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Abstract

Background: The accuracy of genomic prediction depends largely on the number of animals with phenotypes and
genotypes. In some industries, such as sheep and beef cattle, data are often available from a mixture of breeds,
multiple strains within a breed or from crossbred animals. The objective of this study was to compare the accuracy
of genomic prediction for several economically important traits in sheep when using data from purebreds,
crossbreds or a combination of those in a reference population.

Methods: The reference populations were purebred Merinos, crossbreds of Border Leicester (BL), Poll Dorset (PD) or
White Suffolk (WS) with Merinos and combinations of purebred and crossbred animals. Genomic breeding values
(GBV) were calculated based on genomic best linear unbiased prediction (GBLUP), using a genomic relationship
matrix calculated based on 48 599 Ovine SNP (single nucleotide polymorphisms) genotypes. The accuracy of GBV
was assessed in a group of purebred industry sires based on the correlation coefficient between GBV and accurate
estimated breeding values based on progeny records.

Results: The accuracy of GBV for Merino sires increased with a larger purebred Merino reference population, but
decreased when a large purebred Merino reference population was augmented with records from crossbred
animals. The GBV accuracy for BL, PD and WS breeds based on crossbred data was the same or tended to decrease
when more purebred Merinos were added to the crossbred reference population. The prediction accuracy for a
particular breed was close to zero when the reference population did not contain any haplotypes of the target
breed, except for some low accuracies that were obtained when predicting PD from WS and vice versa.

Conclusions: This study demonstrates that crossbred animals can be used for genomic prediction of purebred
animals using 50 k SNP marker density and GBLUP, but crossbred data provided lower accuracy than purebred data.
Including data from distant breeds in a reference population had a neutral to slightly negative effect on the accuracy
of genomic prediction. Accounting for differences in marker allele frequencies between breeds had only a small effect
on the accuracy of genomic prediction from crossbred or combined crossbred and purebred reference populations.
Background
Genomic prediction refers to the prediction of genetic
merit of selection candidates based on genome-wide
marker genotypes using information from a reference
population of individuals with both phenotypes and ge-
notypes [1]. Accuracy of genomic prediction depends
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largely on the linkage disequilibrium (LD) between
markers and QTL (quantitative trait loci) and the number
of animals in the reference population [2,3]. Theoretical
predictions of GBV (genomic breeding values) accuracy
usually consider homogenous populations, whereas in
many cases, such as in sheep and beef cattle breeding pro-
grams, data are available from different breeds, multiple
strains within a breed and also from crossbred animals.
According to theory, the improvement in accuracy of

GBV for a specific breed based on using data from other
breeds or crossbreds depends on the consistency of
linkage phase between QTL and genetic markers across
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breeds and also on the similarity of QTL effects between
breeds. Simulation results have shown either some [4] or
no significant increase [5,6] in prediction accuracy for a
single breed when using a combined multi-breed refer-
ence population. For a given reference population size,
Ibanez -Escriche et al. [7] reported similar prediction ac-
curacy for a single breed when using either purebreds or
crossbreds in a reference population, while Toosi et al.
[5] reported slightly lower prediction accuracy from
crossbreds than purebreds. These simulation results de-
pend on the assumptions made about the underlying
genetic model and the degree of LD that exists within
and across breeds. Analysis of real data has shown that
information from other breeds generally does not in-
crease the prediction accuracy of a given breed at a 50 k
marker density in dairy cattle [8-10], beef cattle [11] or
sheep [12,13]. These results suggest that LD between
markers and putative QTL mostly does not extend
across breeds at a 50 k marker density.
In a combined purebred and crossbred reference

population, genomic predictions for a particular breed
can be based on purebred data, on crossbred data, or on
a combination of these. The question is how the use of
data from multiple breeds affects prediction accuracies
for a given breed. Adding information from unrelated
breeds could have no impact, but the effect could also
be negative, as marker effects may be averaged across
breeds and marker allele frequencies may differ between
breeds. The latter could also affect genomic relationships
that are derived for genomic prediction. Furthermore,
the contribution of using only crossbred animals for
genomic prediction, which in some cases may be the
only source of information, on the accuracy of genomic
prediction of purebred individuals has not been ad-
dressed using real data.
The objective of this study was to assess empirically

and systematically the accuracy of genomic prediction
based on purebred and crossbred data. The accuracy of
genomic prediction was compared when using data from
purebreds, from crossbreds, or from a combination of
purebreds and crossbreds. Furthermore, we studied the
effect of accounting for differences in marker allele fre-
quencies between breeds on the accuracy of genomic
prediction.

