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Abstract

Simple cycles, also known as self-avoiding polygons, are cycles on graphs which

are not allowed to visit any vertex more than once. We present an exact formula

for enumerating the simple cycles of any length on any directed graph involving

a sum over its induced subgraphs. This result stems from an Hopf algebra,

which we construct explicitly, and which provides further means of counting

simple cycles. Finally, we obtain a more general theorem asserting that any Lie

idempotent can be used to enumerate simple cycles.
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1. Introduction

Counting simple cycles, that is cycles on graphs which do not visit any

vertex more than once, is a problem of fundamental importance with numerous

applications in many branches of mathematics. In view of the existing research,

this problem should be divided into two main subquestions. One concerns the

enumeration of "short" simple cycles with direct applications in the analysis of

real-world networks. The other, more related to enumerative combinatorics (see

e.g. [11, 17]), concerns the asymptotic growth of the number of simple cycles of

length ` on regular lattices as ` tends to infinity.
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As these two problems have been recognized for a long time, the strategies

implemented so far to solve them have been qualitatively different. The prac-

tical enumeration of short primes has been tackled via diverse algorithmic and

analytic methods, e.g. the inclusion-exclusion principle [1, 3, 15], recursive ex-

pressions of the adjacency matrix [16], sieves [2] or immanantal equations [5]. In

contrast, the asymptotic growth in the number of long simple cycles on regular

lattices has been mostly studied using probability theory [13, 17, 9].

In our view both problems can be treated with the same tools rooted in the

algebraic combinatorics of paths [12]. The literature of graph theory contains

many different approaches to defining paths on graphs as algebraic objects. A

particularly promising one comes from the partially commutative monoid for-

malism introduced in the 1960s by Cartier and Foata [4]. Within this framework

a path is seen as a word whose letters are the oriented edges of the graph. In the

present study we use this formalism to obtain an exact formula for enumerating

the simple cycles of any length via a sum over the induced subgraphs of a graph.

We then show that this formula stems from an Hopf algebra, which provides

further means of counting such cycles. Finally, these results are themselves sub-

sumed under a more general theorem asserting that any Lie idempotent can be

used to enumerate the simple cycles.

The remainder of this article is organized as follows. In section 2 we recall

the necessary background concerning Cartier and Foata’s formalism as well as

recent extensions of it. We proceed in section 3 by proving an exact formula for

counting the simple cycles relying on this framework. We then show in section

4 that this formula ultimately stems from an Hopf algebra and conclude with a

further generalisation to Lie idempotents in section 5.
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2. Background

Hikes were introduced in a seminal work by Cartier and Foata1 as a generali-

sation of cycles to possibly disconnected objects [4]. Relaxing the connectedness

condition, Cartier and Foata showed that hikes admit a simple description as

words on the alphabet of graph edges and provide a powerful partially commu-

tative framework for algebraic combinatorics on graphs. Recent developments

[10, 12] have shown that hikes are also words on the alphabet of simple cycles

of the graph. In this section we recall a few essential results pertaining to hikes.

Let G = (V,E) be a digraph with finite vertex set V = {v1, ..., vN} and

edge set E, which may contain loops. Let W = (ωij)i,j = 1,...,N represent the

weighted adjacency matrix of the graph, built by attributing a formal variable

ωij to every pair (vi, vj) ∈ V 2 and setting ωij = 0 whenever there is no edge

from vi to vj . In this setting, an edge is identified with a non-zero variable ωij .

A walk of length ` from vi to vj on G is a sequence p = ωii1ωi1i2 · · ·ωi`−1j of `

contiguous edges. The walk p is open if i 6= j and closed (a cycle) otherwise. A

walk p is simple if it does not cross the same vertex twice, that is, if the indices

i, i1, . . . , i`−1, j are mutually different, with the possible exception i = j if p is

closed. Self-loops ωii and backtracks ωijωji are simple cycles of lengths 1 and 2

respectively.

2.1. Hikes

We briefly recall the definition and main properties of hikes. We refer to [12]

for further details. Let P denote the set of simple cycles in G. Hikes are defined

as the partially commutative monoid H with alphabet P and independence

relation {(c, c′) ∈ P2 : V (c) ∩ V (c′) = ∅}. In less technical terms, a hike is a

finite sequence of simple cycles up to permutations of successive vertex-disjoint

cycles.

