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Abstract

Assume that several competing methods are available to estimate a parameter in a given
statistical model. The aim of estimator averaging is to provide a new estimator, built as
a linear combination of the initial estimators, that achieves better properties than each
individual initial estimator. This contribution provides an accessible and clear overview of
the method, and investigates its performances on standard spatial statistics models. It is
demonstrated that the average estimator clearly improves on standard procedures for the
considered models. For each example, the code to implement the method with the R software
(which only consists of few lines) is provided.

Keywords: Averaging; Aggregation; Poisson point process; Determinantal point process;
Thomas process; Boolean model

1 Introduction

Assume one needs to estimate a real parameter θ when several possibly competing methods
are known to the statistician, leading to a collection of estimators θ̂1, ..., θ̂J with J ≥ 2. As it
has been observed in numerous practical situations, the initial estimators θ̂1, ..., θ̂J may contain
complementary information on the parameter of interest so that choosing a single one in the
collection might not be optimal. A well-spread idea in this situation is to consider a linear
combination of the θ̂j ’s that would hopefully preserve each individual quality. A final estimator
is then sought as a combination

θ̂λ =
J∑
j=1

λj θ̂j subject to
J∑
j=1

λj = 1,

where λ = (λ1, ..., λJ)> ∈ RJ is the vector of weights that has to be estimated. The main
purpose is to provide an estimator that would perform at least as well as the best estimator in
the initial collection, or even better if possible.
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The gains of considering combinations of estimators are well established in the literature in
the particular case of predictors in regression models [10, 11, 5, 21] or forecasts in time series
[3, 8, 20]. Depending on the community, these techniques are commonly referred to aggregation
or model averaging. Recently, a general methodology for estimator averaging was proposed in
[13] in an attempt to extend model averaging beyond prediction purposes. In this paper, we give
a clear review of this method, providing the code in the R software for its implementation, and
we investigate the efficiency of averaging in some common spatial statistical models. Specifically
we consider the estimation of the intensity of an inhomogeneous spatial Poisson point process,
the estimation of the parameters in a determinantal point process (a model for regular point
patterns), in a Thomas process (a model for clustered point patterns), and in a Boolean model
(the basic model for random sets). We argue that the averaging procedure is particularly well
suited to these models due to the lack, in most cases, of a universal single best estimation
method. For these examples, we demonstrate that the average estimator performs better than
the best initial estimator, which conveys that none of the current methods is able to gather the
whole information available from the data. Moreover, the averaging procedure allows not only
to get a better estimate, but also provides for the same price an estimation of its mean square
error, which allows to construct confidence intervals without further effort.

For each example, we describe the full implementation of the averaging procedure in the
software R [17]. We point out that the code takes only few lines of scripts that mainly rely
on routines available in the package spatstat [1, 2]. We also indicate the computational cost
on a regular laptop, which turns out to vary from 20 seconds to 3 minutes, depending on the
considered model.

The rest of the paper is organised as follows. Section 2 contains an accessible overview of
the averaging procedure, emphasizing the key choices for its implementation and providing the
associated code in R. In Section 3, we apply this method to the models of spatial statistics listed
above, demonstrating the relevance of the procedure in these cases. We conclude in Section 4
with a brief summary of our study and some general recommendations.

2 Description of the method

This section is devoted to the description of the averaging procedure introduced in [13]. For
ease of comprehension, the framework is simplified so as to fit more precisely with the spatial
statistical models studied in this paper. Nevertheless, the method described here remains general
and suitable for most parametric and semi-parametric models, whether they concern spatial
statistics or more generic frameworks.
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2.1 Averaging of a real-valued parameter

Let θ ∈ R and θ̂1, ..., θ̂J a collection of J ≥ 2 estimators of θ. For λ = (λ1, ..., λJ)> ∈ RJ a vector
of weights such that

∑J
j=1 λj = 1, we are interested in the performance of the average estimator

θ̂λ =
J∑
j=1

λj θ̂j .

The condition
∑J

j=1 λj = 1 was originally proposed in [3] as a way to preserve the unbiasedness
of the initial estimators, but may in fact be important for deeper reasons. Actually, it is argued
in [13] that the condition

∑J
j=1 λj = 1 is crucial when the parameter θ is real-valued, as in

the present situation. However, this restriction can be safely overlooked for more complex
parameters, as in the context of non-parametric regression, see [5].

If all the initial estimators θ̂j are square integrable, the combination λ∗ minimizing the
quadratic risk expresses easily in function of the mean-square error (MSE) matrix Σ with general
term Σij = E

[
(θ̂i − θ)(θ̂j − θ)

]
, i, j = 1, ..., J . Indeed, due to the condition

∑J
j=1 λj = 1, the

quadratic error of θ̂λ simplifies into

E
(
θ̂λ − θ

)2
= E

( J∑
j=1

λj(θ̂j − θ)
)2

= λ>Σλ (1)

where λ> denotes the transpose of λ. Thus, the expression of the best linear combination λ∗

which minimizes the MSE and determines the so-called oracle θ̂∗ :=
∑J

j=1 λ
∗
j θ̂j follows as the

solution of a simple constrained optimization problem

λ∗ = arg min
λ∈RJ :λ>1=1

λ>Σλ =
Σ−11

1>Σ−11
, (2)

where 1 = (1, ..., 1)> ∈ RJ . The oracle is unknown in practice, but can be approximated
whenever an estimate Σ̂ of the MSE matrix is available. The average estimator θ̂ is then
constructed as an approximation of the oracle obtained by replacing Σ by Σ̂ in the expression
of λ∗, that is

