Additional file 2: Derivation of Equation 1

Part A
Consider y=ab%°c™*°, where y represents 7,., a represents 6,,,, being the purebred-
crossbred genetic covariance, b represents &f\p , and c represents 6,%0 . A first-order tri-variate

Taylor-series approximation at (u,, 1, 1), 4 denoting the mean, yields
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Taking the variance yields
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Calculating Equation A1 requires six elements: var@G, ), var(&f\p), var@Ga ), cov(&Apc,&ip) ,

COVE, .64 ), and cov(&,ﬁp )

n : : - ) X 4 N _ _
var(G ) : Expressing trait values as deviations from their mean, 6, = mZP,pP,C :
—4i=1

where E.p denotes the average phenotype of the purebred offspring of the i sire, and ﬁ,.c the

corresponding value for crossbreds. With unrelated sires, elements in the summation are
independent, so that,

var(&Apc) = Nl6

BB,



in which P refers to the offspring of a single sire. Using var(xy) =o20” + o3, (Equation B1),

and substituting x =2, y =7., and o2, =cov’(P,,B.) = %6031[” yields

A 16var(P,)var(P,) + Ulepc
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in which var(ﬁp) and var(P.) are the variances of the purebred and crossbred progeny

averages of a sire, respectively. Variances of progeny averages are given by

2 2 2 2
= O, + 0, O, + 0
var(P)=%a,§+% At 0c | Oat O

, (A3)

(0]

where 2 denotes the common-litter variance, and o2 the residual variance. Thus, Equation
A3 is used twice; once for var(}_j,,) using values for purebreds, and once for var(2.) using

values for crossbreds.

var(&ip) and var(gj_): With two-way Anova, where dams are nested within sires, expected

mean-squares are

_ 2 2 2
EMS =n,Nn,0gp + 1,00, +0,,

sires sire
EMS, _=n,05 +0°
dams = 150 dam T Op¢ -
Hence,

A2 M‘Ssires _MSdams )

n;n,

Using var(MS) = 2EMS?/df and cov(Ms

sire?

Ms,,)=0 [16], it follows that
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with expected mean squares and degrees of freedom given by
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Thus, Equation A4 is used twice; once for var(&flp) using values for purebreds, and once for

var(&flc) using values for crossbreds.

cov(&Apc,&ip) and cov(&Apc,&,ic): To simplify the derivation, we introduce an effective

number of sires for both purebred and crossbred performance, denoted Nt , and Neg . The

effective number of sires is the number of sires with an infinitely large progeny group that
would yield the same SE of the estimated additive genetic variance as the actual number of
sires,
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where var(cy) is taken from Equation A4. Thus Equation A5 is used twice, once for N ,,

and once for N When using this effective number, we can treat the estimated genetic

eff,c*

variances as simple variances,

where P denotes the progeny average of a sire, and trait values are expressed relative to their

mean (i.e., P =0). Since the estimated purebred-crosshred genetic covariance arises only
from the sire-terms, i.e., does not involve MS,,. (see derivation of cov(&ip,&iﬁ) below ),
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Since terms of different sires are independent, this can be approximated by
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where the covariance term now refers to a single sire. From Equation B3, it follows that
cov(P?,P,B) = %GAMGEIP . This uses var(P,) = %07, which is appropriate because of the
division by Ngg ,, rather than A~ —1. Substituting this result into the expression for

covs, . &jp ) yields
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Analogously,
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COV(&,ZAP 15',2% ): Using 5% —4 MSsires — MSgams
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, it follows that
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Using  cov(MSgjes, MSgams) = 0 [16], and cov(MS, jams, MS¢ gams) = O since purebreds and

crossbreds descend from different dams, it follows that
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Next, from MSg;es = SSgires /(N —1) and SSges = NgN, Z(PSlre P)?, it follows that
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Since different sires are assumed unrelated,
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where the covariance now refers to a single sire. Using Equation B2,
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In summary, SE(f,.) follows from substituting Equations A2, A4, A6 and A7 into Equation

Al, and taking the square root. The resulting expression is complex and therefore not given.

