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Abstract. Sensors networks are the backbone of large sensing infras-
tructures such as Smart Cities or Smart Buildings. Classical approaches
suffer from several limitations hampering developers’ work (e.g., lack of
sensor sharing, lack of dynamicity in data collection policies, need to
dig inside big data sets, absence of reuse between implementation plat-
forms). This paper presents a tooled approach that tackles these issues.
It couples (i) an abstract model of developers’ requirements in a given
infrastructure to (ii) timed automata and code generation techniques,
to support the efficient deployment of reusable data collection policies
on different infrastructures. The approach has been validated on sev-
eral real-world scenarios and is currently experimented on an academic
campus.
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1 Introduction

The Internet of Things [13] relies on physical objects interconnected between
each others, creating a mesh of devices producing information flow. The Gartner
group predicts up to 26 billions of things connected to the Internet by 2020.
These things are organized into sensor networks deployed in Large-scale Sensing
Infrastructures (LSIs), e.g., Smart Cities or Smart Buildings, which continu-
ously collect data about our environment. These LSIs implement Cyber Physical
Systems (CPSs) that monitor ambiant environments.

Facing the problem of managing tremendous amounts of data, a commonly
used approach is to rely on sensor pooling [9, 19] and to push data collected
by sensors in a central cloud-based platform [15]. Consequently, sensors cannot
be exploited at the same time and one needs to rely on data mining solutions
to extract and exploit relevant data according to usage scenarios [1, 17]. This
approach is adapted for many scenarios where data mining techniques are re-
quired, and has the advantage of separating concerns of data collection from
data exploitation. Nevertheless, there are many real-life case studies and sce-
narios where developers need to exploit shared LSIs and implement a diversity
of applications that do not need data mining expertise [4]. In this context, the



cloud servers create de facto silos that isolate datasets from each others and
act as a centralized bottleneck. In addition, the computation capabilities of the
other layers of the LSI (e.g., the micro-controllers used to pilot the sensors at
the hardware level, or the nano-computers acting as network bridges to connect
a local sensor infrastructure to the Internet) are under-exploited [10].

To develop software that fully exploits a LSI, the infrastructure must be
considered as a white box. But the developer tasks is then more complex as they
have to deal with tedious low-level details of implementation out of their main
business concerns. This assumes a deep knowledge of micro-controller (sensor
platforms) and nano-computer (bridges) programming [4], while a diversity of
technological platforms must be handled. In such a situation, programming at
the higher level of abstraction and reusing as much code as possible between
scenarios and LSIs is of crucial importance. Moreover developers also have to
deal with the sharing aspects. It is hard for them as new requirements must be
enacted on the LSI and may easily interfere with the other ones.

In this paper, we propose a tooled approach that tackles all these problems
and aims at improving reuse, supporting sharing and dynamic data collection
policies. A software framework enables developers to specify and program at an
appropriate level their sensor exploitation code. It relies on an abstract model of
developers’ requirements in a given infrastructure so that timed automata and
code generation techniques can be combined to support the efficient deployment
of data collection policies into a LSI. As a result, several applications can rely
on the same sensors, and thus share them. A given code can be reused, trans-
lated and deployed on different infrastructures. The framework also ensures that
multiple policies can be dynamically composed, so that the generated code auto-
matically handle all requirements and get only relevant data to each consumer.

The remainder of this paper is organized as follows. In Sec. 2, we describe
the motivations of our work by introducing a real-life case study and organizing
requirements. We present in Sec. 3 the foundations of our framework. In Sec. 4
we assess our approach, providing an illustration, discussing current applications
and validating the identified requirements. Sec. 5 discusses related work while
Sec. 6 concludes this paper and describes future work.

2 Motivations

In this section, we motivate our work by first introducing the SmartCampus
project, then by defining requirements for a development support for shared LSIs.
SmartCampus has been deployed on the SophiaTech campus1 of the University
of Nice, located in the Sophia Antipolis technology park. We also introduce a
running example extracted from SmartCampus.