θ̂ = θ̂λ̂ with λ̂ =
Σ̂−11

1>Σ̂−11
, (3)

provided that Σ̂ is non-singular. Remark that the computational cost of the method comes
essentially from producing the matrix Σ̂. Once Σ̂ (denoted below by hatSigma) is available,
deducing the weights λ̂ in R is straightforward:

invhatSigma <−s o l v e ( hatSigma )
weights <− rowSums( invhatSigma ) /sum( invhatSigma )
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An additional benefit of this method is to provide an estimation of the mean square error of
the resulting estimator θ̂ without further effort. Indeed, under some conditions the MSE of θ̂
becomes asymptotically equivalent to the MSE of the oracle (see below and [13]), which is given
by λ∗>Σλ∗ = (1>Σ−11)−1 and can naturally be estimated by (1>Σ̂−11)−1. In R, this is simply:

MSE AV <−1/sum( invhatSigma )

The estimation of Σ can be carried out with the same data as those used to produce the initial
estimators θ̂1, ..., θ̂J . In particular, the averaging procedure does not require the independence
between Σ̂ and the θ̂j ’s. For parametric models, as this is commonly the case in spatial statistics,
Σ can simply be estimated by a parametric bootstrap procedure, specifically:

1. Choose an initial consistent estimate θ̂0 (typically one of the initial estimators, or their
simple average, see also the discussion in Section 2.3).

2. Simulate N samples according to the model with the previous estimate as a parameter.

3. For each sample b = 1, . . . , N , compute the estimates θ̂
(b)
1 , . . . , θ̂

(b)
J where the superscript

(b) emphasizes the dependence on the sample b.

4. Deduce an estimation of each entry of Σ as Σ̂ij = 1/N
∑N

b=1(θ̂
(b)
i − θ̂0)(θ̂

(b)
j − θ̂0).

This procedure is used with N = 100 in all our examples in Section 3, where we provide the
associated R code. Alternative methods to estimate Σ̂, in particular for semi or non-parametric
models, are discussed in Section 2.3 and [13].

From a theoretical point of view, the performance of the average estimator θ̂ can be measured
by how well Σ̂Σ−1 approximates the identity matrix. A non-asymptotic bound on the distance
to the oracle is derived in Theorem 3.1 in [13], although the behavior of the error term is
hardly tractable in practice. This result guarantees nevertheless the asymptotic optimality of
the average estimator in the following sense.

Proposition 2.1 [13] If Σ̂Σ−1 converges in probability to the identity matrix when the sample
size tends to infinity, then

θ̂ − θ = θ̂∗ − θ + op
(
E(θ̂∗ − θ)2

)
.

Note that the crucial condition on Σ̂Σ−1 above holds true if Σ̂ is obtained by parametric
bootstrap, provided Σ is a sufficiently smooth function of the parameters. This is the case for
all parametric models considered in Section 3. Under additional technical assumptions on the
moments of Σ̂ and the θ̂j ’s (see [13]), one can deduce the asymptotic optimality in L2

E(θ̂ − θ)2 =
(
1 + o(1)

)
E(θ̂∗ − θ)2.
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2.2 Averaging with foreign estimators

Another important advantage of the averaging procedure is that it allows to use information
contained in estimators of other parameters. Assume that the true distribution of the observation
depends on both θ and a nuisance parameter η ∈ R with a collection of estimators η̂1, ..., η̂K also
available for η. We investigate situations where the use of the η̂k’s can improve the estimation
of θ. In this context, the η̂k’s are referred to as foreign estimators.

The decision to include foreign estimators is in particular motivated by the relative efficiency
of the estimations. For instance, if the parameter θ is known to be poorly estimated, using
another better estimated parameter η generally tends to improve the performance of the θ̂j ’s, if

the θ̂j ’s and the η̂k’s are correlated.

Remark. We consider only a one real-valued nuisance parameter η for simplicity. This is
the framework for the estimation of the Boolean model treated in Section 3.4. Nevertheless,
the method can be easily extended to situations with several nuisance parameters (see [13] for
more details). In Section 3.3, we apply it to the estimation of three parameters, allowing for the
inclusion of two foreign parameters for each.

The foreign estimators η̂k’s are included in the estimation of θ by considering an additional
linear combination of the η̂k’s with the weights summing to zero. Thus, a final estimate of θ is
sought as a combination of the θ̂j ’s and η̂k’s,

θ̂λ,µ =

J∑
j=1

λj θ̂j +

K∑
k=1

µkη̂k subject to

J∑
j=1

λj = 1 and

K∑
k=1

µk = 0.

The main reason for imposing the µk’s to sum to zero is that the oracle (λ∗, µ∗) can still be ex-
pressed in function of the MSE matrix, but this time of the whole collection (θ̂1, ..., θ̂J , η̂1, ..., η̂K).
To see this, write

E
(
θ̂λ,µ − θ

)2
= E

( J∑
j=1

λj(θ̂j − θ) +
K∑
k=1

µk(η̂k − η)
)2

= (λ>, µ>) Σ
(λ
µ

)
(4)

where Σ designates here the (J+K)× (J+K) MSE matrix of (θ̂1, ..., θ̂J , η̂1, ..., η̂K). Here again,
the optimal combination minimizing (4) subject to

∑J
j=1 λj = 1 and

∑K
k=1 µk = 0 has a simple

expression in function of Σ, described below.
For sake of completeness, let us consider the full problem of estimating both θ and η, using

foreign estimators for each. This means that we seek the average estimators θ̂λ,µ and µ̂λ′,µ′ , built

as explained above with the constraints
∑J

j=1 λj = 1,
∑K

k=1 µk = 0 for θ̂λ,µ, and
∑J

j=1 λ
′
j = 0,∑K

k=1 µ
′
k = 1 for µ̂λ′,µ′ . As proved in [13], the optimal weights (λ∗, µ∗) and (λ′∗, µ′∗) minimizing
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respectively E
(
θ̂λ,µ − θ

