
HAL Id: hal-01341103
https://hal.science/hal-01341103v1

Submitted on 4 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Architecture to Support the Collection of Big Data
in the Internet of Things

Cyril Cecchinel, Matthieu Jimenez, Sébastien Mosser, Michel Riveill

To cite this version:
Cyril Cecchinel, Matthieu Jimenez, Sébastien Mosser, Michel Riveill. An Architecture to Support the
Collection of Big Data in the Internet of Things. International Workshop on Ubiquitous Mobile cloud
(co-located with SERVICES), Jun 2014, Anchorage, United States. �10.1109/SERVICES.2014.83�.
�hal-01341103�

https://hal.science/hal-01341103v1
https://hal.archives-ouvertes.fr

An Architecture to Support the Collection of Big Data in the Internet of Things

Cyril Cecchinel, Matthieu Jimenez, Sébastien Mosser, Michel Riveill
Univ. Nice Sophia Antipolis, I3S, UMR 7271, 06900 Sophia Antipolis, France

CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France
{cecchinel,jimenez,mosser,riveill}@i3s.unice.fr

Abstract—The Internet of Things (IoT) relies on physical
objects interconnected between each others, creating a mesh of
devices producing information. In this context, sensors are sur-
rounding our environment (e.g., cars, buildings, smartphones)
and continuously collect data about our living environment.
Thus, the IoT is a prototypical example of Big Data. The
contribution of this paper is to define a software architecture
supporting the collection of sensor-based data in the context
of the IoT. The architecture goes from the physical dimension
of sensors to the storage of data in a cloud-based system. It
supports Big Data research effort as its instantiation supports
a user while collecting data from the IoT for experimental
or production purposes. The results are instantiated and
validated on a project named SMARTCAMPUS, which aims to
equip the SophiaTech campus with sensors to build innovative
applications that supports end-users.

Keywords-Data collection; Software Engineering; Architec-
ture; Distributed Computing; Sensors;

I. INTRODUCTION

Big Data is one of the most important research challenges
for the 2020 horizon. This paradigm relies on the collection
of tremendous amount of data to support innovation in the
upcoming decades [1]. A dataset is considered as big when it
meet the “four Vs” requirements: Volume, Variety, Velocity
and Value. The keystone of Big Data exploitation is to
leverage the existing datasets to create new information,
enriching the business value chain. According to the IDC
group, the amount of world data will be 44 times greater
in this decade, from 0.8 zettabyte to 35 zettabytes. In this
context, the Internet of Things (IoT) paradigm relies on a
world of interconnected objects [2], able to communicate
between each others and collect data about their context.
Day after days cars, smartphones and buildings collect
various information about our living environment, generating
zettabytes of sensed data. The Gartner group predicts up
to 26 billions of things connected to the Internet by 2020.
Intechno Consulting estimates that this market will generate
up to 180 billions of Euros worldwide. This is a typical
example of Big Data collection and analysis as it addresses
the four Vs: large Volume of Various data, collected with an
high Velocity to define application with added-Value.

The coupling between the IoT and the Big Data com-
munities is strong [3]–[5]. Unfortunately, there is no com-
prehensive approach to support the collection of data from
sensors and their exploitation: research efforts are focused

on the collection of data from the data producer tiers [6],
the reception tiers [7] or the exploitation one [8]. The
objective of this paper is to complement state of the art
approaches by describing a comprehensive software archi-
tecture supporting the collection of sensor data produced by
the IoT. In such a situation, architects must handle sensors
as hardware devices, and route the produced data to data
warehouses able to store the large amount of data produced
by these devices. This class of architecture must tackle
several challenges, e.g., data storage, avoiding processing
bottlenecks, sensors heterogeneity, high throughput. We use
as a running example the SMARTCAMPUS project, which
aims to equip the SophiaTech campus (Sophia Antipolis,
France) with sensors collecting data about campus’ usage.

The remainder of this paper is organized as follow: first,
SEC. II identifies the requirements of the architecture based
on the SMARTCAMPUS example. Then, SEC. III depicts an
overview of the architecture, and SEC. IV focuses on the
sensor viewpoint of the contribution. Thus, SEC. V addresses
data processing concerns, and SEC. VI the data exploitation
ones. Finally, SEC. VII describes research efforts relevant
with this contribution, and SEC. VIII concludes this paper,
sketching upcoming perspectives based on these results.