2.1 The SmartCampus Project

The SmartCampus project is a prototypical example of an LSI [4]. It acts as
an open platform to enable final users (i.e., students, teaching and administra-
tive staff) to build their own innovative services on top of the collected (open)

1 http://campus.sophiatech.fr/en/index.php



data. This project is exactly the class of LSI this work is addressing as it faces
the following issues : (i) it is not possible to store all the collected data in a
big data approach and (ii) even if one can afford to store all these data, the
targeted developers do not master data mining techniques to properly exploit
it. Typically, pieces of software deployed in SmartCampus are driven by func-
tional requirements (e.g., “where to park my car?”) and leverage a subset of
the available sensors (here the parking lot occupation sensors) to address these
requirements. Contrarily to classical systems that use sensor pooling [9, 19], dif-
ferent applications, such as the parking place locator and an emergency system
assessing the availability of fire brigade access in the parking lots, rely on the
same set of sensors at the very same time. Moreover, developers do not know
the kind of hardware deployed physically in the buildings. To support software
reuse across different architectures, there is a need to abstract the complexity of
using such heterogeneous sensor networks at the proper level of abstraction.

2.2 Supporting Shared Sensing Infrastructure

From the functional analysis of the SmartCampus project (ended in December
2013), we highlighted four requirements with respect to software reuse [4]. These
requirements are not only project specific, but also do apply to any IoT-based
platform needing to share its sensors on a large scale, e.g., LSIs. This class of
system include upcoming smart-building or smart cities wishing to aggregate
communities of users to leverage sensors-based system and produce innovative
services based on citizen needs.

Pooling and Sharing (R1). Classical systems rely on sensor polling, with corre-
sponding booking policies. Typical examples of such systems are, for example,
the IoT lab platform in France, containing 2,700 sensors deployed in 5 research
centers across the country for experiments [9], or the Santander smart city with
a closed set of IoT based scenarios [19]. Users book a subset of sensors, work
with it and release it afterwards. This setup does not match what is expected in
the SmartCampus context. Moreover sensors available in an LSI are classically
available through pooling mechanisms [12, 21]. On the one hand, this mecha-
nism is useful when sensors are installed to match a particular setup and deliver
a single service. But on the other hand, it is completely irrelevant to the set of
scenarios defined by our class of application. Providing a system that only sup-
port sharing is also irrelevant, as one needs to deploy critical pieces of software
to sensors and be assured that such a critical process will be isolated from other
processes (this is similar to the virtual machine isolation requirement in cloud
computing).

Yield only relevant data (R2). To support sharing, classical architectures actually
collect data at the minimal available frequency, and store the complete dataset in
a cloud-based system, like in Xively [15]. Then, data mining techniques are used
to recompute the relevant data from this complete dataset [1, 17]. This faked
sharing leads to two type of issues: (i) application developers must be aware of
the data mining paradigm instead of focusing on their system and (ii) as their is



no model of what data was expected by the application, it is impossible to reuse
the code written for a given LSI into another one. It is worth to note that by
yielding only relevant data, developers who want to express mining scenarios will
simply define as relevant a wider set of data than classical developers, making
the two approaches non-exclusive.

Dynamically support data collection policies (R3). There is a need to model what
kind of data are expected by a given application, in a data collection policy.
From a developer perspective, this requirement is critical as it is not reasonable
to program specifically for each LSI addressed by the same application, utterly
preventing software reuse. In addition applications exploiting the sensors require
to change their policies, for example by temporarily increasing some collection
frequency during a short period of time. These policies must be enacted dynam-
ically on the LSI to support such changes. Working with a formal definition of
what data are expected by the different consumers is the entry point to apply
verification and validation techniques on LSIs.

Handling the infrastructure diversity (R4). As the state of the art relies on
artifacts defined at the code level, it is difficult if not impossible to support soft-
ware reuse across different LSIs. Several approaches leverage operating systems
techniques to provide a standard way to program sensors (e.g., TinyOS [14],
Contiki [8]). However, these operating systems must be supported by the avail-
able sensors. If not, it is up to the developer to manually translate the code from
one system to another. In addition, even in the same LSI, hardware obsolescence
requires to replace old sensors by new one, often with new hardware due to sen-
sor production life cycle [3]. Thus, it is critical to operate at a code-independent
level to express data collection policies.

Summary. Classical approaches are deporting all the sensing intelligence to a
cloud-based solution, under-exploiting the computation capabilities of the other
layers of the LSI [10]. This also floods the cloud storage with irrelevant data.
Even with the help of data mining solutions, the resulting architectures are
either centralized with important overhead, or distributed, but still based on an
inflexible mining pipeline with identified bottlenecks [17]. Thus, based on the
analysis made in the SmartCampus, there is no solution covering all the four
requirements expressed by the project. To some extent, this is not surprising.
These approaches rely on a strong hypothesis of single consumer and very limited
access to the sensors. Thus, only half of R1 (i.e., pooling) and half of R2 (i.e.,
mining) are covered. The two last requirements R3 & R4 are covered at the
code level, preventing reuse and making maintenance and evolution complex.
Considering the emerging class of system that targets communities of developers
such as the Fireball project2, the previous assumptions does not hold anymore.