)2
and E

(
η̂λ′,µ′ − η

)2
are given by the (J +K)× 2 matrix(

λ∗ λ′∗

µ∗ µ′∗

)
= Σ−1 L(L>Σ−1 L)−1 (5)

where L denotes the (J +K)× 2 matrix

L =

(
1J 0
0 1K

)
,

with 1J = (1, ..., 1)> ∈ RJ and 1K = (1, ..., 1)> ∈ RK . This solution is approximated in
practice using an estimate Σ̂, typically obtained by parametric bootstrap as detailed in the
previous section. The code in R to get an estimate of the matrix of optimal weights (5), given
Σ̂ (hatSigma), J and K is as follows

invhatSigma <−s o l v e ( hatSigma )
matL <− matrix ( c ( rep (1 , J ) , rep (0 ,K) , rep (0 , J ) , rep (1 ,K) ) , nco l=2)
weights <−invhatSigma%∗%matL%∗%so l v e ( t (matL)%∗%invhatSigma%∗%matL)

Here again, an estimation of the MSE matrix of (θ̂, η̂) is straightforward from (4)

MSE AV <−t ( weights )%∗%hatSigma%∗%weights

Remark that the optimal weights (λ∗, µ∗) for the estimation of θ are derived simultaneously
in (5), so that λ∗ is not equal to the optimal combination (2) when the foreign estimators are
not included. In theory, including foreign estimators leads to a better oracle. In practice, while
introducing foreign estimators does produce convincing results in specific situations (see e.g.
Section 3.4), the simulation study suggests that it only occasionally improves on the situation
where only the estimators of θ are involved in the the averaging process (see Section 3.3).
However, it never dramatically reduces the performance of the average estimator. The key point
is of course the quality of estimation of Σ. The question of including or not foreign estimators
in the averaging process must be subject to a preliminary analysis, proper to each model.

2.3 Complementary aspects

The averaging procedure described in the previous sections provides a simple way to derive a
single accurate solution for statistical inference when several competing methods are available.
The only two factors to calibrate are the estimation of Σ and the choice to include or not foreign
estimators (the latter only if the model contains several parameters). We discuss in this section
the estimation of Σ and the possibility to account for additional constraints on the weights.

Concerning the estimation of Σ, we systematically use in the examples of this paper a
parametric bootstrap procedure, as described in Section 2.1. In a parametric model, Σ indeed
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depends on the parameters and Σ̂ can then be obtained by plug-in or, if an analytical form
of Σ in function of the parameters is not available (which is commonly the case as for our
examples), by parametric bootstrap. In this situation, the performance of the average estimator
can be highly dictated by the choice of the initial estimator θ̂0 used to perform the bootstrap
procedure. As a general recommendation, we suggest for θ̂0 to use in that order: 1) the average
of the initial estimators if they are comparable in efficiency, 2) the best overall estimator in the
collection if it is known and 3) a robust estimator if the performances of the initial estimators
are very variable depending on the true distribution of the data.

In a semi or non-parametric model where the expression of Σ is more complicated, other
methods to estimate Σ can be considered. A first alternative is to use an asymptotic approxima-
tion (if available) which may lead to a simplified form of the MSE matrix, typically a parametric
expression, thus easier to approximate. Of course, the asymptotic form of Σ works all the more
that the amount of data is large. A second alternative is to use standard (non-parametric)
bootstrap, i.e. from random sampling on the original dataset. This solution generally well ap-
plies in situations where the data are independent and identically distributed, but is however
rarely suited for spatial statistics models. We refer to [13] for examples where these methods
are applied.

Concerning the weights of averaging, in addition to the normalization
∑J

j=1 λj = 1 (and∑K
k=1 µk = 0 for foreign estimators) considered in the previous sections, it is possible to impose

additional conditions. A natural option is to restrict to positive weights λj aiming for a convex

combination of the initial estimators θ̂j . This is a natural way to get a more stable final estimator
since the weights are then restricted to the interval [0, 1]. Convex averaging may lead to a sparse
combination, i.e. a solution that only involves a subset of the initial estimators, which allows to
perform an indirect selection among the θ̂j ’s. Another desirable property of convex averaging
arises when the parameter of interest θ lies in a convex subset of R (e.g. θ ≥ 0 or θ ∈ [0, 1]). In
this case, the solution is guaranteed to remain in the same space as the initial estimators due
to its stability by convex transformations. As to the implementation of convex averaging, the
problem of minimizing the MSE (1) subject to the constraints

∑J
j=1 λj = 1 and λj ≥ 0 has no

explicit solution. It is however an easy quadratic optimization problem that can be numerically
solved in R as follows using the package quadprog [18].

temp <−solve.QP ( hatSigma , rep (0 , J ) , cbind ( rep (1 , J ) , d iag ( J ) ) , c (1 , rep (0 , J ) ) ,meq=1)
weights convex <−temp$ s o l u t i o n

It is worth emphasizing that the additional constraints λj ≥ 0 in convex averaging result in a
more accessible but less accurate oracle. The same remark holds for any additional constraint
on the weights. Thus, if Σ can be suitably estimated, it is generally not too risky to consider
the minimal constraint

∑J
j=1 λj = 1 thus aiming for the best possible oracle. On the other

hand, if the estimator Σ̂ is not reliable, additional constraints on the weights can be set in order
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to make the oracle easier to approximate. Convex averaging is an option. Another option, in
presence of many initial estimators (leading to a matrix Σ difficult to estimate) is to consider the
combination of a restricted number of estimators, typically two or three. This can be achieved by
introducing the constraint that at least J−2 (or J−3) weights must be zero. Some preliminary
simulations not shown in this paper suggest that this strategy is promising. However, due to its
non-convexity, this setting is no longer covered by the theoretical guarantees provided in [13].
In the specific framework of Gaussian regression with sample splitting, this so-called subset
aggregation strategy is investigated in [5], see also [9]. The study of this strategy in a more
general setting, as in the present paper, is the subject of a work currently in progress.