II. MOTIVATING SCENARIOS

The McKinsey Global Institute has identified up to seven
Big Data levers in the manufacturing value chain [1]
(FIG. 1). With respect to the IoT paradigm, these levers
are related to (i) collection of very-large datasets to support
experiments, (ii) the publication of marketplaces to exploit
the collected data and (iii) the exploitation of such datasets
with relevant application, e.g., monitoring dashboards.

In this paper, we use as a running example the SMART-
CAMPUS project, a prototypical example of Big Data appli-
cation. The University of Nice-Sophia Antipolis is exploiting
a new campus named SophiaTech1, located in the Sophia
Antipolis technology park. The ultimate goal of this project
is to consider sensors deployed in buildings as an open
platform to let final users (i.e., students, professors, adminis-
trative staff) build their own innovative services on top of the
collected (open) data. The campus occupies 58, 000 squared
meters (∼ 14.5 acres), including 8 buildings representing

1http://campus.sophiatech.fr/en/index.php

78

Exhibit 25

We have identified the following big data levers across
the manufacturing value chain

Build consistent interoperable, cross-functional R&D
and product design databases along supply chain to
enable concurrent engineering, rapid experimentation
and simulation, and co-creation

1

Implement sensor data-driven operations analytics to
improve throughput and enable mass customization

6

Implement lean manufacturing and model production
virtually (digital factory) to create process transparency,
develop dashboards, and visualize bottlenecks

5

Aggregate customer data and make them widely
available to improve service level, capture cross- and
up-selling opportunities, and enable design-to-value

2

Source and share data through virtual collaboration sites
(idea marketplaces to enable crowd sourcing)

3

Collect after-sales data from sensors and feed back in
real time to trigger after-sales services and detect
manufacturing or design flaws

7

Implement advanced demand forecasting and supply
planning across suppliers and using external variables

4

SOURCE: McKinsey Global Institute analysis

R&D and
design

Supply-
chain
mgmt

Produc-
tion

Market-
ing and
sales

After-
sales
service

1. Product lifecycle management. Over decades, manufacturing companies
have implemented IT systems to manage the product lifecycle including
computer aided-design, engineering, manufacturing, and product development
management tools, and digital manufacturing. However, the large datasets
generated by these systems have tended to remain trapped within their respective
systems. Manufacturers could capture a significant big data opportunity to create
more value by instituting product lifecycle management (PLM) platforms that
can integrate datasets from multiple systems to enable effective and consistent
collaboration. For example, PLM could provide a platform for “co-creation,”
e.g., bringing together internal and external inputs to create new products.
This is particularly useful in fields such as aerospace where a new product
might be assembled with hundreds of thousands of components supplied by
hundreds of suppliers from around the world. In this context, having the OEM
co-create designs with suppliers can be extraordinarily valuable. PLM platforms
can also significantly enable experimentation at the design stage. Designers
and manufacturing engineers can share data and quickly and cheaply create
simulations to test different designs, the choice of parts and suppliers, and the
associated manufacturing costs. This is especially useful because decisions
made in the design stage typically drive 80 percent of manufacturing costs.

 Leading players in advanced industries are already embracing the collaborative
use of data and controlled experimentation. Toyota, Fiat, and Nissan have all
cut new-model development time by 30 to 50 percent; Toyota claims to have
eliminated 80 percent of defects prior to building the first physical prototype.68
However, while the payoff for this opportunity is large, manufacturers will likely
need to invest significantly upgrade their systems, which in many cases are
decades old. In addition to the technical work of integrating datasets from

68 Note that in addition to reducing development time, manufacturers, as a result of using
integrated PLM, are able to improve quality and reduce resources in order to develop more
derivatives or product extensions.

Figure 1. Big Data levers in the manufacturing value chain [1].

23, 000 squared meters (∼ 5.75 acres) of workspaces, labs
and amphitheatres. The SMARTCAMPUS project preliminary
study was started in September 2013 and involves a team
of 18 persons. Its objective is to develop a technological
stack acting as a mediation layer between sensors deployed
in buildings and developers who wants to develop innova-
tive services based on these data. The development effort
is focused on data collection, scalability issues and data
visualization. The functional analysis phase (ended in 2013)
relied on a questionnaire and several user’s interviews to
identify prototypical scenarios for living labs experiments
and smart building use cases to be used as relevant validation
test cases. In this paper, we focus on the following two
scenarios:

• Parking lot occupation. The campus contains five dif-
ferent parking lots (∼ 500 spaces). The occupation rate
of each lot can be aggregated based on sensors (e.g.,
sonar sensors located on arbour overhanging the cars).
Collected measurements must be exploited in real-time
to guide user looking for an available space, and the
global occupation log is exploited to compute average
usage of parking and classify car movements.