Methods
Reference population structure and phenotypic data
The reference populations were data subsets extracted
from a large reference population. The total reference
population consisted of two research datasets known as
the Sheep Cooperative Research Centre Information Nu-
cleus Flock (INF) and the Sheep Genomics Flock (SGF).
The INF consisted of nine flocks located across different
sheep production regions in Australia that were linked
by using common sires through artificial insemination.
The SGF was a single research flock located in southern
New South Wales, Australia. Both flocks used around
40% of sires from terminal breeds (Poll Dorset: PD and
White Suffolk: WS), 20% sires from maternal breeds
(Border Leicester: BL) and 40% Merino sires. Most dams
used were purebred Merino (80%) or F1 crosses between
Merino and BL (20%). The purebred Merino dams were
used mainly in crosses with purebred Merino sires or BL
sires. The crossbred dams were mated to PD or WS
sires. As a result, the majority of progeny data were
crossbreds and the main breed of purebred progeny was
Merino. The complete reference population consisted of
10 772 animals genotyped and measured for the traits
evaluated in this study. These animals were from 326 pa-
ternal half-sib families that varied in size from 10 to 216.
Flock management and phenotypic recording schedules
were similar across flocks. Furthermore, all data was
acquired by “Sheep Cooperative Research Centre” and
“Sheep Genomics Australia” under protocols that all had
obtained appropriate ethical approval. Results of geno-
mic prediction based on complete reference population
are available in [13]. More information on the design of
the INF and SGF research flocks is available in Van der
Werf et al. [14] and White et al. [15], respectively.
Previous studies based on this data used the complete

reference population consisting of multiple breeds
[12,13]. Our current study was based on well-designed
subsets of that data to allow clear comparisons of refer-
ence populations based on purebreds and combinations
of purebred and two-breed crosses. We used a reference
population of 1000, 2000 or 3000 purebred Merinos of
both sexes, which were randomly chosen from a total of
more than 4500 purebred Merinos across all resource
flocks. We added data on crossbred progeny of BL sires
and Merino dams (BL*M) or on crossbreds of PD and
Merino dams (PD*M) or on crossbreds of WS sires and
Merino dams (WS*M). There were not enough purebred
BL, PD or WS animals to establish a purebred reference
population for those breeds and subsets of crossbred
progeny had maximum proportions of haplotypes from
BL, PD or WS breeds. Breed proportions were derived
using a deep pedigree (four to six generations) and were
fitted in the analysis model for genomic prediction. The
criterion for selecting animals as crossbreds in the refer-
ence population was to have breed proportions of at
least 45% for BL, 45% for PD, or 35% for WS. The
threshold for WS crossbreds was somewhat lower to ob-
tain sufficient numbers of animals in this group.
The traits investigated were post-weaning weight

(PWWT), post-weaning scanned eye muscle depth (PW-
EMD) and post-weaning scanned fat (PW-FAT) mea-
sured between 125 and 300 days of age (standard devi-
ation or SD = 52.4). Purebred Merinos were generally



Table 2 Summary of the accuracy of ASBV in the
validation population across traits

Breed Size Minimum Maximum Average SD

Poll Dorset 72 0.70 0.98 0.92 0.07

White Suffolk 140 0.64 0.98 0.86 0.09
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measured at an older age. Measurement of traits was
performed based on defined recording schedules for the
SGF and INF projects [14,15]. Records more than 4 SD
from the phenotypic mean of all records were removed.
Table 1 shows averages of phenotypic performance for
the Merino and crossbred animals.
Border Leicester 54 0.73 0.98 0.90 0.09

Merino 175 0.70 0.98 0.92 0.06

ASBV = Australian Breeding Value.
Genotypes and validation population
A separate population was used to evaluate the accuracy
of genomic predictions (Table 2). These were purebred
industry sires with accurate estimated breeding values
(Australian Sheep Breeding Values, ASBV) based on
phenotypes on their progeny. ASBV were estimated
based on BLUP (best linear unbiased prediction) using
phenotypic and pedigree information of industry flocks
and excluding phenotypic information from the refer-
ence population. A similar fitting model was used in the
calculation of ASBV. The minimum required accuracy
(as derived from the prediction error variance and repre-
senting the correlation between predicted and true
breeding value) of an industry sire’s ASBV to be in-
cluded in the validation population was 0.64 for WS and
0.70 for other breeds. Table 2 shows the minimum, max-
imum, average and standard deviation of the accuracy of
the ASBV for different breeds.
Animals from the reference and validation populations