1In their original paper in french, Cartier and Foata use the term circuit which was later

changed to hike to avoid confusion with other objects in graph theory.
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Hikes form a partially commutative monoid, or trace monoid, when endowed

with the concatenation as multiplication and identity element 1 (the empty

hike). Throughout the paper, the concatenation of two hikes h, h′ shall be

denoted by h.h′ or simply hh′. If a hike h can be written as the concatenation

h = dd′ for d, d′ ∈ H, then we say that d (resp. d′) is a left-divisor (resp.

right-divisor) of h. Unless stated otherwise, a divisor d of h always refers to a

left-divisor and is denoted by d|h.

The prime elements in (H, .) are the simple cycles as they verify the prime

property: p|hh′ =⇒ p|h or p|h′. For this reason, the simple cycles composing a

hike h are called the prime factors of h. We emphasize that a prime factor may

not be a divisor.

A hike is self-avoiding if it does not visit the same vertex twice, i.e. if it

is composed of vertex-disjoint simple cycles. Equivalently, h is self-avoiding if

|V (h)| = `(h) where V (h) denotes the support of h (the set of the vertices it

crosses) and `(h) its length. By convention, the empty hike is self-avoiding since

it has zero length and empty support.

2.2. Formal series on hikes

The hike formalism is perfectly suited to describe the analytic properties

of the graph G via its labeled adjacency matrix W, defined by Wij := ωij if

(i, j) ∈ E and Wij := 0 otherwise. In particular, the labeled adjacency matrix

W preserves the partially commutative structure of the hikes provided that the

edges ωij are endowed with the commutation rule: ωijωi′j′ = ωi′j′ωij if i 6= i′

[12]. Thanks to this property, formal series on hikes can be represented as func-

tions of this matrix and manipulated via its analytical transformations. We

recall below some examples from [8, 12] illustrating these observations.

Example 2.1. The trace monoid H of hikes forms a partially ordered set, or

poset, when the hikes are given an order based on left-divisibility [12]. As casu-

ally discussed in [4], the characteristic function of this poset, i.e. the constant
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function ζ(h) = 1 for h ∈ H, is generated from the determinant of the inverse

of (I−W), more precisely

det
(
I−W

)−1
=
∑
h∈H

ζ(h)h =
∑
h∈H

h.

In this partially commutative context, det
(
I−W

)−1 can be defined formally as

the inverse of the hike formal series det
(
I−W

)
, we refer to [12] for the technical

details. The characteristic function is also the zeta function of the reduced

incidence algebra of H as per the now standard terminology introduced by G.

C. Rota [23], which explains the notation. This formula alone highlights the

importance of the hike poset H and its ability to encapsulate the information

on the graph structure via its labeled adjacency matrix W.

Example 2.2. A standard result in trace monoid theory states that the Möbius

function, that is the inverse of the zeta function, of such a monoid is expressed

as a series over words composed of different commuting letters, see for instance

[8]. For the trace monoid H, where different hikes commute if they are vertex-

disjoint, the Möbius function is given by

µ(h) =

 (−1)Ω(h) if h is self-avoiding

0 otherwise
, h ∈ H

where Ω(h) counts, with multiplicity, the number of prime factors of h ∈ H. The

Möbius function admits an expression involving the labeled adjacency matrix

W, namely

det(I−W) =
∑
h∈H

µ(h)h.

This relation has been discussed under many forms in the literature, see e.g.

[4, 6, 7, 12]. The immediate consequence on the divisors of a hike arises from

writing

1 = det(I−W).det(I−W)−1 =
∑
h∈H

µ(h)h.
∑
h∈H

h =
∑
h∈H

(∑
d|h

µ(d)

)
h. (1)

From this we deduce the Möbius inversion formula
∑

d|h µ(d) = 0 whenever

h 6= 1.
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Example 2.3. The hike von Mangoldt function arises from the trace of (I −

W)−1 − I,

Tr
(
(I−W)−1 − I

)
=
∑
h∈H

Λ(h)h.