• Heating regulation. The campus is located in a warm
area. To save energy and avoid the intensive use of A/C,
the external doors include a mechanism to stay open,
helping to regulate the temperature during summer.
Unfortunately, during winters, doors kept opened lead
to loss of heat. To diagnose these losses and support the
logistic team, temperature sensors located in corridors
and rooms continuously collect data. These data are
correlated to presence detectors through monitoring
dashboards (FIG. 2), identifying empty spaces with heat
losses. These data can also be exploited to assess the
“green” dimension of the building.

Simplifying the reality, let a measurement be a triplet

Figure 2. Heating monitoring with temperature and presence correlation.

binding a sensor identifier to a given timestamp and the
associated value, without any additional meta-data. Con-
sidering each element of the triplet encoded as a 32 bits
value, an update rate of one measurement per minute in this
context generates up to 2Gb of data per year for the first
scenario, only considering a single sensor. This is related to
the classical 4Vs of Big Data: large Volume of data (i.e., 2Gb
per year for one sensor), high-Velocity of data production
(i.e., 1 measurement per second for each sensor), Various
sources of data (e.g., sonar, temperature sensors), and added-
Value applications built on top of the collected datasets.

III. ARCHITECTURE REQUIREMENTS & OVERVIEW

To support the scenarios described in the previous section,
we identified the following requirements to be supported by
the designed software architecture. These four requirements
are not specific to the SMARTCAMPUS project, and do apply
to any IoT-based platform.

R1 Sensor heterogeneity. The system must handle various
sensors platforms, data formats and protocols.

R2 Reconfiguration capabilities. The system will be de-
ployed in wide environments, thus one must be able to
reconfigure it remotely.

R3 Scalability. The system must scale according to two di-
mensions: vertical scalability for storage purpose (e.g.,
enlarging the databases size), and horizontal scalability
for processing purpose (e.g., load-balancing requests).

R4 Data As A Service. The system must provide a mecha-
nism to support users who want to retrieve the collected
data, at the right level of abstraction (i.e., hiding the
underlying database).

FIG. 3 depicts an overview of the contribution of this
paper, i.e., a comprehensive software architecture supporting
the collection of Big Data in the IoT, with respect to
the previsouly described requirements. The architecture is

Figure 3. High-level description of the software architecture.

comprehensive as it addresses the complete spectrum of
elements involved in such a context.

• Sensors: in this study, we consider sensors as black
boxes, transforming a physical quantity into a mea-
surement. Classically, an electronic device is used to
transform such a quantity (e.g., temperature) into an
electrical resistance value (e.g., with a thermistor).

• Sensor Board: a board aggregates several sensors physi-
cally connected to it. The board is usually implemented
by a micro-controller (e.g., Arduino2). The responsibil-
ity of a board is to collect the data and send it to its
associated bridge.

• Bridge: the bridge responsibility is to aggregate data
streams from several boards. The different boards can
be connected to the bridge using physical links (e.g.,
USB), or wireless protocols (e.g., Zigbee3). The bridge
is connected to the Internet and broadcast the received
streams to a reception Application Programming Inter-
face (API). Bridges can be controlled by the system to
configure the way measurements are sent.

• Middleware: the reception middleware defines three
distinct APIs: (i) a reception API used by the bridge to
send data, (ii) a configuration API to support the set up
of measurements retrieval and (iii) a data API used to
interact with the collected datasets. The responsibility
of the middleware is to support the data reception as
well as broadcasting the configuration made on the
sensors to the relevant bridges. The middleware con-

2http://arduino.cc/
3http://www.digi.com/xbee/

tains the global sensor configuration, and the measured
datasets.

This architecture fulfills the previously identified require-
ments. First of all, sensors are considered as black boxes
and decoupled from the collection middleware. Thus, it is
the responsibility of the bridge to handle sensor hetero-
geneity (R1). The reconfiguration part (R2) is supported by
the middleware that stores the expected configuration and
broadcast it to the different bridges. Using a cloud-based
platform to host the middleware, the scalability of the data
collection (R3) is intrinsically handled by the underlying
cloud. Finally, providing a measurement-driven API as a
support for users’ interactions addresses the Data as a
Service requirement (R4).