were genotyped using the 50 k Ovine SNP chip (Illumina
Inc., SanDiego, CA, USA). The total number of SNP ge-
notypes provided by this chip was 54 241, which de-
creased to 48 599 after applying quality control on
genotyping data. Individual SNP genotype records were
removed for call rates less than 95%, GenCal (GC)
scores less than 0.6, and all genotypes for a given SNP
were removed if the heterozygosity for the SNP deviated
more than 3 SD from the population average heterozy-
gosity, if the minor allele frequency was less than 0.01,
for SNPs located on chromosomes X and Y and for
SNPs that significantly deviated from Hardy-Weinberg
equilibrium (p < 10−15). Furthermore, an individual sam-
ple was removed if the correlation of the genotypes
(coded 0, 1 or 2 per locus) with another sample was
equal or greater than 0.99. Following quality control,
Table 1 Phenotypic means and standard deviations (in
parenthesis) of traits for crossbred and purebred animals

Trait BL*Merino1 PD*Merino2 WS*Merino3 Merino

PWWT 44.1 (8.47) 46.3 (7.56) 46.5 (7.32) 36.6 (7.62)

PW-EMD 24.9 (4.09) 28.2 (4.56) 26.6 (4.17) 20.9 (4.03)

PW-FAT 3.31 (1.36) 3.22 (1.30) 3.19 (1.22) 2.44 (0.97)
1BL*Merino = crossbreds of Border Leicester and Merino, 2 PD*Merino = crossbreds
of Poll Dorset and Merino, 3 WS*Merino = crossbreds of White Suffolk and Merino.
PWWT = post-weaning weight, PW-EMD =post-weaning scanned eye muscle
depth, PW-FAT = post-weaning scanned fat.
missing SNP genotypes within an animal were imputed
using the Beagle software program [16].
Accuracies for GBV were calculated based on the cor-

relation between GBV and ASBV for each trait in the
validation population, separately for each breed
(within-breed genomic prediction). Differences in ac-
curacies resulting from different reference populations
were tested using the Z-test statistic following [17].

Statistical methods
GBV were calculated based on genomic best linear un-
biased prediction (GBLUP), replacing the pedigree-based
numerator relationship matrix with a genomic relationship
matrix [18,19] based on marker genotypes. The following
linear model was fitted using ASReml-3 software [20].

y ¼ Xbþ Z1gþWw þ Z1Qqþ Z2sþ e

In this model, y is a vector of phenotypes, b is a vector
of fixed effects, g is a vector of random additive genetic
effects, w is a vector of random maternal effects (fitted
only for PWW), q is a vector of breed effects, s is a vec-
tor with sire by flock interaction effects and e is a vector
of random residual effects. X, Z1 and W and Z2 are inci-
dence matrices relating fixed, additive genetic, maternal,
and sire by flock interaction effects to phenotypes. Q is
a matrix with breed proportions for each animal. All
random effects were assumed identically and independ-
ently distributed except for g, which was assumed dis-

tributed as: g e N 0;Gδ2g
� �

; where G is a genomic

relationship matrix and δ2g is the additive genetic vari-

ance. The fixed effects in the model were birth type,
rearing type, gender, age at measurement, weight at
measurement (fitted only for PW-EMD and PW-FAT)
and contemporary group, which was defined as a cohort
of site x birth year x management group, i.e. a group of
lambs raised together in a flock.
The genomic relationship matrix (GRM) used in

GBLUP was calculated according to two methods,
using Van Raden’s algorithm [21]. In the first method
(G1), the GRM was calculated based on genotypes
and the observed marker allele frequencies of all
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animals in the reference population based on the
following equation: G1 = ZZ′/2 ∑ (pj)(1 − pj). In this
equation Z =Mij − 2pj, Mij is the number of the
second allele carried by animal i for SNP j, i.e.
marker genotypes were represented as 0, 1 and 2,
and pj is the frequency of the second allele for
SNP j.
In the second method (G2), the GRM was calculated

based on haplotypes and using allele frequencies that per-
tain to the breed of each parental haplotype, to take into
account different marker allele frequencies between breeds
in crossbred data. We used crossbred data only on animals
whose parents were more than 97% purebred, using infor-
mation from a very deep pedigree. A haplotype was consid-
ered as all SNP alleles inherited from one parent. G2 was
calculated based on a gametic model version of Van
Table 3 Accuracy of genomic prediction for post-weaning we
using two genomic relationship matrices (G1 and G2)