The diagonal of (I−W)−1− I = W+W2 + ... only involves non-empty walks, for

which a contiguous representation can be put in one-to-one correspondence with

a starting vertex. Thus, Λ(h) counts the number of contiguous representations

of h, that is the number of ways to write h as a succession of contiguous edges

(in particular Λ(h) = 0 if h is not a walk). Remark that in a graph where all

simple cycles are disjoint, the number of contiguous representations of a closed

hike is Λ(h) = `(p) if h = pk for p a simple cycle and k ≥ 1 and Λ(h) = 0

otherwise. This highlights the relation with number theory discussed in [12]

where the von Mangoldt function, obtained from a log-derivative of the zeta

function, draws a parallel between the length of a hike and the logarithm of an

integer. An important consequence is the following expression of the length as

a product of the von Mangoldt function and the zeta function,∑
h∈H

Λ(h)h.
∑
h∈H

h =
∑
h∈H

(∑
d|h

Λ(d)

)
h =

∑
h∈H

`(h)h, (2)

which recovers after identification
∑

d|h Λ(d) = `(h) , h ∈ H.

Example 2.4. The hike Liouville function is defined by

λ(h) = (−1)Ω(h) , h ∈ H.

As in the number-theoretic version, the inverse of the Liouville function is the

absolute value of the Möbius function (see Proposition 3.10 in [12]). In the

graph context, the absolute value of the Möbius function attributes the value 1

to every self-avoiding closed hike and thus writes as the permanent of I + W:

perm(I + W) =
∑
h∈S

h =
∑
h∈H

|µ(h)|h =
1∑

h∈H λ(h)h
,

where S denotes the set of self-avoiding hikes. It is somewhat remarkable that

the inverse relation between λ and |µ|, which holds in the fully commutative

poset of the integers, is still verified in this more general partially commutative

framework.
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3. Counting primes via a convolution over induced subgraphs

Let G be the set of finite digraphs. For G = (V (G), E(G)) ∈ G, we say

that H = (V (H), E(H)) ∈ G is an induced subgraph of G (which we denote

by H ≺ G) if V (H) ⊆ V (G) and E(H) = E(G) ∩ V (H)2. If H ≺ G, then

G−H designates the subgraph of G induced by V (G) \ V (H). Let (A, .,+) be

an algebra, for two functions φ, ψ : G → A, the induced subgraph convolution

between φ and ψ is defined by

(φ ∗ ψ)[G] =
∑
H≺G

φ[H]ψ[G−H] , G ∈ G,

where the sum runs over all induced subgraphs of G including the empty graph

∅ and G itself. In this section, we investigate the induced subgraph convolution

between functions with values in the algebra R〈H〉 of formal series on hikes with

real coefficients. Examples of such functions arising from usual expressions of

the labeled adjacency matrix WH of a digraph H have been discussed in Section

2.2.

Remark 3.1. For all functions φ : G → R〈H〉 considered in this paper, the

formal series φ[H] only involves hikes h whose support V (h) lies in H. In other

words, the coefficient of h in φ[H] is zero whenever V (h) * V (H). Consequently,

the convolution φ ∗ ψ between two such functions φ, ψ is always commutative.

Lemma 3.1. For all G ∈ G,

∑
H≺G

det(−WH) perm(WG−H) = δ[G] :=

 1 if G = ∅

0 otherwise,

where we use the convention perm(W∅) = det(−W∅) = 1.

The function δ is the identity function for the induced subgraph convolution

∗, in view of φ ∗ δ = φ for all φ : G → R〈H〉. Thus, the lemma establishes that

the functions G 7→ perm(WG) and G 7→ det(−WG) are mutual inverse through

∗.
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Proof of Lemma 3.1. Recall that S is the set of self-avoiding hikes on G and let

SH denote the set of self-avoiding hikes with support V (H), for H ≺ G. Both

permanent and determinant have simple expressions in terms of self-avoiding

hikes.

det(−WH) =
∑
h∈SH

(−1)Ω(h)h and perm(WH) =
∑
h∈SH

h,

where we recall that Ω(h) is the number of simple cycles composing s. For a

self-avoiding hike s, each divisor d of s can be put in one-to-one correspondance

with the subgraph induced by its support. Thus,∑
H≺G

det(−WH)perm(WG−H) =
∑
H≺G

( ∑
h∈SH

(−1)Ω(h)h.
∑

h∈SG−H

h

)

=
∑
h∈SG

(∑
d|h

(−1)Ω(d)

)
h.