3 Application to spatial statistics models

3.1 Inhomogeneous Poisson point process

We consider the non-parametric estimation of the intensity ρ(x, y) of a spatial Poisson point
process, for (x, y) ∈ [0, 1]2, given one realisation of the process on [0, 1]2. Four models are
considered:

• Model 1: homogeneous with low intensity, ρ(x, y) = 100.

• Model 2: homogeneous with high intensity, ρ(x, y) = 1000.

• Model 3: four clusters. Denoting by φa,b the bivariate Gaussian density centered at (a, b)
with standard deviation 0.05, i.e. φa,b(x, y) = exp(−((x−a)2 +(y− b)2)/0.052)/(2π0.052),

ρ(x, y) = 25(φ0.25,0.25(x, y) + φ0.25,0.75(x, y) + φ0.75,0.25(x, y) + φ0.75,0.75(x, y)).

• Model 4: exponential decreasing on the x-axis, ρ(x, y) = 1000 exp(−3x).

Typical realisations of these 4 situations are shown in Figure 1.

The estimation of ρ(x, y) is carried out using the standard kernel-based estimator (imple-
mented in R by the function density of the package spatstat), for which the choice of the
bandwidth is crucial for the quality of estimation. We consider three possibilities offered by
spatstat leading to the estimators ρ̂1, ρ̂2 and ρ̂3 respectively: The default one which is 1/8
of the shortest length of the observation window, the choice bw.diggle suggested in [7], and
bw.ppl based on likelihood cross-validation.

In this functional estimation setting, the MSE matrix Σ of the estimators is replaced by the
MISE matrix, that we still denote by Σ, with generic term Σij = E

∫
(ρ̂i(x, y)−ρ(x, y))(ρ̂j(x, y)−

ρ(x, y))dxdy, i, j = 1, ..., 3. To average these 3 estimators, we estimate the optimal weights (2)
using a bootstrap procedure to get Σ̂, where we choose ρ̂3 as an initial estimator. Specifically,
given ρ̂3, N independent samples of the Poisson point process with intensity ρ̂3 are simulated
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Figure 1: Realisations of a Poisson point process when its intensity function follows Model 1 to
Model 4 from left to right.

on the unit square (N = 100 below), from which we deduce an estimation of the MISE matrix
by discretizing the integral on the grid of estimation returned by spatstat (that is a 128x128
pixel array).

Given a sample X, the full procedure in R to get the final average estimator is as follows. It
takes approximately 90 seconds on a regular laptop, for the considered models.

#Computing the i n i t i a l e s t imato r s
e s t1 <−dens i ty (X)
e s t2 <−dens i ty (X, bw.ppl )
e s t3 <−dens i ty (X, bw.d igg l e )

#Bootstrapping the model to get a sample o f the e s t imato r s
N <−100
ppboot <−rpo i spp ( est2 , nsim=N)
estboot1 <−l app ly ( ppboot , dens i ty )
e s tboot2 <−l app ly ( ppboot , dens i ty , bw.ppl )
e s tboot3 <−l app ly ( ppboot , dens i ty , bw.d igg l e )

#Deducing an es t imat ion o f the MISE matrix
fun <−f unc t i on (x , y , z ) {

temp <−rbind ( as . numeric (x−e s t2 ) , as . numeric (y−e s t2 ) , as . numeric ( z−e s t2 ) )
re turn ( temp %∗% t ( temp) ) }

hatSigma <−matrix (0 , 3 , 3 )
f o r ( i in 1 : 100 ) {

hatSigma <−hatSigma+fun ( es tboot1 [ [ i ] ] , e s tboot2 [ [ i ] ] , e s tboot3 [ [ i ] ] ) }

#Construct ing the average e s t imator
invhatSigma <−s o l v e ( hatSigma )
weights <−rowSums( invhatSigma ) /sum( invhatSigma )
AV <−weights [ 1 ] ∗ e s t1+weights [ 2 ] ∗ e s t2+weights [ 3 ] ∗ e s t3
AV[AV<0] <−0
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Note that in the last step, the average estimator is projected on the space of positive functions
to give a final consistent result in view of intensity estimation. The obtained estimator is
therefore closest to the true intensity than the average estimator (by projection onto a convex
set) and thus inherits its optimality properties. Repeating this procedure 103 times for each
model described above, we obtain an estimation of the MISE for each initial estimator and for
the (projected) average estimator, summarized in Table 1. From this table, it appears that the
initial estimators have variable performances, depending on the underlying intensity, but the
most reliable one seems to be the choice of bandwidth based on likelihood cross-validation. The
average estimator outperforms all initial estimators in all cases.

Raw Diggle PPL AV

Model 1 729 (10.3) 2903 (32) 237 (11.8) 229 (9.7)

Model 2 7240 (88) 28673 (282) 2356 (109) 2247 (88)

Model 3 54074 (38) 14108 (199) 12401 (111) 12081 (112)

Model 4 115942 (347) 137399 (482) 116372 (408) 115762 (362)

Table 1: Estimation of the MISE for each initial estimator of the intensity of a Poisson point
process (given by Models 1-4), and for the average estimator (”AV”), based on 103 replications.
The initial estimators correspond to the kernel estimator for the bandwidth : ”Raw” (default
choice in the function density of spatstat), ”Diggle” (option bw.diggle), ”PPL” (option
bw.ppl). An estimation of the standard deviation of the MISE estimation is given in parenthesis.