Reference population
Breed proportion (%)
(number of haplotypes)1

Type Size BL Merino

(1) = Purebred Merino 1000 0.0 (0) 100 (200

(2) = Purebred Merino 2000 0.0 (0) 100 (400

(3) = Purebred Merino 3000 0.0 (0) 100 (600

BL*Merino 1514 50.7 (1535) 47.2 (143

BL*Merino + (1) 2514 30.5 (1535) 68.2 (343

BL*Merino + (2) 3514 21.8 (1535) 77.2 (543

BL*Merino + (3) 4514 17.0 (1535) 82.3 (743

Type Size PD Merino

(1) = Purebred Merino 1000 0.0 (0) 100 (200

(2) = Purebred Merino 2000 0.0 (0) 100 (400

(3) = Purebred Merino 3000 0.0 (0) 100 (600

PD*Merino 1847 50.1 (1850) 36.4 (673

PD*Merino + (1) 2847 32.5 (1850) 58.7 (167

PD*Merino + (2) 3846 24.0 (1850) 69.4 (266

PD*Merino + (3) 4847 19.1 (1850) 75.7 (366

Type Size WS Merino

(1) = Purebred Merino 1000 0.0 (0) 100 (200

(2) = Purebred Merino 2000 0.0 (0) 100 (400

(3) = Purebred Merino 3000 0.0 (0) 100 (600

WS*Merino 1011 38.3 (773) 35.2 (711

WS*Merino + (1) 2011 19.2 (773) 67.4 (271

WS*Merino + (2) 3011 12.8 (773) 78.2 (471

WS*Merino + (3) 4011 9.6 (773) 83.7 (671

BL = Border Leicester, PD = Poll Dorset, WS =White Suffolk, G1 = single population
matrix, accuracies within columns and within breed blocks are significantly differen
2 × population size × breed proportion.
Raden’s algorithm [22], using G2 = (G21 +G22)/2 in which
G21 and G22 refer to the GRM calculated based on each
parental haplotype. Matrices G21 and G22 were calculated

using the following equation: G2i ¼ ZiZ′
i=
X

pj
� �

1−pj
� �

;

where G2i refers to the GRM based on the paternal (i = 1)
or maternal (i = 2) haplotype, Zi =Mij − pj, and Mij is the
element of the incidence matrix (0/1) indicating the allele
inherited for SNP j in the paternal or maternal haplotype
for animal i. Matrices G2i were calculated using average
frequencies of alleles present in that haplotype. To calcu-
late G2, we derived phased genotypes using Beagle soft-
ware program [16] or a pedigree-based software program
that uses the half-sib structure of the data [23]. The latter
algorithm is expected to derive the parental origin of hap-
lotypes more reliably than Beagle.
ight (PWWT) based on different reference populations,

GBV accuracy

G1 G2

BL Merino BL Merino

0) −0.02 a 0.53 b 0.00 a 0.53 b

0) −0.04 a 0.57 bc −0.01 a 0.57 bc

0) −0.06 a 0.59 c −0.03 a 0.59 c

0) 0.31 c 0.41 a 0.31 b 0.41 a

0) 0.27 bc 0.48 bc 0.27 b 0.49 bc

0) 0.26 b 0.51 bc 0.27 b 0.50 bc

0) 0.26 b 0.54 bc 0.27 b 0.51 bc

PD Merino PD Merino

0) −0.00 a 0.53 c 0.00 a 0.53 b

0) −0.02 a 0.57 cd −0.01 a 0.57 cd

0) −0.04 a 0.59 d −0.03 a 0.59 d

) 0.28 b 0.36 a 0.29 c 0.36 a

1) 0.23 b 0.42 ab 0.23 b 0.41 a

9) 0.22 b 0.47 b 0.23 b 0.42 a

9) 0.23 b 0.52 b 0.22 b 0.52 b

WS Merino WS Merino

0) −0.01 a 0.53 b 0.00 a 0.53 c

0) −0.02 a 0.57 bc −0.01 a 0.57 cd

0) −0.02 a 0.59 c −0.03 a 0.59 d

) 0.23 b 0.38 a 0.24 b 0.33 a

1) 0.23 b 0.47 b 0.24 b 0.44 b

1) 0.23 b 0.50 b 0.24 b 0.48 bc

1) 0.23 b 0.53 b 0.24 b 0.56 cd

genomic relationship matrix, G2 = combined population genomic relationship
t when letter superscripts differ (p < 0.05); 1number of haplotypes calculated as



Table 4 Accuracy of genomic prediction for post-weaning scanned eye muscle depth (PW-EMD) based on different
reference populations, using two genomic relationship matrices (G1 and G2)