2.3 Running Example

We introduce here a running example to illustrate the approach. It is a simplifi-
cation of the use cases identified in the SmartCampus’s experimental LSI [4].

2 http://www.fireball4smartcities.eu/



The SmartCampus implementation defines a CPS based on two layers:
micro-controllers (sensors and sensor boards) and nano-computer (bridging the
sensor network and the Internet). Sensor measurements are sent to a sensor
board, which aggregates sensors physically connected to it. The board is usually
implemented by a micro-controller that collects data and send them to its as-
sociated bridge. A bridge aggregates data coming from multiple sensor boards
(thanks to radio or wire-based protocols) and broadcasts on the Internet the
received streams to a data collection API, using classical Ethernet connection.

In our example we consider two users, Alice and Bob, who need to use the
same sensors to build their own application. Alice develops an application ex-
ploiting the associated LSI by collecting data from a temperature sensor every
couple of second. Without any specific support, she has to write (i) code to be
enacted on the different micro-controllers linked to temperature sensors (an in-
finite loop measuring the temperature every 2 seconds), (ii) code to aggregates
these data at the bridge level (reading the data sent by the micro-controllers
in proprietary representations, and sending it to the cloud-based collector, after
having performed data translation from micro-controller format to the collector
one), and finally (iii) the code that exploits the collected data to implement her
application. We claim here that only the latter should be Alice’s concern. On his
side, Bob develops an application exploiting a temperature sensor each second
and a humidity sensor every three seconds. He needs to perform the same kinds
of actions as Alice : (i) writing the code that reads temperature sensors each
second and humidity sensors every 3 seconds, (ii) aggregating these data at the
bridge level and (iii) implementing his application exploiting the collected data.

As simple as this example is, it illustrates the identified requirements. Both
users will need to use the same temperature sensor (R1), and as they have
different usages of this sensor, we do not want them to be flooded with non-
desirable data (R2). As the sensor network evolves and has to support new
users (i.e., the arrival of Bob), it needs to dynamically adapt the data collection
policies (R3). Finally, as the sensor networks is going to be heterogeneous and
composed of different layers (i.e., collection and network), the produced code
must automatically fit the infrastructure (R4).

3 Contribution: The COSmIC Framework

To address the four identified requirements, we propose the COSmIC frame-
work, a set of Composition Operators for Sensing InfrastruCtures. This section
describes the foundations underlying the framework.

3.1 Data Collection Policies as Timed Automata

In sensor networks, automata are commonly used for protocol modeling, and
component model approaches [23] are used to develop embedded applications,
focusing on the definition of Interface Automaton between each components.
These automaton-based interfaces enable the different components. We propose
to leverage this representation to (i) model the data collection policy expressed



by the developer, implementing what she expects from an LSI through code
generation (ii) compose and decompose (dynamically) these policies to handle
sharing and infrastructure diversity.

We define a data collection policy p = 〈Q, δ, q0〉 as a simplification of a
classical timed automaton. Q is the set of states defined by the automaton,
δ : Q→ Q, its (deterministic) transition function from a given state to another
one and finally q0 its initial state. In real LSIs, tick period is rarely lesser than one
second, thus our model assumes a single logical clock that triggers a transition
each second. As a policy aims to be indefinitely executed on an LSI, it must be
cyclic, and the length of the cycle represents the period of p, denoted as Pp. A
given state q ∈ Q contains an ordered set of actions A implementing the way
the developer interacts with the LSI.

In our example, the corresponding policy for Alice pa is represented by an
automaton (depicted in Fig. 1) with two states {a1, a2}.

As a policy needs to be enacted on different platforms, user requirements are
translated into a set of basic operations:

– read: Read the value of a sensor, e.g., for actions used in our temperature
and humidity example.

– emit: Send a value to an external endpoint, which is usually implemented
as a Web service exposing a destination URL for the collected data.

According to this representation and the associated actions, a software de-
veloper is able to model what she expects from the LSI for her given use case.
The key point is that the developer is completely unaware of the internal im-
plementation of the LSI, and only focuses on reading sensor values and sending
data over communication interfaces.

