 27.8% (protein
yield) greater expected total genetic superiorities and
maximized expected productive performance of the off-
spring. Although the accuracy of estimates of total gen-
etic values was not greater than that of estimates of
breeding values, as indicated by the cross-validation re-
sults (Table 4), expected total genetic superiority was
not impaired by this result because predicted genetic
values are best linear unbiased predictions and therefore
unbiased expectations [34]. Toro and Varona [9] re-
ported that expected total genetic superiority with
optimized mate allocation was 16% greater than with
selection on the breeding value only, for a trait with
additive and dominance variances amounting to 40 and
10% of the phenotypic variance. Expected additive gen-
etic gain was reduced by only 4.5% for milk yield and by
2.6% for protein yield with selection of matings on ĝ in-
stead of û . Thus, optimization of ĝ of the offspring
appears to be feasible without a great loss in û . Our con-
siderations of optimized matings are limited to the first
generation offspring. Toro and Varona [9] found that re-
sponse from assortative mating was only realized in the
first generation without any additional response in subse-
quent generations. Thus, optimization of matings with
respect to total genetic value has to be applied in each
generation, otherwise the dominance-specific advantage
is lost. Toro and Varona [9] pre-selected males and fe-
males on their estimated breeding values and then opti-
mized the total genetic value of matings between these
pre-selected animals. In our example, only bulls were
pre-selected on their conventional breeding value and
the optimal bull was determined for each cow based
on the expected total genetic value of the offspring.
However, the potential of assortative mating to exploit
dominance variance optimally by combining mates that
are expected to produce offspring with large total gen-
etic values is limited even for these two traits with
sizeable dominance variation. This can be caused either by
cancellation effects across the genome (i.e., it is extremely
unlikely to combine all positive dominance effects) or
by a reduced accuracy of the dominance deviation of a
mating because of uncertainty about the resulting marker
genotypes.
Conclusions
Estimates of genomic variance due to dominance in
Fleckvieh cattle ranged from 3 to 50% of the genetic
variance and were within the range of published pedigree-
based estimates for dairy cattle. The computational com-
plexity and modeling were straightforward. Predictive
ability of breeding and total genetic values by cross-
validation was not improved when dominance effects
were included in the prediction model, probably because
of the limited size of the dataset and the small proportion
of full-sibs. There is potential to exploit dominance vari-
ance in planned matings in order to increase total genetic
value of the offspring (i.e. future performance) without
compromising additive genetic gain. Use of planned mat-
ings could also be a way to motivate farmers that are
otherwise not interested in using genomic breeding values
for breeding schemes.
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