Reference population
Breed proportion (%)
(number of haplotypes)1

GBV accuracy

G1 G2

Type Size BL Merino BL Merino BL Merino

(1) = Purebred Merino 1000 0.0 (0) 100 (2000) 0.00 a 0.23 a 0.00 a 0.23 b

(2) = Purebred Merino 2000 0.0 (0) 100 (4000) 0.00 a 0.33 b −0.01 a 0.33 c

(3) = Purebred Merino 3000 0.0 (0) 100 (6000) −0.01 a 0.34 b −0.01 a 0.34 c

BL*Merino 1602 52.0 (1661) 41.6 (1332) 0.17 b 0.18 a 0.19 b 0.17 a

BL*Merino + (1) 2602 31.9 (1661) 64.0 (3332) 0.16 b 0.21 a 0.19 b 0.24 b

BL*Merino + (2) 3602 23.1 (1661) 73.9 (5332) 0.16 b 0.27 b 0.17 b 0.25 b

BL*Merino + (3) 4602 18.1 (1661) 79.6 (7332) 0.16 b 0.33 b 0.18 b 0.26 b

Type Size PD Merino PD Merino PD Merino

(1) = Purebred Merino 1000 0.0 (0) 100 (2000) 0.00 a 0.23 b 0.00 a 0.23 a

(2) = Purebred Merino 2000 0.0 (0) 100 (4000) −0.01 a 0.33 cd −0.01 a 0.33 b

(3) = Purebred Merino 3000 0.0 (0) 100 (6000) −0.01 a 0.34 d −0.01 a 0.34 b

PD*Merino 1890 50.1 (1893) 33.7 (1273) 0.08 b 0.15 a 0.07 b 0.19 a

PD*Merino + (1) 2890 32.7 (1893) 56.6 (3273) 0.06b 0.22 b 0.07 b 0.30 b

PD*Merino + (2) 3890 24.3 (1893) 67.8 (5273) 0.06 b 0.28 c 0.08 b 0.33 bc

PD*Merino + (3) 4890 19.3 (1893) 74.4 (7273) 0.06 b 0.35 d 0.07 b 0.36 c

Type Size WS Merino WS Merino WS Merino

(1) = Purebred Merino 1000 0.0 (0) 100 (2000) 0.00 a 0.23 b 0.00 a 0.23 b

(2) = Purebred Merino 2000 0.0 (0) 100 (4000) −0.02 a 0.33 c −0.01 a 0.33 c

(3) = Purebred Merino 3000 0.0 (0) 100 (6000) −0.02 a 0.34 c −0.01 a 0.34 c

WS*Merino 1257 45.0 (1331) 26.2 (687) 0.05 b 0.12 a 0.08 b 0.11 a

WS*Merino + (1) 2257 25.0 (1331) 58.7 (2657) 0.05 b 0.17 a 0.08 b 0.21 b

WS*Merino + (2) 3257 17.3 (1331) 71.4 (3657) 0.04 b 0.23 b 0.08 b 0.22 b

WS*Merino + (3) 4257 13.3 (1331) 78.1 (5657) 0.05 b 0.27 b 0.06 b 0.23 b

BL = Border Leicester, PD = Poll Dorset, WS =White Suffolk, G1 = single population genomic relationship matrix, G2 = combined population genomic relationship
matrix, accuracies within columns and within breed blocks are significantly different when letter superscripts differ (p < 0.05); 1number of haplotypes calculated as
2 × population size × breed proportion.
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Results
Tables 3, 4 and 5 show the accuracies of genomic predic-
tion for the validation sires based on different reference
populations for PWWT, PW-EMD and PW-FAT, re-
spectively. The accuracies are reported for Merinos and
the other main breeds and also for the two methods
of calculating the GRM (G1 and G2). Accuracies
based on G2 using the two different phasing ap-
proaches were nearly identical. Thus, only results for
G2 based on Beagle haplotypes are shown.

Accuracy of genomic prediction for Merino sires
The GBV accuracy of Merino sires increased consist-
ently with the size of the purebred Merino reference
population for all three traits (Tables 3, 4 and 5). The
GBV accuracy of Merino sires was higher for PWWT
(ranging from 0.53 to 0.59) than for the other two traits
(ranging from 0.23 to 0.45 for PW-EMD and PW-FAT).
The GBV accuracy of Merino sires when predicted
from crossbred Merinos increased when data from pure-
bred Merinos were added to the reference population.
However, the accuracies were significantly lower com-
pared to prediction from a similar number of purebred
Merino haplotypes. For example, the GBV accuracy of
PWWT based on 1000 to 3000 purebred Merinos
ranged from 0.53 to 0.59 but ranged from only 0.41
to 0.54 when based on crossbred Merinos combined
with those purebred Merinos (Table 3). This trend
was observed for all three traits investigated but the
difference was largest for PW-FAT. None of the traits
had significant differences in GBV accuracies for
Merino sires when prediction was based on different
types of crossbred reference populations (BL*Merino,
PD*Merino or WS*Merino) when the number of Merino
breed haplotypes available in the reference population
was similar. Accuracies also were not different for the