It remains to notice that for a self-avoiding hike h,
∑

d|h(−1)Ω(d) =
∑

d|h µ(d) =

1 if h = 1 and 0 otherwise, by Eq. (1).

Corollary 3.2. For all G ∈ G,∑
H≺G

perm(WH) det(I−WG−H) =
∑
H≺G

perm(I + WH) det(−WG−H) = 1.

Seeing these sums as convolutions makes the proof almost trivial.

Proof. First observe that, because S is the disjoint union of the SH for H ≺ G,

one has ∑
H≺G

perm(WH) =
∑
H≺G

∑
h∈SH

h =
∑
h∈S

h = perm(I + WG).

A similar observation can be made for det(I−WG),∑
H≺G

det(−WH) =
∑
H≺G

∑
h∈SH

(−1)Ω(h)h =
∑
h∈S

(−1)Ω(h)h = det(I−WG).

So, letting φ[H] = det(−WH), ψ[H] = perm(WH) and 1[H] = 1, the equations

of Corollary 3.2 read

ψ ∗ (φ ∗ 1) = 1 and φ ∗ (ψ ∗ 1) = 1.
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The result follows directly from Lemma 3.1, using the associativity and com-

mutativity of the convolution, e.g.

ψ ∗ (φ ∗ 1) = (ψ ∗ 1) ∗ φ = (ψ ∗ φ) ∗ 1 = δ ∗ 1 = 1.

We now derive an expression of the formal series of Hamiltonian cycles. In the

spirit of [18], we introduce the derivation operator D defined by

D
∑
h∈H

f(h)h =
∑
h∈H

`(h)f(h)h.

Theorem 3.3. Let PG denote the set of primes with support V (G), that is the

set of Hamiltonian cycles on G. Then

D
∑
p∈PG

p =
∑
H≺G

det(−WH)D perm(WG−H),

= −
∑
H≺G

perm(WH)D det(WG−H).

Proof. Let π[G] =
∑

p∈PG
p, the first equality of the theorem writes

Dπ = φ ∗Dψ.

Calculating explicitly φ ∗Dψ gives∑
H≺G

det(−WH)D perm(WG−H) =
∑
H≺G

( ∑
h∈SH

(−1)Ω(h)h.
∑

h∈SG−H

`(h)h

)
,

=
∑
h∈SG

h
∑
d|h

(−1)Ω(d)`
(h
d

)
.

The result follows from noting that
∑

d|h(−1)Ω(d)`(h/d) is none other than the

hike von Mangoldt function Λ(s) of Eq. (2). Since h is self-avoiding, Λ(h) is

equal to `(h) if h is connected and 0 otherwise. Thus,

(φ ∗Dψ)[G] =
∑
H≺G

det(−WH)D perm(WG−H) =
∑
p∈PG

`(p)p = Dπ[G].

For the second equality, simply observe that −ψ ∗Dφ = φ ∗Dψ −D(φ ∗ ψ) =

φ ∗Dψ −D1 = φ ∗Dψ.
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Remark 3.2. Because φ is the inverse of ψ, the relation Dπ = φ ∗Dψ suggests

an expression of π as a logarithm of ψ. This is indeed the case. Observe that

the k-times convolution

π∗k[G] := π ∗ · · · ∗ π︸ ︷︷ ︸
k times

[G] =
∑

(H1, ..., Hk)

π[H1] · · ·π[Hk],

writes as the sum over all k-partitions H1, ...,Hk of G (here, the order is impor-

tant meaning that there are k! partitions involving the subgraphs H1, . . . , Hk).

Thus, every spanning self-avoiding hike h is counted exactly once in the expo-

nentiation

exp∗(π[G]) =
∑
k≥0

1

k!
π∗k[G] = ψ[G].

This aspect originates from an Hopf algebraic structure, which we describe in

the next section.

