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Additional file 2: Derivation of Equation 1 

  

Part A 

Consider 5.05.0  caby , where y represents pcr̂ , a represents 
pcA̂ , being the purebred-

crossbred genetic covariance,  b represents 2ˆ
pAσ , and c represents 2ˆ

cAσ . A first-order tri-variate 

Taylor-series approximation at ),,( cba μμμ ,  denoting the mean, yields 

)(5.0)(5.0)( 5.15.05.05.15.05.0
ccbabcbaacby μcμμμμbμμμμaμμμy   . 

Taking the variance yields  
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Hence,  
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 (A1) 

Calculating Equation A1 requires six elements: )ˆvar(
pcAσ , )ˆvar( 2

pAσ , )ˆvar( 2

cAσ , )ˆ,ˆcov( 2

ppc AA
σσ , 

)ˆ,ˆcov( 2

cpc AA
σσ , and )ˆ,ˆcov( 22

cp AA σσ . 

 

)ˆvar(
pcAσ : Expressing trait values as deviations from their mean, 

pcA̂  = 


N

i
ii cp
PP

N 11

4
, 

where 
pi

P  denotes the average phenotype of the purebred offspring of the i
th

 sire, and 
ci

P  the 

corresponding value for crossbreds. With unrelated sires, elements in the summation are 

independent, so that, 

)ˆvar(
pcA  = )var(

1

16
cpPP

N 
,  
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in which P  refers to the offspring of a single sire. Using 222)var( xyyxxy    (Equation B1), 

and substituting pPx  , cPy  , and 2
16

122 ),(cov
pcAcpxy PP    yields  
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in which )var( pP  and )var( cP  are the variances of the purebred and crossbred progeny 

averages of a sire, respectively. Variances of progeny averages are given by 
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where 2
c  denotes the common-litter variance, and 2

e  the residual variance. Thus, Equation 

A3 is used twice; once for )var( pP  using values for purebreds, and once for )var( cP  using 

values for crossbreds.  

 

)ˆvar(
2

pAσ  and )ˆvar(
2

cAσ : With two-way Anova, where dams are nested within sires, expected 

mean-squares are  

222
edamosireodsires nnnEMS   , 

22
edamodams nEMS   . 

Hence,  

od

damssires
sire

nn

MSMS 
2̂ . 

Using dfEMSMS /2)var( 2  and 0),cov( damsire MSMS  [16], it follows that 
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  ,  (A4) 

with expected mean squares and degrees of freedom given by 

222
errordamosireodsires nnnEMS   ,  

22
errordamodams nEMS   ,  

1Ndf sires ,  

)1(  ddams nNdf ,  

where  
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2
4

12
Asire   ,  

22
4

12
cAdam   ,   

22
2

12
eAerror   .  

Thus, Equation A4 is used twice; once for )ˆvar( 2

pA
 using values for purebreds, and once for 

)ˆvar( 2

cA
  using values for crossbreds.  

 

)ˆ,ˆcov(
2

ppc
AA
σσ  and )ˆ,ˆcov(

2

cpc
AA
σσ : To simplify the derivation, we introduce an effective 

number of sires for both purebred and crossbred performance, denoted peffN ,  and ceffN , . The 

effective number of sires is the number of sires with an infinitely large progeny group that 

would yield the same SE of the estimated additive genetic variance as the actual number of 

sires,  
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where )ˆvar( 2
A  is taken from Equation A4. Thus Equation A5 is used twice, once for peffN , , 

and once for ceffN , . When using this effective number, we can treat the estimated genetic 

variances as simple variances, 


effNeff

A P
N

σ 22 4
ˆ , 

where P  denotes the progeny average of a sire, and trait values are expressed relative to their 

mean (i.e., )0P . Since the estimated purebred-crossbred genetic covariance arises only 

from the sire-terms, i.e., does not involve damsMS  (see derivation of )ˆ,ˆcov( 22

cp AA σσ  below ), 

pcA
σ̂  depends on 1N rather than effN ,  
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Since terms of different sires are independent, this can be approximated by 
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where the covariance term now refers to a single sire. From Equation B3, it follows that 

),cov( 2
cpp PPP  ≈ 2

8
1

ppc AA  . This uses )var( pP  = 2
4

1
PA

 , which is appropriate because of the 

division by peffN , , rather than 1N . Substituting this result into the expression for 

)ˆ,ˆcov( 2

ppc AA   yields 
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Analogously, 
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)ˆ,ˆcov(
22

cp AA σσ : Using 
od

damssires
A

nn

MSMS
σ


 4ˆ2 , it follows that  

)ˆ,ˆcov( 22

cp AA σσ  = ),cov(16
,,,,
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damscsiresc
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Using  ),cov( damssires MSMS  = 0 [16], and ),cov( ,, damscdamsp MSMS  = 0 since purebreds and 

crossbreds descend from different dams, it follows that  

)ˆ,ˆcov( 22

cp AA σσ  = ),cov(16
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Next, from )1/(  NSSMS siressires  and 