Table 5 Accuracy of genomic prediction for post-weaning scanned fat (PW-FAT) based on different reference
populations, using two genomic relationship matrices (G1 and G2)

Reference population
Breed proportion (%)
(number of haplotypes)1

GBV accuracy

G1 G2

Type Size BL Merino BL Merino BL Merino

(1) = Purebred Merino 1000 0.0 (0) 100 (2000) 0.00 a 0.24 b 0.00 a 0.31 bc

(2) = Purebred Merino 2000 0.0 (0) 100 (4000) −0.01 a 0.35 d 0.00 a 0.40 c

(3) = Purebred Merino 3000 0.0 (0) 100 (6000) −0.01 a 0.45 e 0.00 a 0.48 d

BL x Merino 1606 52.0 (1670) 41.6 (1335) 0.18 b 0.17 a 0.20 b 0.14 a

BL x Merino + (1) 2606 32.0 (1670) 63.9 (3335) 0.15 b 0.23 b 0.17 b 0.19 a

BL x Merino + (2) 3606 23.1 (1670) 73.9 (5335) 0.14 b 0.32 c 0.17 b 0.28 b

BL x Merino + (3) 4606 18.1 (1670) 79.6 (7335) 0.14 b 0.40 d 0.17 c 0.36 c

Type Size PD Merino PD Merino PD Merino

(1) = Purebred Merino 1000 0.0 (0) 100 (2000) 0.00 a 0.24 b 0.00 a 0.31 bc

(2) = Purebred Merino 2000 0.0 (0) 100 (4000) −0.02 a 0.35 cd 0.00 a 0.40 d

(3) = Purebred Merino 3000 0.0 (0) 100 (6000) −0.03 a 0.45 e 0.00 a 0.48 e

PD x Merino 1891 50.1 (1894) 33.7 (1274) 0.15 b 0.15 a 0.14 b 0.14 a

PD x Merino + (1) 2891 32.7 (1894) 56.6 (3274) 0.14 b 0.19 a 0.15 b 0.24 b

PD x Merino + (2) 3891 24.3 (1894) 67.7 (5274) 0.14 b 0.30 c 0.14 b 0.29 c

PD x Merino + (3) 4891 19.3 (1894) 74.4 (7274) 0.14 b 0.38 d 0.14 b 0.32 c

Type Size WS Merino WS Merino WS Merino

(1) = Purebred Merino 1000 0.0 (0) 100 (2000) 0.00 a 0.24 b 0.00 a 0.31 c

(2) = Purebred Merino 2000 0.0 (0) 100 (4000) 0.01 a 0.35 c 0.00 a 0.40 d

(3) = Purebred Merino 3000 0.0 (0) 100 (6000) −0.02 a 0.45 d 0.00 a 0.48 e

WS x Merino 1258 45.9 (1153) 26.2 (658) 0.07 b 0.13 a 0.07 b 0.16 a

WS x Merino + (1) 2258 25.5 (1153) 58.8 (2658) 0.07 b 0.19 b 0.07 b 0.22 b

WS x Merino + (2) 3258 17.7 (1153) 71.5 (4658) 0.06 b 0.27 bc 0.05 b 0.28 c

WS x Merino + (3) 4258 13.3 (1153) 78.1 (6658) 0.06 b 0.33 c 0.06 b 0.33 c

BL = Border Leicester, PD = Poll Dorset, WS =White Suffolk, G1 = single population genomic relationship matrix, G2 = combined population genomic relationship
matrix, accuracies within columns and within breed blocks are significantly different when letter superscripts differ (p < 0.05); 1number of haplotypes calculated as
2 × population size × breed proportion.
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two GRM methods. There were some differences in
accuracy between G1 and G2 for Merino sires based
on prediction from combined purebred and crossbred
Merinos, but there was no consistent pattern to these
differences.

Accuracy of genomic prediction for BL, PD and WS sires
The GBV accuracy of BL, PD and WS sires was gener-
ally highest when the prediction was based on cross-
breds only (Tables 3, 4 and 5). Note that there were no
purebred animals in the reference populations for these
breeds. For PWWT in BL sires with the G1 matrix,
adding data from purebred Merinos to crossbred data
resulted in a significant reduction in accuracy, from
0.31 to 0.26 (Table 3). A reduction of similar magni-
tude, from 0.29 to 0.22, was also observed for PD sires
with the G2 matrix (Table 3), while there was only a
small but significant reduction in accuracy for PW-FAT
in BL sires, from 0.20 to 0.17 (Table 5). Apart from
these cases, there was no significant reduction in accur-
acy when adding purebred Merino data (Tables 3, 4,
and 5). Accuracies for BL, PD and WS sires were close
to 0 for all traits when genomic prediction was based
on purebred Merinos only (Tables 3, 4 and 5).
Figure 1 shows a plot of the first and second principal

components from the genomic relationship matrix (G1),
displaying values only for purebred Merino, BL, PD and
WS validation sires. The figure shows that genetically
the Merino breed is quite distinct from the other breeds
(BL, PD and WS), while the genetic differences between
PD and WS are small.