The formal series of simple cycles (of any length) follows from the convolution

of π with the constant function 1,

Π[G] := (π ∗ 1)[G] =
∑
H≺G

π[H] =
∑
p∈P

p,

Because derivation and convolution with the constant are commuting operators,

we recover

DΠ = D(π ∗ 1) = Dπ ∗ 1 = (φ ∗Dψ) ∗ 1 = φ ∗D(ψ ∗ 1) = φ ∗DΨ,

where Ψ[G] = (ψ ∗ 1)[G] =
∑

H≺G perm(AH) = perm(I + AG). This gives the

following corollary to Theorem 3.3

Corollary 3.4. Let P be the set of all primes on G, then

D
∑
p∈P

p =
∑
H≺G

det(−WH)D perm(I + WG−H).
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4. An Hopf algebra structure for the hikes

Since any hike on a graph can be seen as a disjoint ensemble of connected

components, it is natural that an algebraic structure should exist describing

the generation of arbitrary hikes from connected ones. In particular, when it

comes to the self-avoiding hikes, their connected components are their prime

factors. Therefore, if this algebraic structure provides a mean of projecting the

set of hikes back onto the set of connected hikes, it might send the self-avoiding

ones onto the primes. In this section, we establish these heuristic arguments

rigorously by showing that a commutative and cocommutative Hopf algebra de-

scribes the generation of self-avoiding hikes from simple cycles. This algebra

provides several exact formulas for the formal series of primes, stemming from

projectors onto the irreducible elements of the algebra. We also show that the

subgraph convolution operation introduced previously is a necessary and un-

avoidable feature resulting from this algebra.

In this section, we consider finite graphs. Observe in particular that on such

a graph G the set SG of self-avoiding hikes has finite cardinality. Since SG is

not closed under the ordinary multiplication between hikes, it is necessary to

introduce another multiplication between elements of S under which it is closed,

so as to obtain an algebra structure. Thus, we define:

h, h′ ∈ SG ⇒ h ∗ h′ :=

hh
′, if V (h) ∩ V (h′) = ∅

0, otherwise.

With the convention that 0 ∈ SG and since hh′ = h′h ⇐⇒ V (h)∩V (h′) = ∅, it

is clear that (SG, ∗) forms a commutative algebra. Although seemingly arbitrary

at first sight, we will see that the ∗ multiplication induces a natural convolution

between elements of the monoid algebra K〈SG〉 of SG over a commutative ring

K with a unit,2 which coincides with the induced subgraph convolution intro-

2In other terms K〈SG〉 is simply the set of finite K-linear combinations of elements of SG.
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duced in Section 3, thanks to which ∗ will be easy to implement in practice.

To endow SG with an Hopf algebra structure, we follow Schmitt’s construc-

tion for general trace monoids [25], and begin by defining a comultiplication

∆ : SG → SG ⊗ SG and a counit ε : SG → K as follows

ε(h) =

1, if h = 1,

0, otherwise,
and ∆(h) =

∑
d|h

V (d)∩V (h/d)=∅

d⊗ h

d
. (3)

The comultiplication introduced above decomposes self-avoiding hikes into their

divisors. It can be extended to the set HG of all hikes on G, in which case it

decomposes hikes into disjoint-divisors.

Remark 4.1. The comultiplication introduced above recovers that defined by

Schmitt on general trace monoids in [25]. Let h = c1 · · · cn be a self-avoiding

hike with disjoint connected components c1, · · · , cn, and let U := {i1, · · · , ik}

be a subsequence of N := {1, · · · , n}. The complement of U in N is denoted Ū .

For any h ∈ S, let h|U := ci1 · · · cik , in particular if U is empty we set h|∅ := 1.

Schmitt then defines the comultiplication by

∆(h) :=
∑
U⊆N

h|U ⊗ h|Ū .

Now observe that since h is self-avoiding, for any divisor d of h we have V (d) ∩

V (h/d) = ∅. In particular, it must be that d = ci1 · · · cik = h|U for some U ,

so that Schmitt’s definition is seen to be equivalent to Eq. (3). Thanks to this

observation we can directly use Schmitt’s results, thereby alleviating a number

of proofs.

Equipped with these operations, SG forms a cocommutative coalgebra [25].