3.2 Determinantal point processes

Determinantal point processes (DPPs) are models for regular point patterns. We refer to [12] for
their main statistical properties. A DPP is completely characterized by a kernel C : Rd×Rd → C,
which for existence needs to be a covariance function and further satisfy a spectral condition.
In the homogeneous case where C(u, v) = C(v − u), the latter condition reduces to F(C) ≤ 1
where F denotes the Fourier transform. In the non-homogeneous case, a sufficient condition is
that C(u, v) ≤ C̄(v − u) for all u, v ∈ Rd where C̄ is a covariance function satisfying F(C̄) ≤ 1.

In this section we consider the estimation of parametric DPPs on the plane, defined through
a parametric kernel C(u, v) =

√
ρ(u)e−||u−v||

2/α2√
ρ(v) for u, v ∈ R2, where ρ is assumed to be

log-linear. For this model, the intensity function is ρ and the pair correlation function (pcf) is
the isotropic function g(r) = 1 − e−2r

2/α2
for r > 0, see [12]. Specifically, denoting u = (x, y),

we consider the four following situations.

• DPP 1: ρ(x, y) = 100 and α = α
(1)
max ≈ 0.056, which is an homogeneous DPP with the

maximum possible value for the scale parameter α when ρ = 100, deduced from the spectral
condition for existence discussed above.
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Figure 2: Realisations of DPP models on [0, 1]2 defined from left to right by DPP 1, DPP2,
DPP3 and DPP4.

• DPP 2: ρ(x, y) = 100 and α = α
(1)
max/2, which is the same model as above with less

repulsion between the points.

• DPP 3: ρ(x, y) = 4 exp(4x) and α = α
(2)
max ≈ 0.038 which is an inhomogeneous DPP with

exponential increasing intensity along the x-axis, and the maximum possible value for the
scale parameter α.

• DPP 4: ρ(x, y) = 4 exp(4x) and α = α
(2)
max/2, the same model as DPP 3 with less repulsion

between the points.

Typical realisations of these four processes on [0, 1]2 are shown in Figure 2.

In theory, the density of a DPP on any compact set is known, making possible likelihood
estimation. However this density involves a new kernel, obtained from a spectral representation
of C, which is rarely known in practice. In the homogeneous case, and when the domain of ob-
servation is rectangular, some efficient approximations are introduced in [12] to make likelihood
estimation feasible. In this situation, we recommend to use the maximum likelihood estimator.
In the inhomogeneous case or when the observation window is not rectangular, likelihood in-
ference seems difficult to implement, but alternative methods are available : minimum contrast
estimation based on the Ripley’s K function, or on the pcf g, composite likelihood estimation, or
Palm likelihood estimation. These methods are implemented in the function dppm of spatstat.
While the first two methods have good theoretical backgrounds (see [4]), the two others have not
been justified yet from a theoretical perspective. From our experience, composite likelihood is
not stable and we do not use it in the following. None of the three other methods is objectively
better than the others and an averaging procedure makes sense.

Whatever the method, the intensity function is estimated in dppm by maximising the Poisson
likelihood, so that the three retained estimation methods differ only for the estimation of α. We
thus average these three estimations of α using (3), where Σ̂ is obtained by parametric bootstrap.
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In this procedure, we choose as initial parameter of the model the output of the Palm likelihood
estimation and we simulate N = 100 samples. If X denotes the observed point pattern, the
associated code in R is the following. This procedure takes approximately 3 minutes on a regular
laptop.

#Computing the three i n i t i a l e s t imato r s
f i t g <− dppm(X˜x , dppGauss , method=”mincon” , s t a t i s t i c=” pc f ” , rmin=0.01 , q

=1/2)
f i tK <− dppm(X˜x , dppGauss )
f i tpa lm <− dppm(X˜x , dppGauss , method=”palm” )

#Bootstrapping the i n i t i a l e s t imato r s
N <−100
ppboot <− s imulate ( f i t g , nsim = N)
f i tbootK <− l app ly ( ppboot , f unc t i on (y ) dppm(y˜x , dppGauss ) )
f i t b o o t g <− l app ly ( ppboot , f unc t i on (y ) dppm(y˜x , dppGauss , method=”mincon” ,

s t a t i s t i c=” pc f ” , rmin=0.01 , q=1/2) )
f i tbootpa lm <− l app ly ( ppboot , f unc t i on (y ) dppm(y˜x , dppGauss , method=”palm” ) )

#Deducing the MSE matrix
alphafun <−f unc t i on (x ) x$ f i t t e d $ f i x edpa r $ alpha
f i t b o o t <−c ( f i tbootK , f i t boo tg , f i tbootpa lm )
mat <−matrix ( u n l i s t ( l app ly ( f i t boo t , a lphafun ) )−alphafun ( f i t g ) , nrow=N)
hatSigma <−t (mat)%∗%mat/N

#Construct ing the average e s t imator and i t s est imated MSE
invhatSigma <−s o l v e ( hatSigma )
weights <−rowSums( invhatSigma ) /sum( invhatSigma )
AV <−weights [ 1 ] ∗ alphafun ( f i tK )+weights [ 2 ] ∗ alphafun ( f i t g )+weights [ 3 ] ∗ alphafun (

f i tpa lm )
MSE AV <− 1/sum( invhatSigma )

In Table 2 we have summarized the MSE of each estimator of the above procedure, based
on 103 replications. The performances of the initial estimators are variable, depending on the
underlying model, but in all cases, the average estimator is better than the best initial estimator.