Discussion
The objective of this study was to compare the accuracy
of genomic prediction for purebred sires based on pure-
bred, crossbred, or combined purebred and crossbred



Figure 1 Plot of principal components (PC) 1 and 2 based on 50 k dense SNP marker genotypes of four Australian sheep breeds.
BL = Border Leicester, PD = Poll Dorset, WS =White Suffolk, Mer = Merino.
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reference populations. The results showed higher accuracy
for predictions based on purebred data compared to cross-
bred data when the same number of haplotypes of that
breed was present in the reference population, and very
low to zero prediction accuracy when data was from an-
other breed. Furthermore, the prediction accuracy tended
to be the same or lower when data that contain haplotypes
from other breeds were added. Nevertheless the results
confirmed crossbreds of the target breed can be used in
genomic prediction of purebred animals which is useful
when purebred information is limited, or when the breed-
ing objective is to improve crossbred performance.
When predicting the GBV of purebreds, one would ex-

pect that data on crossbred animals of the target breed
would provide less information than the same amount of
data on purebreds from that breed, simply because the
crossbreds (at least first crosses) contain only half the
number of haplotypes of that breed. However, we found
the accuracy from crossbreds to be lower also after ac-
counting for the number of haplotypes, i.e. twice the num-
ber of crossbreds gave lower accuracy than purebreds.
This may be because the Merino sires of the purebred
Merino reference population are more related to the valid-
ation sires than the Merino ewes used as dams of cross-
breds and hence the paternal haplotypes in Merino
purebreds would be more informative in the prediction of
GBV of the validation sires than the same number of
maternal haplotypes in crossbreds. The mean and stand-
ard deviation of genomic relationships between paternal
Merino haplotypes and the Merino validation set were
0.012 and 0.026, respectively, compared to 0.004 and 0.023
for maternal haplotypes. In our data, the dams of animals
with records in the reference population were often breed-
ing ewes from research flocks, whereas the sires were gen-
erally selected based on their relevance for commercial
breeding flocks [14]. Another explanation could be that
effects of QTL are not the same in crossbreds as they are
in purebreds. Various studies have pointed out that the
correlation between purebred and crossbred performance
can be less than 1 due to dominance and allele frequency
differences between breeds [24,25]. In our study, we were
unable to distinguish between these two possible explana-
tions, since these two effects were confounded. However,
we expect that in many cases the paternal haplotypes were
more informative than the maternal haplotypes because
on average they were more closely related to the selection
candidates and data from n purebred animals would then
give a higher GBV prediction accuracy than data from 2n
crossbreds where only the maternal haplotypes contrib-
uted to the prediction of GBV of a breed.
The reduction in GBV accuracy after adding data from

another breed or from crossbreds to the reference popula-
tion could also be explained by differences in marker
effects between breeds as a result of differences in QTL-
marker phase due to lack of LD between breeds, differ-
ences in QTL allele frequencies or different QTL effects in
different breeds, in which the latter could possibly be also
due to dominance and epistatic effects. These factors could
lead to averaging of marker effects across breeds, resulting
in less additive genetic variation explained than when
effects are estimated within breed. Figure 1 shows Merinos
are genetically distant from maternal (BL) and terminal
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breeds (PD and WS), increasing the possibility that both
marker-QTL LD and QTL effects differ between Merino
and the other breeds. Figure 1 also shows that terminal
breeds are genetically closer to each other than to Merinos
and BL. These results are consistent with the small positive
prediction ability (with an accuracy of 0.08 for WS and of
0.12 for PD sires for PWW) we observed in an extra ana-
lysis based on prediction from crossbred PD*Merino and
WS*Merino, respectively.
Our results also showed that adding information from