Its irreducible elements, i.e. those that fulfill ∆(h) = 1 ⊗ h + h ⊗ 1, are im-

mediately seen from Eq. (3) to be the connected self-avoiding hikes, that is the

primes, since these have no non-empty disjoint divisors. This further confirms
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that ∆ pertains to the generation of hikes from connected ones.

We may now invoke the general results of [25] to observe that the algebraic

and coalgebraic structures of SG are compatible, that is ∆ and ε are algebra

maps and (SG, ∗,∆, ε) is a bialgebra, which we will simply denote SG to alleviate

the notation. These results are subsumed in the following theorem, which in

addition to the bialgebra structure, provides an antipode for SG, turning it into

a Hopf algebra.

Theorem 4.1. SG is a cocommutative Hopf algebra, with comultiplication and

counit defined above and antipode S given by S(h) := (−1)c(h)h, where c(h) is

the number of disjoint connected components of h.

Proof. As stated earlier, the results of Schmitt ensure that with the definitions

of Eq. (3), SG is a cocommutative bialgebra [25]. It remains to show that

S(h) given above is indeed an antipode, that is the inverse of the identity on

SG. This follows immediately from Proposition 3.3 of [25] and Example 4.2 of

[26], on noting that the decomposition of any hike into its disjoint connected

components is unique [12] and that disjoint connected components commute,

so that h̃ := cncn−1 · · · c1 = h. Alternatively, observe that the S coincides with

the Möbius function of Example 2.2, that is S(h) = µ(h)h, since c(h) = Ω(h)

whenever h ∈ SG. It follows that S is the inverse of the identity on SG.

Since SG is a commutative and cocommutative Hopf algebra and SG has

finite cardinality, it follows by linearity that the monoid algebra K〈SG〉 is a

commutative and cocommutative Hopf algebra too. The convolution between

elements of K〈SG〉 is obtained by continuously and linearly lifting the multipli-

cation introduced earlier between elements of SG. Equivalently, the convolution

can be constructed explicitely from the comultiplication defined earlier on SG.

Let a, b : SG → K, and define α, β : G → K〈SG〉 with α[G] =
∑

h∈SG a(h)h

and β[G] =
∑

h∈SG b(h)h. In K〈SG〉, the multiplication between α[G] and β[G]

13



is obtained from the comultiplication as α[G]∗β[G] =
∑

h∈SG(a∗ b)(h)h, where

(a∗b)(h)h := (m ◦ (a⊗ b) ◦ ∆) (h) andm is the ordinary multiplication between

hikes [24, 25]. This gives

α[G] ∗ β[G] =
∑
h∈SG

(a ∗ b)(h)h =
∑
h∈S

∑
d|h

V (d)∩V (h/d)=∅

a(d)b(h/d)h.

Since V (d) ∩ V (h/d) = ∅, then h = d ∗ h
d = d h

d and we can write

α[G] ∗ β[G] =
∑
H≺G

∑
d:V (d)⊆V (H)

a(d) d
∑

d′:V (d′)⊆V (G−H)

b(d′) d′.

Observe that, per Remark 3.1,
∑

d:V (d)⊆V (H) a(d) d and
∑

d′:V (d′)⊆V (G−H) b(d
′) d′

are α[H] and β[G − H] respectively. Thus we have obtained the convolution

between elements of K〈SG〉 as

α[G] ∗ β[G] =
∑
H≺G

α[H]β[G−H] = (α ∗ β)[G],

that is α[G] ∗ β[G] is the induced subgraph convolution of α with β. This

result establishes that the induced subgraph convolution arises directly from

the definition of the comultiplication in Eq. (3). This, in turn, shows that it

is an unavoidable feature reflecting the generation of hikes from their disjoint

connected components.

The generation of self-avoiding hikes from connected self-avoiding ones, that

is simple cycles, thus gives rise to an Hopf algebra which, we will see, provides

means of doing the opposite, that is to obtain the simple cycles from the set of

self-avoiding hikes.

Theorem 4.2. For any coalgebra map f : SG → SG, then log∗ f : SG → PG.