3.3 Thomas process

In this section, we consider the estimation of a Thomas process [19], which belongs to the larger
class of Neyman-Scot processes, see for instance [16]. This is a standard and classical example
of model for clustered point patterns. This model depends on three parameters: κ represents
the intensity of the ”parents”, generated as a homogeneous Poisson point process; µ is the mean
number of points (or children) around each parent, drawn from a Poisson random variable; and
σ corresponds to the dispersion around each parent of his children. The children are sampled
from a bivariate independent Gaussian distribution centered at the location of the parent with
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K g Palm AG

DPP 1 3.29 (0.21) 6.04 (0.37) 2.56 (0.21) 2.20 (0.18)

DPP 2 12.7 (0.54) 8.32 (0.39) 9.37 (0.45) 8.31 (0.39)

DPP 3 19.1 (1.33) 13.1 (1.02) 7.52 (0.54) 6.91 (0.43)

DPP 4 32.5 (0.56) 27.3 (0.59) 10.5 (0.45) 10.1 (0.45)

Table 2: Estimated MSE for the estimation of the scale parameter α in DPPs models, based
on 103 replications. The estimators are the minimum contrast estimator based on K (”K”),
the one based on the pcf g (”g”), the maximum Palm likelihood estimator (”Palm”) and their
average (”AV”) given by (3). An estimation of the standard deviation of the MSE estimation is
given in parenthesis. Each entry has been multiplied by 105 for ease of presentation.

standard deviation σ. A realisation of the Thomas process is given by the location of the
children, which are by construction organized by clusters. A simulation is given in Figure 3 for
κ = 10, µ = 10, σ = 0.05, and the observation window is [0, 1]2, [0, 2]2 and [0, 3]2, respectively.
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Figure 3: Realisations of a Thomas process with parameters κ = 10, µ = 10 and σ = 0.05 on,
from left to right, [0, 1]2, [0, 2]2 and [0, 3]2.

Standard procedures to estimate the parameters of a Thomas process are minimum contrast
estimation methods based on K or on g, or maximum Palm likelihood estimation. These three
methods are implemented in the function kppm of spatstat. Note that composite likelihood
estimation is also proposed in this function, but from our experience the results are unstable
and we do not use this method in the following.

To average the above three estimators, we can either use (3) for each parameter, or we
can use the method described in Section 2.2 to include all estimators for the estimation of
each parameter, taking advantage of possible cross-correlations with the foreign estimators. In
each case, we decide to estimate the MSE matrix Σ by parametric bootstrap where the initial
estimator is the minimum contrast estimator based on the pcf g, and where we take N = 100
samples.
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Given a realisation X of a Thomas process, the procedure in R to get the average estimator
accounting for foreign estimators is the following. It takes from 20 seconds for a point pattern
as in the left hand side of Figure 3, to two minutes for a point pattern as in the right hand side
of the same figure.

#Computing the i n i t i a l e s t imato r s
f i tK <−kppm(X,˜1 , ”Thomas” ,method=”mincon” , s t a t i s t i c=”K” )
f i t g <−kppm(X,˜1 , ”Thomas” ,method=”mincon” , s t a t i s t i c=” pc f ” )
f i tpa lm <−kppm(X,˜1 , ”Thomas” ,method=”palm” )

#Bootstrapping the model and the i n i t i a l e s t imato r s
N <−100
ppboot <−s imulate ( f i t g , nsim=N)
f i tbootK <−l app ly ( ppboot , kppm ,˜1 , ”Thomas” ,method=”mincon” , s t a t i s t i c=”K” )
f i t b o o t g <−l app ly ( ppboot , kppm ,˜1 , ”Thomas” ,method=”mincon” , s t a t i s t i c=” pc f ” )
f i tbootpa lm <−l app ly ( ppboot , kppm ,˜1 , ”Thomas” ,method=”palm” )

#Deducing an es t imat ion o f the MSE matrix
kappad i f f <−f unc t i on (x ) u n l i s t ( l app ly (x , f unc t i on (y ) y$par [ 1 ] ) ) − f i t g $par [ 1 ]
s i gma2d i f f <−f unc t i on (x ) u n l i s t ( l app ly (x , f unc t i on (y ) y$par [ 2 ] ) ) − f i t g $par [ 2 ]
mudif f <−f unc t i on (x ) u n l i s t ( l app ly (x , f unc t i on (y ) y$mu) ) − f i t g $mu
f i t b o o t <−c ( f i tbootK , f i t boo tg , f i tbootpa lm )
mat<−matrix ( c ( kappad i f f ( f i t b o o t ) , s i gma2d i f f ( f i t b o o t ) , mudi f f ( f i t b o o t ) ) , nrow=N)
hatSigma <−t (mat)%∗%mat/N

#Computing the f u l l we ights ( tak ing in to account f o r e i g n e s t imato r s )
invhatSigma <−s o l v e ( hatSigma )
matL <−kronecker ( diag (1 , 3 ) , rep (1 , 3 ) )
weights f u l l <−invhatSigma%∗%matL%∗%so l v e ( t (matL)%∗%invhatSigma%∗%matL)

#Deducing the three average e s t imato r s and t h e i r est imated MSE
param <−f unc t i on (x ) u n l i s t ( parameters ( x ) ) [−1]
e s tv e c <−as . vec to r ( t ( sapply ( l i s t ( f i t g , f i tK , f i tpa lm ) , param) ) )
AV plus <−t ( weights f u l l )%∗%es tvec
MSE AV plus <−t ( weights f u l l )%∗%hatSigma%∗%weights f u l l

To get the average estimators that do not use foreign estimators, the above code differs only in
the two last step:

#Computing the componentwise weights ( without f o r e i g n e s t imato r s )
support=kronecker ( diag (1 , 3 ) , matrix (1 , 3 , 3 ) )
hatSigma spar s e <−hatSigma∗ support
invhatSigma spar s e <−s o l v e ( hatSigma spar s e )
weights spar s e <−invhatSigma spar s e%∗%matL%∗%so l v e ( t (matL)%∗%invhatSigma

spar s e%∗%matL)
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#Construct ing the average e s t imato r s and i t s est imated MSE
param <−f unc t i on (x ) u n l i s t ( parameters ( x ) ) [−1]
e s tv e c <−as . vec to r ( t ( sapply ( l i s t ( f i t g , f i tK , f i tpa lm ) , param) ) )
AV <−t ( weights spar s e )%∗%es tvec
MSE AV <−t ( weights spar s e )%∗%hatSigma%∗%weights spar s e

In Table 3, we give the estimated MSE of each initial estimator and of the average estimator
whether it uses foreign estimators (AV+) or not (AV). This table is based on 103 replications of
the above procedure when the observation window is either [0, 1]2, or [0, 2]2 or [0, 3]2. From this
study, it turns out that the contrast estimation method based on g is the best among the three
initial estimators, but it is globally outperformed by the average estimator, with or without the
inclusion of foreign estimators. Further remarks are in order. While AV+ should in theory (i.e.
if Σ were perfectly known) be better than AV, this is not necessarily the case in practice. There
are two possible reasons. The first situation occurs if there is not enough data to hope for a
good estimation of the full MSE matrix Σ. In our example, this matrix contains 45 unknown
quantities and its estimation may clearly be inaccurate for small data sets, as when L = 1 in
Table 3. A second reason is when AV+ is in fact more or less equal to AV in theory, meaning
that the weights associated to the foreign estimators should be zero (this is for instance the
case if there are no correlations with the foreign estimators). In this situation, the inclusion of
foreign estimators can be viewed as a noise in the averaging procedure that can only deteriorate
the estimation. This is what happens for the estimation of κ, when L = 2 and L = 3 in Table 3.
However, when the data are rich enough, the weights are sufficiently well estimated so that AV+
can be expected to be at least as good as AV.

K g Palm AV AV+

L = 1 κ 51.66 (4.95) 45.39 (3.86) 52.90 (4.48) 40.49 (4.03) 34.41 (2.56)
σ2 11.87 (0.76) 11.57 (0.81) 19.83 (2.23) 12.79 (3.34) 16.24 (1.22)
µ 19.62 (1.28) 20.00 (1.43) 20.68 (1.39) 19.16 (1.27) 19.55 (1.25)

L = 2 κ 15.13 (0.98) 9.12 (0.53) 12.27 (0.71) 7.60 (0.46) 9.18 (0.57)
σ2 6.49 (0.41) 2.84 (0.12) 7.38 (2.10) 2.75 (0.11) 2.29 (0.10)
µ 8.00 (0.40) 5.40 (0.30) 6.29 (0.37) 5.62 (0.35) 4.87 (0.24)

L = 3 κ 6.57 (0.34) 3.31 (0.15) 5.50 (0.26) 3.06 (0.14) 3.39 (0.16)
σ2 4.90 (0.41) 1.40 (0.10) 2.54 (0.24) 1.17 (0.07) 1.04 (0.06)
µ 4.87 (0.28) 2.52 (0.14) 3.07 (0.14) 2.47 (0.14) 2.18 (0.10)

Table 3: Estimated MSE of the estimators of the parameters of a Thomas process, observed on
[0, L]2, based on 103 replications. The average estimator includes foreign estimators (AV+) or
not (AV). An estimation of the standard deviation of the MSE estimation is given in parenthesis.
The entries for σ2 has been multiplied by 107 for ease of presentation.

In conclusion, for the Thomas process, we recommend to use the standard averaging proce-
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dure AV for each parameter (without foreign estimators), given by (3), which safely provides a
better estimate in all situations. If the data are rich enough (like in the case of the observation
window [0, 3]2 in our example), the inclusion of foreign estimators seems reasonable and may
improve the final result.

3.4 Boolean model

The following simulation study is already presented in [13], but we judged interesting to include
it in the present contribution, since it concerns the main model of random sets used in spatial
statistics and stochastic geometry, see [6]. It is moreover a good example of situation where the
inclusion of foreign estimators in the averaging procedure is highly relevant.

We consider a planar Boolean model where the germs come from a homogeneous Poisson
point process with intensity ρ and the grains are independent random discs, the radii of which are
distributed according to a beta distribution over [0, 0.1] with parameter (1, α), α > 0, denoted
by B(1, α). Figure 4 contains four realisations of this model on [0, 1]2 where ρ = 25, 50, 100, 150
respectively and α = 1.

Figure 4: Samples from a Boolean model on [0, 1]2 with intensity, from left to right, ρ =
25, 50, 100, 150 and law of radii B(1, α) where α = 1.

To estimate ρ and α, we use a moment method based on the perimeter and the area of the
random set generated by the Boolean model, see [15], and we denote the result by ρ̂1 and α̂. As
an alternative procedure to estimate ρ, it is also possible to apply a method introduced in [14],
based on the number of tangent points of the random set in certain directions, which provides
a new estimator ρ̂2. These estimation methods are detailed for the present model in [13]. We
have finally two estimators ρ̂1 and ρ̂2 for ρ, and one estimator α̂ for α.