crossbreds that include distant breeds to a purebred ref-
erence population can in some cases lead to reduced ac-
curacies. In addition to breeds having different QTL
effects and marker-QTL LD, this could be explained by
marker allele frequencies being different between breeds.
If the GRM is based on average allele frequencies across
breeds, then the genomic relationships within a breed
could change if the GRM is derived from a multi-breed
instead of the purebred population. Thus, rather than
unrelated individuals providing no information, as in
regular pedigree-based BLUP, adding animals from dif-
ferent breeds to a genomic evaluation could have a nega-
tive effect on accuracy. Figure 2 illustrates considerable
differences in allele frequencies between the Merino and
Border Leicester breeds. Using specific allele frequencies
according to breed-origin of haplotypes, as was used in
G2, could potentially alleviate this problem. However,
G2 on average provided similar prediction accuracies as
G1. Hence, using breed-specific allele frequencies in
constructing the GRM had a limited impact on predic-
tion accuracy. Makgahlela et al. [26] also reported no
differences in the accuracy of genomic evaluation when
adjusting the GRM for breed-specific allele frequency.
This may be because the majority of marker allele
frequencies are intermediate. The correlation between
elements of G1 and G2 was 0.94.
Our results, which are based on a 50 k marker density,

suggest that different marker effects were estimated when
using information from different breeds, which could be
Figure 2 Comparison of SNP marker allele frequencies between pure
Merinos and crossbred BL (b).
because of different marker-QTL LD or different QTL
effects between breeds. This was also inferred by Daetwy-
ler et al. [12] and Moghaddar et al. [13] based on analysis
of the complete reference population consisting of
multiple breeds. Results of this study confirm those find-
ings by using a more specific design with comparisons
based on only purebreds or purebreds combined with
two-breed crosses in the reference population. Results re-
ported for dairy and beef cattle [8-11] show no or a very
limited increase in accuracy of within-breed genomic pre-
diction when adding data from other breeds. It should be
noted that these studies usually refer to data on purebreds
from various breeds, whereas in our study we combined
purebred and crossbred data. Furthermore, the Bovine-
50 k SNP marker panel may provide different LD patterns
across dairy and beef cattle breeds than the Ovine-50 k
SNP chip does for sheep breeds. However, the general pat-
tern that emerges from these studies is that, based on 50 k
marker density genotypes, genomic predictions derived
from same-breed haplotypes can be informative for gen-
omic prediction of purebreds, whether they exist in pure-
breds or crossbreds, whereas haplotypes from distant
breeds provide no to very low information for genomic
prediction of animals from a given breed.
Marker panels with a higher density may provide

higher LD and may overcome the problem of different
marker-QTL LD between breeds. However, QTL effects
may still differ between breeds, and between purebreds
and crossbreds. Large numbers of phenotypes are re-
quired to estimate and test these differences.
The accuracy of genomic prediction in purebred Me-

rinos in this study was higher than theoretical predic-
tions using Goddard’s methods [3], assuming 1000 to
3000 purebred Merinos in the reference population
and an effective population size of 833 [27]. For ex-
ample, the accuracy of PWW based on predictions
from a reference population of 3000 Merinos was 0.59,
compared to theoretical values of accuracy between
0.25 and 0.30. This suggests that the effective size of
bred Merinos and purebred BL (a) and between purebred



Moghaddar et al. Genetics Selection Evolution 2014, 46:58 Page 9 of 10
http://www.gsejournal.org/content/46/1/58
the Merino population in our sample is lower than
833. However, estimating effective population size in a
breed like Merino sheep is problematic due to its het-
erogeneous nature and the existence of various strains
within the breed. We also observed that the increase in
accuracy from increasing the reference population was
lower than expected based on theoretical prediction, which
may also be explained by population substructures, includ-
ing families and strains with the Merino breed. Variation
between families and strains can be easily explained by
genomic information, although in many cases it can also
be estimated from pedigree. Substantial strain effects exist
within the Merino breed (varying from ultra-fine wool
types to strong wool and dual-purpose types), especially for
weight and wool traits. This additional variation due to
population substructure can inflate estimates of accuracy,
at least when they are interpreted as within-strain accuracy.
However, in this study, trends of the change in accuracy
from adding data from crossbreds, as reported in Tables 3,
4 and 5, were similar when strain effects were accounted
for in the calculation of the correlation between GBV and
progeny test ASBV in the validation set, suggesting that
differences in accuracy observed between different combi-
nations of animals in the reference set were not affected by
underlying population substructure.

Conclusions
The results of this study show zero to small negative effects
on genomic prediction accuracy in Australian sheep breeds
when data from distant breeds were included in the refer-
ence population used to develop genomic predictions. This
means that for predictions based on intermediate marker
density (50 k) and GBLUP, it is currently necessary to use
breed-specific reference populations. This problem might
decrease when marker panels with higher density are used.
However, information from crossbreds of the target breed
can be used in genomic prediction of purebred animals,
and this is particularly useful when there is limited infor-
mation on purebreds.
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