3.2 The Generator Operator (γ)

The designed models are useless if not coupled to code generation algorithms that
transform these logical representations into executable code. One of the main
issues to tackle here is the variability existing between the different hardware
elements that compose an LSI (R4). For example, at the micro-controller level,
a plain Arduino board does not support the emit action, whereas an Arduino
coupled to an Ethernet communication shield supports it.

We thus define a code generator γ as a couple of functions (pre, do), each
consuming as input a policy p. The pre function checks a set of preconditions on
p to ensure that this policy can be projected to the hardware platform targeted

a1 a2

1s

1s

read(temp, t) emit(t, "http://alice:8080")

In our example, the corresponding policy for Alice pa is represented by an
automaton (depicted in Fig. 1) with two states {a1, a2}:

actions(a1) = {read(temp, t)}
actions(a2) = {emit(t, “http://alice:8080”)}

�a(x) 7! (x = a1 ) a2) _ (x = a2 ) a1)

pa = ({a1, a2}, �a, a1)

As a policy needs to be enacted on di↵erent platforms, user requirements are
translated into a set of basic operations:

– read: Read the value of a sensor, e.g., for actions used in our temperature
and humidity example.

– emit: Send a value to an external endpoint, which is usually implemented
as a Web service exposing an destination URL for the collected data.

According to this representation and the associated actions, a software de-
veloper is able to model what she expects from the LSI for her given use case.
The key point is that the developer is completely unaware of the internal im-
plementation of the LSI, and only focuses on reading sensor values and sending
data over communication interfaces.

3.2 The Generator Operator (�)

The designed models are useless if not coupled to code generation algorithms that
transform these logical representations into executable code. One of the main
issues to tackle here is the variability existing between the di↵erent hardware
elements that compose an LSI (R4). For example, at the micro-controller level,
a plain Arduino board does not support the emit action, whereas an Arduino
coupled to an Ethernet communication shield supports it.

We thus define a code generator � as a couple of functions (pre, do), each
consuming as input a single policy p. The pre function checks a set of precondi-
tions on p to ensure that this policy can be projected to the hardware platform
targeted by p. The do function takes as input the automaton to transform, as
well as additional parameters given by the environment. These parameters map
logical names to physical elements when relevant (e.g., sensors on an Arduino
platform are only identified by the pin number they are plugged in). In a produc-
tion environment, the generators will not be executed by the developer herself.
She will only express her needs, and will enact them on the LSI which actu-
ally knows its internal infrastructure. A deployment engine will select the right
generator and use it for each targeted hardware element.

on a ce deployment engine dans Cosmic ? sinon c’est di�cile a faire ? on re-
utilise une techno connue (donc citation...) ?

For example, we consider here the policy pa defined in the previous section,
and an Arduino platform as generation target. The corresponding precondition

Fig. 1. Excerpt of a data collection policy



by p. The do function takes as input the policy to transform, as well as additional
parameters given by the environment. These parameters map logical names to
physical elements when relevant (e.g., sensors on an Arduino platform are only
identified by the pin number they are plugged in). In a production environment,
the generators are not executed by the developer herself. She will only express
her needs, and will enact them on the LSI which actually knows its internal
infrastructure.

For example, we consider here the policy pa defined in the previous section,
and an Arduino platform as generation target. The corresponding precondition
checker assesses the absence of emit actions in the following way:

predard(p) 7→ ∀q ∈ Qb, @emit( , ) ∈ actions(q)

In this case, the checker detects that this policy cannot be deployed on an
infrastructure based solely on Arduino, as this hardware does not match the
requirements expressed in the policy, i.e., emiting a data to the Internet.

Considering a policy p valid for the Arduino platform (the decomposition
operator described in the next section shows how to make pa valid), the doard
function then visits p to produce the code to be executed on the board, using
the Wiring3 language as target. It also takes as input a map acting as a registry
(stored in the LSI environment) binding a sensor name to the physical pin that
connects it to the board. Lst. 1.1 shows the resulting code for a board coupled
to temperature sensor temp on pin 9 and an humidity one hum on pin 10.
The generator maps actions such as read(temp, t) into Wiring code like v t =

analogRead(9).