The presented architecture can be prototyped with rela-
tively cheap hardware and software. The initial prototype of
the SMARTCAMPUS project, involving 32 boards and 130
sensors costed less than $1, 200.

• Sensors: specialized hardware, pre-configured shields;
• Sensor Boards: Arduino Uno micro-controller;
• Bridge: Raspberry Pi nano-computer;
• Middleware: Amazon EC2 cloud service;

IV. INTERACTING WITH VARIOUS SENSORS

In this section, we particularly describe the mechanisms
provided in the architecture to support sensor heterogeneity
(R1) and measurement reconfiguration (R2).

A. Challenges

There is no standard among manufacturers for sensor
interaction, each of them uses its own choices either for

the format of data or for the configuration of a sensor board.
Thus, implementing a sensor network is error-prone and time
consuming when the ultimate objective is to collect datasets
for further exploitation. Moreover, boards can become ob-
solete and no more available to customers. That’s why, as
time goes by, a network might have different boards, bought
from several manufacturers. The heterogeneity of the sensor
boards combined with the lack of standard among triggers
three challenges that need to be tackled:

• Consistency. To support system consistency and data
exploitation, the different data formats must be unified
into something usable technologically-independent.

• Transparency. The underlying protocol used to config-
ure the measurement process must be transparent for
the final user, independently of manufacturers’ choices.

• Configuration. As the sensor network is aimed to be
deployed on a large scale, the architecture must allow
one to reconfigure it at runtime, e.g., plugging in new
sensors or boards, as well as changing the frequency of
data measurements.

B. Application to the SMARTCAMPUS use case

At the prototype level, the SMARTCAMPUS use case
needs to deal with three different kinds of sensor boards:
(i) Electronic Bricks4 (temperature and light sensors, now
discontinued), (ii) Grove Shields5 (parking spaces sonar,
temperature and light sensors) and finally (iii) Phidgets6

(presence detector). Obviously these platforms rely on differ-
ent tools to collect data. More critically, even if the two first
ones use an Arduino micro-controller as sensor board, the
needed software libraries used to decode the measure differ.
As the sensor can be deployed anywhere on the campus
even in the rooftop, it is mandatory to remotely configure
the sensors from a centralized interface, without knowing
which technology is used.

C. Tackling the Challenges

1) Unifying Data format: To tackle the Consistency chal-
lenge, a mechanism must be provided to unify the different
data formats used in the architecture. In the described
architecture, the bridge is dedicated to this role. It defines
and implements an intra-network protocol that standardize
messages between the boards and the bridge, sending to the
middleware the measurements in a standardized format.

Intra-network protocol. The bridge receives data on
its sensor network communication interface from the
sensor board. The specificities of each manufacturer
are implemented, as an off-the-shelf class inheriting a
SensorProvider interface. Thus, the bridge transpar-
ently translate the proprietary format into a common rep-
resentation encoded in JSON [9] (FIG. 4). It contains the

4http://www.seeedstudio.com/wiki/Electronic Brick Starter Kit
5http://www.seeedstudio.com/wiki/GROVE System
6http://www.phidgets.com/

{"n": "TEMP_SENSOR", "v":24, "t":4520}

Figure 4. Example of message forged by the sensor board.

following pieces of information: (i) identifier of the sensor,
(ii) measurement value and (iii) associated timestamp.

Bridge routing. Messages coming from the different sen-
sor boards are collected by the bridge in order to be sent
over the Internet. The application on the bridge maps each
sensor with an endpoint and sends the data collected to
this endpoint. When a message is received by the bridge,
the identifier field is read to determine the corresponding
endpoint. The message is then queued and will be sent in an
array along with others messages assigned to this endpoint.

2) Tranparency of configuration: To be able to work with
various platform without having to deal with specificity of
each platform, transparency is mandatory. The architecture
relies on a minimal configuration protocol defined as the
intersection of operations classically supported by sensor
providers. This protocol works on the following data for
each sensor:

• id: unique identifier for each sensor;
• type: type of sensor (e.g., temperature, sonar);
• period: time interval between two measurements;
• interface: communication interface used to send mea-

surements to the bridge;
• end point : where do measurements must be sent?