The averaging method allows us to combine the two estimators of ρ to improve the estimation
of this parameter. Note that the inclusion of the foreign estimator α̂ for this purpose is not
possible, since the sum of weights for foreign estimators must be zero, therefore in presence of
only one foreign estimator, its weight is zero. On the other hand, it is also possible to improve the
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estimation of α, even if there is only one available estimator for it, by including the two foreign
estimators ρ̂1 and ρ̂2. In this case the average estimator of α is of the form α̂AV = α̂+µ(ρ̂1− ρ̂2)
where µ is the weight to be estimated. The full averaging procedure thus corresponds to the
framework of Section 2.2 where J = 2 and K = 1, in particular the optimal weights are given
by (5). To estimate Σ, we use a parametric bootstrap of the model using N = 100 samples
with initial parameters 0.5(ρ̂1 + ρ̂2) and α̂. Concerning the implementation of this procedure,
the main task is to code the initial estimators, which is not a procedure available by default
on R. We do not enter into these details here. Then it is straightforward to deduce Σ̂ as in the
previous sections and to get the average estimator as detailed in Section 2.2.

Table 4 reports the MSE of each estimator, estimated from 104 replications of a Boolean
model on [0, 1]2 with parameters ρ = 25, 50, 100, 150 and α = 1. From these results, the
average estimators clearly outperform the initial estimators. The improvement is in particular
remarkable for high values of ρ, i.e. in presence of a dense random set. The parameter α ruling
the law of the radii is known to be difficult to estimate, in particular when ρ is high. The fact
that ρ can be easier to estimate together with the cross-correlations between α̂, ρ̂1 and ρ̂2 make
relevant the inclusion of foreign estimators in α̂AV . As demonstrated in Table 4, the difference
of efficiency between α̂ and α̂AV can be impressive.

ρ̂1 ρ̂2 ρ̂AV α̂ α̂AV

ρ = 25
34.15 14.63 14.60 8.09 6.70
(0.55) (0.22) (0.22) (0.15) (0.13)

ρ = 50
131.63 47.41 45.65 4.69 3.24
(2.26) (0.72) (0.67) (0.067) (0.048)

ρ = 100
949 272 223 5.70 2.29

(21.8) (4.9) (3.6) (0.086) (0.034)

ρ = 150
7606 1656 1005 14.7 4.1
(341) (46.5) (24.4) (0.34) (0.11)

Table 4: Estimated MSE of the initial estimators ρ̂1, ρ̂2, α̂ and of the average estimators ρ̂AV and
α̂AV based on 104 replications of a Boolean model with intensity ρ = 25, 50, 100, 200 and law
of radii B(1, α) with α = 1. An estimation of the standard deviation of the MSE estimation is
given in parenthesis. The two last columns have been multiplied by 100 for ease of presentation.

4 Conclusion

The objective of averaging is to produce a single final efficient estimator in a statistical inference
problem for which several methods are available. The solution is constructed from an estimation
of the mean-square error matrix of the initial estimators. In most cases, the average estimator
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improves on the best estimator in the collection, making averaging suitable even in situations
where one of the initial estimators is known to be better than the rest. When implemented
carefully, it is rare to see the averaging procedure perform truly worse than the best initial es-
timator. Not the least, as a free by-product of the procedure, an estimation of the mean square
error of the average estimator is available, making straightforward the construction of confidence
intervals.

The computational cost relies almost entirely on the ability to estimate the MSE matrix,
which varies according to the model. In a parametric model where Σ can be expressed as a func-
tion of the parameters, this estimation reduces to plug-in, which is generally easy and fast to
compute. In most parametric models though, as those presented in Section 3, the latter function
is not explicit and the estimation of Σ requires the use of re-sampling, i.e. parametric bootstrap.
In all cases, the computational cost is comparable to the cost inherent to the estimation of the
variance of an estimator, or the construction of confidence intervals. For the same price, the av-
eraging procedure allows to get a more accurate estimate together with an estimation of its MSE.

For the standard models of spatial statistics considered in Section 3, the averaging procedure
works well, as demonstrated in our simulation study. In general, an ideal situation to apply the
averaging procedure should fulfill the two important requirements listed below.

1. The oracle improves over each initial estimator. It goes without saying that the averaging
process is only interesting if the objective (the oracle) can improve on the current methods.
If this condition is not verified, a method to select the best estimator, less sensible to the
estimation of Σ, is generally more appropriate. While the relative performance of the
oracle may depend on some unknown factors, it can be expected to rely for the most part
on the statistical model itself so that it can be investigated independently from the data.

2. The mean-square errors of the estimators is estimable. The accuracy of Σ̂ is arguably the
main factor for the efficiency of the averaging procedure. If the data do not enable to
build a proper estimate of Σ, aiming for a suitable combination is usually hopeless. This
requirement is not as strong as it may seem. If the MSE of the oracle is much lower than
the MSE of the initial estimators (see the first point above), given that (1) is very smooth
in λ, it is expected that the MSE associated to the weight λ̂ still remains significantly
lower than the MSE of the initial estimators, even if λ̂ is not so close to λ∗. Nonetheless,
a better estimated Σ unequivocally leads to a better average estimator. In particular, in
presence of many initial estimators (thus inducing a large matrix Σ), we recommend to
perform a pre-selection or to use a more sophisticated averaging procedure as discussed in
Section 2.3, unless there is a large amount of data. The same recommendation applies for
the introduction, or not, of foreign estimators, which increases the size of Σ.

These two conditions are essentially inherent to the statistical model at hand and can be

18



investigated independently from the data in most situations. When applied to a new specific
statistical model, we therefore recommend to perform a preliminary analysis, which can be
theoretical and/or involve a computational study, to establish if these requirements are verified.
This analysis may also serve to calibrate the averaging procedure, whether it concerns the choice
of the constraint set of weights, the best way to estimate Σ (in particular the choice of the plug-in
estimator in a parametric bootstrap procedure), or the use of foreign estimators.
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