1 void setup() { // Initialization
2 pinMode(9,INPUT); pinMode (10,INPUT);
3 }
4 void a1() {
5 v_t = analogRead (9); v_h = analogRead (10);
6 delay (1000); return a2();
7 }
8 void a2() {
9 v_t = analogRead (9);

10 delay (1000); return a1();
11 }
12 void loop() { return a1(); } // Entry point

Listing 1.1. Generated code example: doard(p)

Code generators also allow users to reuse their policy for different sensing
infrastructures as a given COSmIC policy can be translated to many targets.

3.3 The Decomposition Operator (δ)

Considering a given policy, it has to be decomposed into software artifacts that
make sense on the different layers of the LSI, i.e., the micro-controller and bridge
layers. For each layer, there may be actions that are incompatible with the hard-
ware. Consequently, a given policy p must be decomposed into n layer-specific
sub-policies p′layer (where n is the number of layers) that communicate together

and where incompatible actions are substituted by internal communication [20].

3 Wiring is an open-source framework for micro-controllers (http://wiring.org.co/).



This decomposition is performed thanks to a compatibility table T . A function
fT (a, P ) applied on this table returns a boolean value reflecting the compatibil-
ity of an action a on the platform P 4. This decomposition process is defined as
follows:

δ(p) ≡ ∀a ∈ p, ∀P ∈ layers, fT (a, P )⇒ a ∈ p′a
If we consider micro-controllers implemented by Arduino boards and bridges

implemented by Raspberry nano-computers, the micro-controller level will not
support the emission of data to external endpoints, due to a lack of proper
communication interface. In our example, Alice’s policy will be decomposed by
the operator into two sub-policies: δ(pa) = {p′mic, p

′
bri}. Consequently, the pmic

will read the sensor value and send it to an internal endpoint (substitution of the
emit action) thanks to the serial communication that links the sensor board to
its bridge. This policy is accepted by the predard function defined in the Arduino
code generator, meaning that pmic can be deployed on such hardware. The pbri
policy is executed on the bridge to read the internal communication port and
emit the received data to the external endpoint.

3.4 The Composition Operator (⊕)

On a shared LSI, policies designed by different developers will be executed on
the very same piece of hardware COSmIC provides a composition operator de-
noted as ⊕ at the automaton level. It composes two given policies and produces
a single policy containing an automaton corresponding strictly to the parallel
composition of the two inputs.

The ⊕-operator assimilates a timed automaton implementing a policy p with
a period Pp as a periodic function. The composition of two periodic functions f1
and f2 is a periodic function f = f1 ◦f2 where its period Pf is the least common
multiple of Pf1 and Pf2 . Applied to policies, this means that the composition
of two policies p1 and p2, denoted as p = p1 ⊕ p2 is a policy with a period
Pp = lcm(Pp1 , Pp2), where each actions of p1 (respectively p2) are executed
according to Pp1

(respectively Pp2
). As this ⊕-operator is endogenous, it allows

a software developer to dynamically reuse a policy by composing it with new
incoming policies.

In our example, the policies defined by Alice in pa and Bob in pb will exploit
the same temperature sensor on the same micro-controller and use the same
bridge to emit their values. More details on the composition and decomposition
processes are given in Sec. 4.2.

4 Assessment

In this section, we describe the current implementation and its application to
our prototypical LSI. Then, we show how COSmIC can be used to model and
deploy the running example. We validate our identified requirements through
some acceptance criteria and finally discuss threats to validity.

4 An example of such a table is given in Sec. 4.2.



4.1 Implementation and Application

The initial prototype of the COSmIC framework is available on GitHub5. It
is implemented with the Scala language (∼ 3500 lines of code) and covers all
the concepts presented in Sec. 3. We are currently experimenting COSmIC on
Arduino, Raspberry Pi and Cubieboard platforms as part of the SmartCam-
pus project. We also used the FIT IoT-lab platform6, featuring a pool of over
2700 sensors nodes spread across France, to experiment on the ARM Cortex M3
platform.

To experiment and demonstrate the abstraction of platforms, code generation
capabilities, sharing and reuse, we have modeled four identified SmartCampus
scenarios and then generated code for each platform type we experiment with:

– S1 - Late worker detection: at night, occupied offices are detected by checking
if the light is on (light sensor) and if there is someone in the office (presence
sensor);

– S2 - Fire prevention: a warning signal on a temperature threshold (temper-
ature sensor);

– S3 - Heat monitoring : air-conditioning and heating are controlled by check-
ing the ambient air in buildings (temperature sensor);

– S4 - Energy wasting : To comply with environmental standards, the quality
manager wants to monitor light kept on when the building is empty (light
sensor and presence sensor).