In particular log∗ idSG , the ∗-logarithm of the identity on SG is the projector

onto PG. By linearity, the ∗-logarithm also projects K〈SG〉 onto K〈PG〉, in

particular

log∗
∑
h∈SG

h =
∑
p∈PG

p.
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Equivalently,

log∗
(
perm(I + W)

)
= − log∗

(
det(I−W)

)
= Π[G].

Proof. We rely on the results of Schmitt [26] concerning cocommutative Hopf

algebras, more precisely Theorem 9.4, 9.5, Corollary 9.6 and Example 9.2. Ac-

cordingly, the image of the ∗-logarithm of any coalgebra map f : H → H of

a cocommutative Hopf algebra H is in the sub-monoid of irreducible elements

of H, Irr(H). In particular the ∗-logarithm of the identity on H is the identity

on Irr(H). In the present context, H = SG and Irr(H) = PG. By linearity

this extends to H = K〈SG〉 and Irr(H) = K〈PG〉 as well. Now the identity

on K〈SG〉,
∑

h∈S idSG(h), is the zeta function of SG, i.e. ζSG = perm(I + W)

per Example 2.4. This gives the first result. The second equality follows from

the observation that
∑

h∈SG S(h) =
∑

h∈SG µ(h)h is the antipode of K〈SG〉,

i.e. the ∗-inverse of the identity on K〈SG〉. As shown in Example 2.2, this is

det(I−W). This result was also shown directly in Corollary 3.2.

Remark 4.2. The ∗-inverse relation between the permanent and the determi-

nant is a special case of a more general identity, which is easily obtained either

directly for each k ∈ Z or by induction from the base cases k = ±1:

perm(I + W)∗k =
∑
h∈SG

kΩ(h) h, k ∈ Z.

Setting k = −1 recovers perm(I + W)∗−1 = det(I − W), while k = 0 gives

perm(I + W)∗0 = 1 with the convention that 00 = 1.

Example 4.1 (Simple cycles from the logarithm of the determinant). Let us

illustrate how the logarithm with respect to induced subgraph convolution dis-

tillates the simple cycles from a determinant or a permanent. Consider the

following graph with three simple cycles a, b and c of arbitrary lengths:

G =

a

b

c

15



for which det(I −W) = 1 − a − b − c + ac + bc. Expanding the logarithm of

this determinant as a series and focusing on the first and second orders to begin

with, we have

− log∗
(

det(I−W)
)

= −(−a−b−c+ac+bc)+
1

2
(−a−b−c+ac+bc)∗2−· · · (4)

Since V (a) ∩ V (c) = V (b) ∩ V (c) = ∅ and V (a) ∩ V (b) 6= ∅, terms such as

a ∗ a, a ∗ b and b ∗ ac all vanish and only a ∗ c and b ∗ c are non-zero. Thus,

expanding the second order leaves ac + ca + bc + cb. For the same reasons all

higher orders of the logarithm are exactly zero. In addition, since a and c and b

and c are vertex-disjoint, they commute, and the second order further simplifies

to 2ac+ 2bc. Thanks to these observations, Eq. (4) becomes

− log∗
(

det(I−W)
)

= a+ b+ c− ac− bc+
1

2
(2ac+ 2bc),

= a+ b+ c,

which is indeed the formal series of the primes on G.

Admittedly, a ∗-logarithm is not very convenient to implement. Instead, we

turn to its derivative for more practical results

Corollary 4.3. Let G be a non-empty graph, and Π :=
∑

p∈PG
p. Then

DΠ = D perm(I + W) ∗ det(I−W) = −perm(I + W) ∗D det(I−W).

Proof. Derivating the expression for Π given in Theorem 4.2 yields

DΠ = D perm(I + W) ∗ perm(I + W)∗−1,

= −D det(I−W) ∗ det(I−W)∗−1.

The results follow on noting that ∗ is commutative and perm(I + W)∗−1 =

det(I − W), as shown in Corollary 3.2, in the proof of Theorem 4.2 and in

Remark 4.2.