The result can be simplified considerably by using the hunch that the effective number
of sires is determined by the square of reliability,

]veﬁr zp4(N—]_), (A8)
where p* is the square of the reliability of the sire EBVs,
2
2_ 4% (A9)
var(P)
Substituting Equation A8 into the expression for SE(f,) following from Equations Al

through A7 yields Equation 1. Equation A8 derives from the idea that reliability summarizes
the quality of the sire EBV as a measure of the true sire breeding value. In our case, interest is

in the variance of the variance, so we are on the quadratic scale, which suggests the use of p*
. Below is a formal derivation of Equation A8 for a simplified case.

Equation A8: A rigorous proof of Equation A8 for a nested full-half sib scheme is very
tedious. We, therefore, only give a proof for a non-nested half-sib design with N sires, each
with n offspring, without full-sib groups within half sib families. The stochastic simulations
confirm that the result extends by analogy to the nested full-half sib design with common-
litter effects. For a half sib design, the trait model is

P=s+e.
The ANOVA is given by
2 2
EMSsires =Nnog +O-e '
EMSezmr = Gez :
Hence,
&2 _ MSsires _MSerror
.=
n

Following the derivation used for Equation A4,
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The last step assumes that, in the third line, the second term is usually much smaller than the
first term. (This is reasonable unless n is very small and h? is small; Hence, unless p? is very

small). The squared reliability of sire EBVs equals
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Finally, using Equation A5, and substituting var(G?) :% yields Equation A8.
eff

Part B

Though expressions derived here can also be found in multivariate texts, they are included for
reasons of completeness. In the following, x and y are bivariate normal variates, x denotes

the mean, o® the variance, o,

regression coefficient of y on x, and E the expectation.

the covariance, p the correlation coefficient, 5, the

Var(xy) By the law of total variance,
var(yy) = E[var(xy | x)]+ var[E(x | x)].

In the first term, var(xy | x) = x?(1- p?)o2, so that

Elvar(y | x)] = (1 +05) - p*)o? .



In the second term, E(xy|x) = x[u, +b,(x—u)]. Thus var[E(xy|x)] = wos +

bf,X varfx(x — u,)] + 2u,b,, coVlx, x(x —,)]. Using the non-central moments of the normal

distribution, it follows that var[x(x — )] = 20> +20+, and that cov[x, x(x — x,)] = u,02.

Collecting terms,
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Summing the first and second term yields

var(xy) = ,u,z{a}z, + /1}2,0')2( + 0')2(0'}2, +2 0,0, + Gf,y . (B1)

Cov(x*y?) For u, = u, =0,

covx?,y?) = E(x*y*)-E(x*)E(y*) = E(x’y?)-clc?.
The first term follows from conditioning on x, E(x%’y?) = E[x’E(y?|x)], in which
ylx=b,x+e, with cov(h,,x,e)=0 and E(e)=0. Thus E(y?|x) = bJZ,XXZ-I—(l—pZ)Gj',.
Taking the expectation over x, E[x’E(y*|x)] = b, E(x*) + (1-p*)o’ic? . Substituting

E(x*) =30y vields E[x’E(y*| x)] = 2073, + o2c% . Finally, subtracting the second term yields

cov(x®, y?) = 207, (B2)

Cov(x*,xy) : For u, = u, =0,
2 — 3 2 — 3 2
cov(x®,xy) = E(x"y) -E(x")E(xy) = E(x"y )—0,0,,.

The first term follows from conditioning on x, E(x’y) = E[x*E(y| x)]. Since E[y | x]=b,,x
, E[x*E(y | x)] = b,,E(x*). Substituting E(x*) =307 yields 3o2c2,. Finally, subtracting the
second term yields

cov(x®, xy) = 2020, . (B3)