Table 1 presents the number of lines of code (LoC) generated for each plat-
form. Every code generator includes a static overhead (template code), specific
to the targeted platform. This template provides the implementation of meth-
ods called by the COSmIC code generation. The corresponding LoC (italic row
on TAB. 1) vary between platforms as some of them are providing more fea-
tures. The Raspberry Pi template contains only 85 LoC, corresponding to serial
reading and value emission on the Internet (a Raspberry Pi cannot read values
directly from sensors in the SmartCampus infrastructure). On the other hand,
the ARM Cortex M3 template comprises 169 LoC to handle its sensor and net-
work interface. Using a template is efficient as we target low-level platforms, and
those functions encapsulate a part of their complexity. For example, a method
provided in the ARM Cortex M3 template handles the IPv6 retrieval of sensor
measures from a border-router.

We can first observe that without considering the boilerplate code defined
in the templates, there is no real difference in terms of LoC between COSmIC
and the underlying programming languages. This is not surprising as the design
choice of using templates hides low-level details to raise the level of abstraction
of each platform. But the key point is that the code written with the COS-
mIC framework is not a single-target code but actually a model, which can be
verified, composed automatically and projected to multiple platforms. Another
interesting property is that users do not need to know the underlying platform.
For example, if a policy relies only on digital sensors, one can use the Contiki

5 http://ace-design.github.io/cosmic/
6 https://www.iot-lab.info/



Table 1. LoC resulting from scenario generation

Arduino Arduino Raspberry ARM Cortex COSmIC
native contiki / Python M3 / Python source

Template 13 22 85 169 0
S1 6 14 13 11 7
S2 5 13 11 10 5
S3 5 13 11 10 7
S4 6 14 13 11 7

S = S1 ⊕ S2 ⊕ S3 ⊕ S4 63 51 45 39 27
Deployed: S + Template 76 73 160 208 N/A
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Fig. 2. COSmIC processes on the running example

operating system [8] to use a thread-based implementation of this policy. If a new
requirement including values coming from analog sensors needs to be enacted
on the same board, Contiki cannot be used anymore and the implementation
must be completely rebuilt using only native operations. This is not the case
with COSmIC: the two policies will be automatically composed, and it simply
implies to change the call to the code generator as the Contiki one will reject
the composed policy.

4.2 Illustration

We illustrate the application of the COSmIC operators from policy definition
to code generation on the Alice and Bob example (see Sec. 2.3), on the top
of the SmartCampus infrastructure7. Fig. 2 gives an overview of the different
activities.

7 More details can be found on a companion web page:
https://github.com/ace-design/cosmic/blob/master/publications/ICSR15.md



¶ Policies definition. In a first step, both users have to define their data
collection policies in terms of timed automaton. The Alice’s timed automaton pa
is already presented in Sec. 3.1. Bob has to express two policies: (i) temperature
collection policy (pbt) and (ii) humidity collection policy (pbh). Bob uses the ⊕-
operator to build a single policy pb containing both temperature collection and
humidity collection policies.

· Decomposition process. The next step is related to the decomposition pro-
cess thanks to the δ-operator. Policies pa and pb are global policies that contain
incompatible actions for the Arduino micro-controller (e.g. the emit action) plat-
form and for the Raspberry nano-computer (e.g. the read sensor action). The ap-
propriate compatibility table (Tab. 2) drives the decomposition process, reifying
the compatibility of actions per platform. As presented in Sec. 3.3, incompati-
ble actions are substituted by internal communications. After this decomposition
process, four layer specific sub-policies are obtained:

δ(pa) = {pamic; pabri} δ(pb) = {pbmic; pbbri}

¸ Composition process. These four sub-policies will be then deployed on
the shared infrastructure. The ⊕-operator will compose those policies and allow
Alice and Bob to exploit the same piece of hardware. pamic is composed with
pbmic, and pabri is composed with pbbri:

pamic ⊕ pbmic = pSensor platform pabri ⊕ pbbri = pBridge

The composition process is an endogenous operation returning a policy that
can be reused to be composed, possibly in a dynamic way, with future poli-
cies. pSensor platform and pBridge are the policies that will be instantiated on the
infrastructure.