Remark 4.3 (Practical considerations). In practice, prime counting is achieved

upon replacing all labeled adjacency matrices with ordinary adjacency matrices

16



W 7→ zA, with z a formal variable. In this situation, formal polynomials on

hikes become ordinary generating functions and the derivative operator D is

implemented as a derivative with respect to z. Then, because of the commu-

tativity of the induced subgraph convolution, Corollary 4.3 yields the following

variant formulas for the derivative of the ordinary generating function of the

primes Π(z) :=
∑

p∈PG
z`(p),

dΠ(z)

dz
=
∑
H≺G

d

dz
perm(I + zAH) det(−zAG−H) =

∑
H≺G

d

dz
perm(zAH) det(I− zAG−H),

dΠ(z)

dz
= −

∑
H≺G

perm(I + zAH)
d

dz
det(−zAG−H) = −

∑
H≺G

perm(zAH)
d

dz
det(I− zAG−H).

5. Simple cycles from Lie idempotents

The celebrated Milnor-Moore theorem [19] provides an explicit relation be-

tween connected graded cocommutative Hopf algebras and Lie algebras. In this

section we exploit this relation to assert the existence of many more formulas

for counting simple cycles on graphs. We illustrate this with two examples.

The commutative and cocommutative Hopf algebra S introduced in the

previous section is graded, with gradation c(h) = Ω(h), and connected since

c(h) = 0 ⇐⇒ h = 1 so that K〈SG|c(h)=0〉 is just K itself as required [20].

Hence, we can use the theorem of Milnor and Moore to obtain that SG is iso-

morphic to the universal enveloping algebra of the free graded Lie algebra formed

by the primitive elements of SG, that is the simple cycles,

SG ' U(PG).

Taking K to be a field with characteristic zero, these observations extend by

linearity to K〈S〉 and we thus have K〈SG〉 ' U(K〈PG〉).

These results provide new tools to pass from SG to the free Lie algebra

formed by its primitive elements: the Lie idempotents. Lie idempotents are

17



symmetrizers projecting the tensor algebra T (A) of a Lie algebra A onto the

free Lie algebra. Now recall that the universal enveloping algebra of the Lie

algebra A is U(A) = T (A)/I, with I the two-sided ideal generated by elements

of the form a⊗ b− b⊗a− [a, b]. In particular, if A is free, then a Lie idempotent

projects U(A) onto the free Lie-algebra on the K-module A. Since PG is free,

this reasoning leads to:

Theorem 5.1. Let ı be a Lie idempotent. Then

ı : SG −→ PG,

and by linearity ı : K〈SG〉 −→ K〈PG〉.

We now give two examples of Lie idempotents to illustrate this result.

Example 5.1 (Eulerian idempotent). Let A be a cocommutative connected

graded K-bialgebra with product ? and let idA be the identity map on A. Then

the endomorphism e := log?(idA) projects A onto the K-submodule of primitive

elements and is called the Eulerian idempotent of A [14]. Theorem 4.2 states

the Eulerian idempotents on SG and K〈SG〉.

Example 5.2 (Dynkin idempotent). Let K a commutative Q-algebra and A

be a cocommutative connected graded K-Hopf algebra with product ?. Let S

be antipode of A and for any a ∈ A define E(a) := deg(a)a, with deg(a) the

grade of a. Then the endomorphism of A denoted d := S ? E projects A onto

the K-submodule of primitive elements and is called the Dynkin idempotent

of A [28, 22, 14]. In the context of the self-avoiding hikes, deg(h) = c(h) =

Ω(h) = ω(h), with ω the number of distinct prime factors of h. Thus the

Dynkin idempotent on SG reads

Π =
∑
h∈SG

(−1)Ω(h)h
∑
h∈SG

ω(h)h.

In fact, this result is recovered from a straightforward argument in the reduced

incidence algebra of SG. Indeed, a direct multiplication of Π with the zeta

18



function of SG gives

Π ζSG =
∑
h∈SG

( ∑
p∈PG, p|h

1

)
h =

∑
h∈SG

ω(h)h,

and the Dynkin idempotent follows after a Möbius inversion of the above rela-

tion.

Many more Lie idempotents have been discovered and can be found in the

relevant literature, see e.g. [21, 22, 27, 14] and references therein. By Theo-

rem 5.1, each one of them provides a formula for counting the primes, that is

the simple cycles, on arbitrary weighted directed graphs.
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