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N
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2)( , it follows that  
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Since different sires are assumed unrelated,  
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where the covariance now refers to a single sire. Using Equation B2,  

 2
,

2
, )(,)(cov csirecpsirep PPPP   = ),(cov2 ,,

2
sirecsirep PP  = 
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Hence,  
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In summary, )ˆ( pcrSE  follows from substituting Equations A2, A4, A6 and A7 into Equation 

A1, and taking the square root. The resulting expression is complex and therefore not given.  

The result can be simplified considerably by using the hunch that the effective number 

of sires is determined by the square of reliability, 

)1(4  NNeff  ,     (A8) 

where 4  is the square of the reliability of the sire EBVs,  

)var(

2
4

1
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P
A  .      (A9) 

Substituting Equation A8 into the expression for )ˆ( pcrSE  following from Equations A1 

through A7 yields Equation 1. Equation A8 derives from the idea that reliability summarizes 

the quality of the sire EBV as a measure of the true sire breeding value. In our case, interest is 

in the variance of the variance, so we are on the quadratic scale, which suggests the use of 4

. Below is a formal derivation of Equation A8 for a simplified case.   

 

Equation A8: A rigorous proof of Equation A8 for a nested full-half sib scheme is very 

tedious. We, therefore, only give a proof for a non-nested half-sib design with N sires, each 

with n offspring, without full-sib groups within half sib families. The stochastic simulations 

confirm that the result extends by analogy to the nested full-half sib design with common-

litter effects. For a half sib design, the trait model is  

P = s + e. 

The ANOVA is given by 

22
essires nEMS   , 

2
eerrorEMS  . 

Hence,  
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Following the derivation used for Equation A4,  
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The last step assumes that, in the third line, the second term is usually much smaller than the 

first term. (This is reasonable unless n is very small and h
2
 is small; Hence, unless 2  is very 

small). The squared reliability of sire EBVs equals  
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Finally, using Equation A5, and substituting 
eff

s
s

N

4
2 2
)ˆvar(


   yields Equation A8. 

 

Part B 

Though expressions derived here can also be found in multivariate texts, they are included for 

reasons of completeness. In the following, x and y are bivariate normal variates,   denotes 

the mean, 2  the variance, xy  the covariance,   the correlation coefficient, yxb  the 

regression coefficient of y on x, and E the expectation. 

 

Var(xy) By the law of total variance,  

   )|(Evar)|var(E)var( xxyxxyxy  . 

In the first term, )|var( xxy  = 222 )1( yx  , so that  

 )|var(E xxy  = 2222 )1)(( yxx   . 
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In the second term, )|(E xxy  = )]([ xyxy xbx   . Thus  )|(Evar xxy  = 22
xy  + 

)](var[2
xyx xxb   + )](,cov[2 xyxy xxxb   . Using the non-central moments of the normal 

distribution, it follows that )](var[ xxx   = 422 2 xxx   , and that )](,cov[ xxxx   = 2
xx . 

Collecting terms,  

 )|(Evar xxy  = xyyx
x

xyx
xyxy 




 22

2

22
222  . 

Summing the first and second term yields  

2222222 2)var( xyxyyxyxxyyxxy   .   (B1) 

 

Cov(x
2
,y

2
)  For x  = y  = 0,  

),cov( 22 yx   =  )(E)(E)(E 2222 yxyx    =  2222 )(E yxyx  . 

The first term follows from conditioning on x, )(E 22yx  = )]|(E[E 22 xyx , in which 

exbxy yx | , with 0),cov( exbyx  and 0)(E e . Thus )|(E 2 xy  = 2222 )1( yyxxb  . 

Taking the expectation over x, )]|(E[E 22 xyx  = )(E 42 xbyx  + 222 )1( yx . Substituting 

44 3)(E xx   yields )]|(E[E 22 xyx  = 2222 yxxy   . Finally, subtracting the second term yields  

),cov( 22 yx  = 22 xy .     (B2) 

 

Cov(x
2
,xy) : For x  = y  = 0,  

),cov( 2 xyx  = )(E)(E)(E 23 xyxyx   = xyxyx  23 )(E  . 

The first term follows from conditioning on x, )(E 3yx  = )]|(E[E 3 xyx . Since xbxy yx]|[E

, )]|(E[E 3 xyx  = )(E 4xbyx . Substituting 44 3)(E xx   yields 223 xyx . Finally, subtracting the 

second term yields  

),cov( 2 xyx  = xyx 22 .    (B3) 

 