¹ Code generation. The final step of the deployment process is handled by
code generators working directly on the two latter policies. The generated codes
are then flashed on the appropriate micro-controllers and bridges using classical
LSI deployment tools. At runtime, Alice and Bob will receive sensor values for
their application according to their respective needs, although the same sensor
is used for both of them.

4.3 Validation

To validate the four requirements presented in Sec. 2, we define an acceptance
criterion for each of them and discuss how they are met.

R1: Pooling and Sharing - More than one application can rely on a given sensor.
The illustration in Sec. 4.2 shows that different policies can be enacted on the

Table 2. Excerpt of the COSmIC compatibility table

Arduino Uno Raspberry Pi ARM Cortex M3
read 3 7 3
emit 7 3 3



sensing infrastructure to feed different applications. We performed also this val-
idation on the SmartCampus infrastructure with four scenarios (cf. Sec. 4.1).
In this context Table 3 illustrates that the same sensor will be used for different
scenarios, validating requirement R1.

R2: Yield only relevant data - A given application is only fed with what it ex-
pects. As shown in our illustration (Sec. 4.2), a COSmIC user models her data
collection policies with timed automaton and triggering of emit actions with
requested data periodically. The composition operator also maintains this prop-
erty by construction. It handles two policies p1 and p2 respectively T1 and T2
periodic, and produces a new lcm(T1,T2)-periodic policy. This process is trans-
parent for COSmIC users as her expressed policy will not be modified while she
will only receive data as specified in her initial policy. This validates requirement
R2.

R3: Dynamically support data collection policies - Multiple policies can be dy-
namically composed. The ⊕-operator allows the composition of data collection
policies on a sensor network. In the illustration (Sec. 4.2), Bob’s policies have
been composed into a single one using the ⊕-operator. The resulting policy can
be used by other operators. Therefore, when a new policy needs to be added to
the sensor network, one has just to compose it with the already deployed policy.
This endogenous property validates requirement R3.

R4: Handling the infrastructure diversity - A given code can be deployed on
more than one infrastructure. The infrastructure hardware variability is handled
with code generators. These code generators handle a COSmIC DSL input code
and produce the code for a given platform. We have successfully modeled and
deployed the SmartCampus scenarios on Arduino, Raspberry Pi and ARM
Cortex M3 platforms, validating requirement R4.

4.4 Threats to validity

Scenarios. Our approach is only applied to the SmartCampus context. Even if
the corresponding scenarios have been validated through questionnaires and are
close to other case studies such as SmartSantander [19], we are aware that we
need to step back and introduce more complex scenarios to benchmark COSmIC
on a larger scale.

Table 3. Sensor sharing

Light Temperature Presence
Scenario 1 - Late worker detection 3 3
Scenario 2 - Fire prevention 3
Scenario 3 - Heat monitoring 3
Scenario 4 - Energy wasting 3 3



Timed automata. Our data collection policies are represented by timed au-
tomata. If this approach fits the SmartCampus use case, the combination of
different scenarios can lead to a combinatorial explosion, (e.g., collections on a
shared sensor at frequencies of one second and one hour would lead to a 3600
states automaton with only two relevant states). The code generation process
is impacted by such automata. We currently reduce the size of such automata
thanks to a factorization process, but this optimization does not scale with a
large number of concurrent scenarios. The use of such automata also impacts
the resources. Platforms have to be always powered on, to the detriment of the
battery autonomy, to maintain a running clock delivering periodic clock tick.
Devising better techniques to handle such cases and providing resource manage-
ment is part of our future work.

Action execution duration. Our automata represent clocks with a 1 Hz fre-
quency. If the execution of an action is longer than one second, it might be
overlapped and aborted by the state transition leading the policy into an in-
consistent state. In the future, we plan to use languages based on the formal
Clock Constraint Specification Language (CCSL) [6] to determine the duration
of action execution and to ensure the temporal correctness of policies.

Deployment of new policies. Our approach handles the dynamic composition
of data collection policies and code generation for a given platform. However,
we do not support dynamic deployment as some sensor platforms need to be re-
flashed with a new firmware. When the platform support it, we rely on operating
systems (e.g., Contiki) to support this feature.