To handle manufacturers’ heterogeneity with respect to
sensor configuration, we used the same mechanism than
the one used to unify the data formats: a generic interface
(SensorConfiguration) implemented differently for
each sensor configuration protocol. This interface contains
the following operations:

• add. It adds a sensor on the platform, allowing the
sensor network to send measurements for this sensor;

• del. It deletes a previously added sensor;
• freq. It modifies the measurement frequency;
• route. It declares the endpoint associated to this

sensor.

For example, one can physically plug a temperature sensor
on a given board, and then send an add command to declare
it and start to collect data from it. One can change its
destination (endpoint) by using the route operation (e.g.,
for privacy reasons), as well as its frequency using the freq
one (e.g., suspending measurement at night).

3) Remote and dynamic configuration: To achieve the
Configuration challenge, specific functional elements are
defined in the middleware to support configuration manage-
ment (FIG. 5).

• Sensors parameters Database: A database that contains
configuration of every sensors in the sensor network,
lists all sensor boards and all bridges.

Collector
Authentication

Split message
packets into

single messages

Fast !

Collector
Authentication

Split message
packets into

single messages

Fast !
Messages

Queue

Message
processing

Message
processing

Database

Checker
Sensors emission

checking

Sensors
parameters

Sensors
API

Config
Configuration
broadcasting

Accessor

Virtual sensors
or

Raw data

Internet

Data
API

Figure 5. Architecture description of the middleware.

• Configuration: A routine called periodically to propa-
gates the configuration of sensors to their related bridge.

Therefore, to add or update a sensor in the architecture,
the user connects to an application and enters the configu-
ration of this sensor. This configuration is stored in Sensors
parameters Database. This configuration is then periodically
broadcasted by the configuration block to the related bridge,
the bridge will then translate the configuration in a way that
the related sensor board understand.

It is important to notice that a user does not have to
know on which bridge the sensor board is connected. The
configuration block first asks each bridge for the list of all
the sensor board connected to it. Then it sends to each bridge
the configuration of every sensors on those board. As boards
are often connected to the bridge using a wireless protocol,
the user can move a given board from one place to another as
long as it stays in the reception range of an existing bridge.

V. DATASETS VELOCITY AND VOLUME

Considering the data collection as realized thanks to the
previous section, the data reception must be handled, as
well as the storage of the received measurements. This part
addresses requirements related to horizontal and vertical
scalability (R3), implemented in the middleware (FIG. 5).

A. Challenges

The middleware should not be a bottleneck for the data
collection. It has to handle the reception of large amount
of data and be able to store it. Moreover, this middleware
should maintain quality of data by identifying if a data is
relevant or corresponds to a dysfunctional sensor.

• Horizontal scalability. The system must support high-
throughput data reception. It must not reject a mea-

Table I
COLLECTOR’S REST INTERFACE

Method Resource Parameter
POST /value Message array

surement because of an overload. While processing
the incoming measurements, the system must identifies
abnormal data.

• Vertical scalability. The system must store the received
data, and as new sensors can be added at runtime, the
database storage size must scale.

B. Application to the SMARTCAMPUS use case

Since many sensors are deployed in the SMARTCAMPUS
use case, data will be sent in parallel to the middleware. In
the worst case, all the sensors of the whole campus will send
a measurement at the very same time. As the initial prototype
was built using cheap sensors for experimental purpose only,
sensor stability was not the priority. As a consequence, the
temperature sensors used on the prototype often send deviant
data (e.g., a temperature suddenly greater than the previous
one by more than 70 celsius degrees for a couple of seconds).
The middleware has to identify such deviation and handle
it properly. Finally, as time goes by the datasets increased,
and the storage has to be adapted to support it.

C. Tackling the Challenges

1) High-throughput Data collection: First of all, the mid-
dleware has to collect data and pre-process it. Two specific
functional elements are designed to handle those tasks : (i)
the collector and (ii) the message processing blocks.

• Collector. The collector represents the front side of the
data collection system. It is exposed on the Internet

Figure 6. V olume.year−1 = ϕ(|sensors|, period)

thanks to a REST API (see TAB. I). When a message
array is received, the collector splits it into single
message packets and authenticates the sensor. If the
sensor is correctly identified, the packet is put into
a message queue in order to be processed by the
Message processing block. Based on these principles,
the collector is intrinsically stateless and can be load-
balanced with simple HTTP mechanisms.

