A tutorial on estimator averaging in spatial point process models - Archive ouverte HAL Access content directly
Journal Articles Journal de la Société Française de Statistique Year : 2017

A tutorial on estimator averaging in spatial point process models

Abstract

Assume that several competing methods are available to estimate a parameter in a given statistical model. The aim of estimator averaging is to provide a new estimator, built as a linear combination of the initial estimators, that achieves better properties, under the quadratic loss, than each individual initial estimator. This contribution provides an accessible and clear overview of the method, and investigates its performances on standard spatial point process models. It is demonstrated that the average estimator clearly improves on standard procedures for the considered models. For each example, the code to implement the method with the R software (which only consists of few lines) is provided.
Fichier principal
Vignette du fichier
averaging_spatial-4.pdf (847.09 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-01341125 , version 1 (04-07-2016)
hal-01341125 , version 2 (02-03-2017)
hal-01341125 , version 3 (07-03-2017)

Identifiers

Cite

Frédéric Lavancier, Paul Rochet. A tutorial on estimator averaging in spatial point process models. Journal de la Société Française de Statistique, 2017, 158 (3), pp.106-123. ⟨hal-01341125v3⟩
415 View
366 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More