5 Related Work

Programming sensor networks with specific OS. Several operating systems have
been specifically designed for sensing infrastructures, e.g., TinyOS [14] or Con-
tiki [8]. TinyOS is based on a component architecture and comes with its pro-
gramming language NesC. A developer can create new components or reuse
components from the TinyOS’s component library to build her own application.
Contiki is adapted for networked and resource-constrained devices. Contiki ap-
plications can be written and compiled using a specific C compiler. Those OS ab-
stract some complexities of application development, such as memory or energy
optimization, but the developer has to be aware of what kind of sensor platforms
she is using, directly dealing with their implementation details at a lower level.
This leads to a lack of reusability, whereas our approach introduces a generic
way to program sensor network. The COSmIC code is written independently
from a sensing infrastructure and code generators handle the transformation to
a targeted platform.

Sensor network as a database. On top of operating systems deployed on sens-
ing infrastructure, several approaches consider the sensor network itself as a
database [7]. Storing the data as close as possible to the sensor producing it in-
stead of pushing everything to the Cloud was demonstrated as cost-efficient and
energy saving [22]. The TinyDB system [16] (not maintained since 2005) pro-
vides processing mechanisms for sensor querying and data retrieval. It considers



a sensor as a micro-database storing their collected data, and allows develop-
ers to query sensors according to different criteria (e.g., location). The Cougar
system [24] also considers data collected by sensors, and supports users by only
expressing queries that are automatically propagated to the sensors. This system
does not support sharing (as queries cannot be composed easily), and relies on
a centralized engine that computes a collection planning and collects data. On
the contrary, COSmIC fully distributes the policies to the different sensors and
the infrastructure layers, and supports multiple endpoints for each application.

Model-driven and generative approaches. The model-driven development para-
digm has been notably used to design dynamically adaptive systems and to
evolve them at runtime [18]. In this approach, the current context model is ana-
lyzed at runtime and, if an adaptation needs to be performed, a suitable configu-
ration is built thanks to reference models. The approach can fit lightweight nodes
in a sensor network [11]. Our work differs as we do not perform adaptiveness
according to the context but design sensor network applications with policies
based on a composition equation that can be reused for other compositions or
for verification purposes. Exploiting runtime composition is a perspective of our
work. The way we generate code is close to the Scalaness approach [5]. It is a
type-safe language used to wirelessly program embedded networks running un-
der TinyOS. Two stages are required to program these networks: (i) one writes
a Scalaness program, which is then (ii) translated into Java bytecode. We differ
from this approach as we use behavior models to generate code and we do not
always have the same destination platforms as we target heterogeneous sensor
networks.

6 Conclusions & Perspectives

In this paper we have presented the COSmIC Framework used for supporting
different developers’ collect policies on a shared LSI, generating code deployed
at the approriate layer of the LSI. It addresses several limitations of classical
approaches, focusing on the sharing of the infrastructure and the production of
relevant-only datasets, and allowing software developers to focus on their con-
cerns instead of LSI implementation details. The framework is implemented us-
ing the Scala language and preliminary experiments have been conducted on top
of the SmartCampus platform [4]. The COSmIC framework is a first step for
composing policies on an LSI, with a focus on policy definition and composition
operators.

Future work aims at extending the approach and making it scale to very large
LSIs. First, we will extend this set of operators to build a complete composition
algebra, with a formal definition of operator properties (e.g., commutativity, as-
sociativity, idempotency), conflict detection mechanisms to prevent inconsistent
states (i.e., sending a value before reading it) and a formal support to attach
constraints to actions. We also plan to extend these constraints to timed ones,
using the TimeSquare toolkit [6] to specify and analyze constraints based on
its logical time model and to check them also at runtime. We also plan to en-
large the set of interactions with the LSI by introducing new actions allowing



a developer to perform some data computation within the sensor network (e.g.,
Compute the average value of data coming from different sensors.

For those developers, we will improve the available abstractions by providing
a higher level DSL. It will notably hide the creation and management of states
and transitions, providing a real focus on what data are collected, processed and
used in applications.

The decomposition operator also triggers interesting challenges with respect
to the variability of hardware (i.e., Arduino, Phidgets platforms) and facili-
ties (i.e., Supported programming language, resources available) available in
the context of LSIs. We plan to use a feature modeling [2] approach to cap-
ture this variability, and to bind these models to the generation mechanisms,
providing a variable code generation according to the available hardware in a
given LSI. Finally, we also plan to support policy composition and variability
reasoning at runtime to handle dynamic adaptiveness. We expect the resulting
tooled approach to provide an end-to-end support for developers of the massively
under-deployment sensing infrastructures.
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