• Message processing. Message processing blocks are
designed to pre-process data in the queue before storing
them in the database. It allows some specific handling
on data coming from a given class of sensors like
verifying the relevance of data. These handlers are
defined by the system administrator and executed on
the received messages. This process can also be load
balanced, as in concurrent programming terms the
message queue is a data producer and the processing
step a consumer. If too much messages are accumulated
in the queue, one can start additional consumers to
accelerate the processing throughput.

2) Data storage: According to the Velocity of the re-
ceived measurement, the Volume of the datasets become
quickly extremely large. Let the length of a sensor data
message be assumed as weighting 96b, using the assumption
made in SEC. II (it is an underestimation of classical mes-
sage weights). The volume produced by a set of sensors
pushing measurements with a given period is computed as
the following: volume = |sensors| × period× 96b.

As a consequence, considering a single sensor with a
period of one second, up to 3.03 Gb of data are generated
in a single year. We represent in FIG. 6 the evolution of
this function when both the number of sensors and the
period vary, representing the volume of data after one year
of measurements.

Figure 7. Virtual sensor implementation.

Table II
DATA RETRIEVAL INTERFACE

Method Resource Return
GET /sensors Properties of all sensors
GET /sensors/{id} Properties of a given sensor
GET /sensors/{id}/data Measurement for a given sensor

To exemplify this challenge, we take in consideration
scenarios presented in SEC. II:

• Parking lot occupation. Let’s consider a single park-
ing space equipped with a sonar located on arbour
overhanging the cars. This sonar sends data every 10
seconds. This sonar generates 300 Mb by year. Let’s
multiply this amount by the number of sonars on each
parking space (∼ 500) : 300× 500 = 150 Gb.

• Heating regulation. The SophiaTech campus is com-
posed by 8 building with 100 rooms each. Let’s con-
sider a single room equipped with a temperature sensor
sending data every 10 seconds. By the same computa-
tion done previously, we figure out a 300 Mb amount
of data produced each year. For a single building this
amount is 300× 100 = 30 Gb. For the whole Sophia-
Tech campus this amount of data is : 30× 8 = 240 Gb

The database should offer such storage with a fast data
recovery for users. To implement the database, all solutions
are possible, e.g., SQL, NoSQL, data warehousing. The
usage of a JSON standard format as described in the previous
section gave a document orientation to the architecture. As
a consequence, the MongoDB NoSQL database was used in
the prototype.

VI. ADDING VALUE TO BIG DATA

In this section, we describe the mechanisms available to
an user to exploit the data stored in the previous section.
These mechanisms address requirements related to the Data
As A Service paradigm (R4).

A. Challenges
Users accesses the database to retrieve data collected from

the different sensor networks. As we offer them a large

dataset, search and retrieval might not be as easy as it
could seem. Moreover, they might use and build user-defined
sensors which perform statistics, aggregation and translation
on data. We identify two challenges that need to be tackled:

• Lookup: A convenient way to retrieve specific measure-
ments must be offered to users.

• User-defined sensors: To add value on data, users might
group them to perform statistics and aggregation. More-
over, as some data could not be easily understandable
(e.g., values returned from sensors depends on the
sensor technology), a mechanism to translate these raw
data into exploitable data must be provided to users.

B. Application to the SMARTCAMPUS use case

Since the SMARTCAMPUS project provides access to the
collected datasets to many different users (e.g., students or
researchers), who do not have the same needs, different
use cases have to be considered. Indeed, a survey in the
campus showed that some people were interested in raw
data for statistic uses, others wanted pre-processed data to
create third party applications. For example, a developer can
build an application which counts how many free parking
spaces are available by retrieving from the database the
last occupation rate measurements thanks to the sensors
deployed on each parking space. This application answers
the motivating scenario of parking lot occupation presented
in SEC. II. A user-defined sensor freeSpaces can be defined
as the sum of the other occupation values to build a virtual
sensor providing the number of free parking spaces in the
campus.

C. Tackling the Challenges

1) Data retrieval: A large dataset is accessible to users.
To tackle the lookup challenge, a simple access
interface must be provided. The table II presents
methods that users can call to retrieve data or sen-
sors properties. The data access can also be re-
stricted depending of the data criticality. The resource
/sensors/{id}/data accepts as an input filtering
requests, e.g., the time range expected by the user, a
sampling method to be used to sample the dataset.

2) User-defined sensors: To tackle this challenges, we
introduce the notion of Virtual sensor. A virtual sensor
is defined by a user and is stored into the configuration
database like a physical one. It differs from physical
sensors by having a script properties executed when
its dependencies produce data. For example in FIG. 7,
a physical sonar sensor is located on top of a parking
space. An occupation sensor for this space is defined
as a script which transform the sonar measurement
into a boolean, determining if the space is occupied or
free based on the distance between the arbour and the
ground. Virtual sensors are used to add transparency
for the user. Indeed, they can perform data conversion

and aggregation on-the-fly. From the user’s point of
view, everything is transparent: she does not have to
know if the sensor is physical or virtual. She only
gets from the Data API a list of sensors. An accessor
(cf. FIG. 5) between the Data API and the database
addresses this issue. The accessor leads to two types
of behavior when accessing data:

• If the sensor’s type is physical: the accessor
queries the sensor’s data database where sensor’s
data are saved, and returns the measurements.

• If the sensor’s type is virtual: the accessor needs
to access both sensor’s configuration database
and sensor’s data databases. The sensor’s config-
uration database provide the accessor a way to
compute measures asked with physical sensor’s
measures.

VII. RELATED WORK

The pervasive dimension of Big Data is known, especially
when applied to the IoT and sensors. Research initiatives
focused on software architecture in this context address
(i) the storage dimension of the platform [10], (ii) the quality
of the collected data [4] and (iii) the availability of the
datasets as services [3]. The architecture presented in this
paper complement these efforts, as it strengthen the hard-
ware dimension of such an architecture. At the middleware
level, we rely on complementary technologies (e.g., NoSQL
databases, service orientation, REST interfaces) that can be
integrated with the one used in the previous approaches with
well known technologies, e.g., Enterprise Service Buses,
workflows. On of the strength of the service orientation is
to allow one to replace one service by another, creating its
own middleware through the composition of these works,
according to her very own needs.

Sensor storage marketplaces are essentially proprietary,
e.g., InfoChimp7, Xively8, TempoDB9. The architecture de-
scribed in this paper is an alternative to these platforms.
Moreover, the same architecture supports both data storage
and sensor reconfiguration, which is not supported by the
previously listed tools.

Sensor data format are critical to support their exploita-
tion. Our architecture relies on a simple data format for
presentation purpose, which can be replaced by standardized
data representation such as the SensorML initiative [11]
provided by the Open Geographical Consortium. This fam-
ily of languages defined the Sensor Observation Service10

facility to support sensor measurements (meta) data repre-
sentation [12].

From a service-oriented point of view, the literature con-
tains work about the requirements of a sensor collection

7http://www.infochimps.com/
8http://xively.com/
9https://tempo-db.com
10http://www.ogcnetwork.net/SOS

middleware [13], or the definition of sensor data exploita-
tion [14]. Our work is complementary, as it glues all these
approaches together.

VIII. CONCLUSIONS & PERSPECTIVES

In the context of the IoT, this paper describes a software
architecture that supports research efforts on Big Data
through the collection of large datasets obtained from phys-
ical sensors. This architecture addresses real-life require-
ments extracted from the SMARTCAMPUS project, which
aims to equip an academic campus with sensors and supports
the definition of innovating application exploiting these data.
This architecture goes from sensors to data management,
and supports a user who wants to set up a research or
production infrastructure to collect very large datasets in the
context of the IoT. The architecture is validated based on
SMARTCAMPUS scenarios, assessing its viability in practical
contexts.

The SMARTCAMPUS project is still at its beginning. As a
consequence, the work done in this architecture focused on
data collection and storage, i.e., the critical path of any Big
Data collection platform. The next step is to exploit these
large datasets: initial scenarios (e.g., temperature evolution,
parking lot occupation rate) were validated, and we are
conducting surveys and user interviews to capture extra re-
quirements from campus’ users. The key point is to develop
software application on top of these datasets to support the
base scenarios, and open the datasets to the users to let them
create their own services. It triggers interesting challenges
about scalability of a community-driven usage of such an
open data platform, the evolution capabilities of the Data as
a Service API, as well as privacy and security issues. We
plan to address these points in future works.

ACKNOWLEDGMENT

This project is partially funded by the Univ. Nice Sophia
Antipolis and the I3S laboratory. Authors want to thanks the
SMARTCAMPUS team: Romain Alexandre, Mireille Blay-
Fornarino, Cecile Camilieri, Adrien Casanova, Joel Colinet,
Philippe Collet, Thomas Di’Meco, Fabien Foerster, Ivan Lo-
gre, Laura Martellotto, Jean Oudot, Jérome Rancati, Marie-
Catherine Turchini and Guillaume Zanotti.

REFERENCES

[1] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs,
C. Roxburgh, and A. H. Byers, “Big data: The Next Frontier
for Innovation, Competition, and Productivity,” McKinsey
Global Institute, May 2011.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of
Things: A Survey,” Comput. Netw., vol. 54, no. 15,
pp. 2787–2805, Oct. 2010. [Online]. Available: http:
//dx.doi.org/10.1016/j.comnet.2010.05.010

[3] J. Zhang, B. Iannucci, M. Hennessy, K. Gopal, S. Xiao,
S. Kumar, D. Pfeffer, B. Aljedia, Y. Ren, M. Griss et al.,
“Sensor Data as a Service–A Federated Platform for Mobile
Data-centric Service Development and Sharing,” in Services
Computing (SCC), 2013 IEEE International Conference on.
IEEE, 2013, pp. 446–453.

[4] L. Ramaswamy, V. Lawson, and S. Gogineni, “Towards a
Quality-centric Big Data Architecture for Federated Sensor
Services,” in Big Data (BigData Congress), 2013 IEEE
International Congress on, June 2013, pp. 86–93.

[5] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing
as a Service and Big Data,” arXiv preprint arXiv:1301.0159,
2013.

[6] N. Haderer, R. Rouvoy, and L. Seinturier, “Dynamic De-
ployment of Sensing Experiments in the Wild Using Smart-
phones,” in DAIS, ser. Lecture Notes in Computer Science,
J. Dowling and F. Taı̈ani, Eds., vol. 7891. Springer, 2013,
pp. 43–56.

[7] S. Mosser, F. Fleurey, B. Morin, F. Chauvel, A. Solberg, and
I. Goutier, “SENSAPP as a Reference Platform to Support
Cloud Experiments: From the Internet of Things to the Inter-
net of Services,” in Management of resources and services in
Cloud and Sky computing (MICAS), workshop. Timisoara:
IEEE, Sep. 2012.

[8] S. Mosser, I. Logre, N. Ferry, and P. Collet, “From
Sensors to Visualization Dashboards: Need for Language
Composition,” in Globalization of Modelling Languages
workshop (GeMOC’13). Miami: IEEE, Sep. 2013, pp. 1–6.
[Online]. Available: http://www.i3s.unice.fr/∼mosser/ media/
research/gemoc13.pdf

[9] D. Crockford, “The application/json Media Type
for JavaScript Object Notation (JSON),” RFC 4627
(Informational), Internet Engineering Task Force, Jul. 2006.
[Online]. Available: http://www.ietf.org/rfc/rfc4627.txt

[10] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan,
“IrisNet: An Architecture for a Worldwide Sensor Web,”
IEEE Pervasive Computing, vol. 02, no. 4, pp. 22–33, 2003.

[11] M. Botts and A. Robin, “OpenGIS Sensor Model Language
(SensorML) Implementation Specification,” OGC, Tech. Rep.,
Jul. 2007.

[12] C. A. Henson, J. Pschorr, A. P. Sheth, and K. Thirunarayan,
“SemSOS: Semantic Sensor Observation Service.” in CTS,
W. K. McQuay and W. W. Smari, Eds. IEEE, 2009, pp.
44–53. [Online]. Available: http://dblp.uni-trier.de/db/conf/
cts/cts2009.html#HensonPST09

[13] N. Mohamed and J. Al-Jaroodi, “A Survey on Service-
oriented Middleware for Wireless Sensor Networks,” Serv.
Oriented Comput. Appl., vol. 5, no. 2, pp. 71–85,
Jun. 2001. [Online]. Available: http://dx.doi.org/10.1007/
s11761-011-0083-x

[14] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong, “TinyDB: An Acquisitional Query Processing
System for Sensor Networks,” ACM Trans. Database Syst.,
vol. 30, no. 1, pp. 122–173, Mar. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1061318.1061322

