
HAL Id: hal-01341093
https://hal.science/hal-01341093v1

Submitted on 4 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a (de)composable workflow architecture to
define data collection policies

Cyril Cecchinel, Sébastien Mosser, Philippe Collet

To cite this version:
Cyril Cecchinel, Sébastien Mosser, Philippe Collet. Towards a (de)composable workflow architecture
to define data collection policies. Symposium on Applied Computing (SAC 2016), Apr 2016, Pisa,
Italy. �10.1145/2851613.2851962�. �hal-01341093�

https://hal.science/hal-01341093v1
https://hal.archives-ouvertes.fr


Towards a (de)composable workflow architecture
to define data collection policies

Cyril Cecchinel
Université Nice – Sophia

Antipolis
CNRS, I3S, UMR 7271
06900 Sophia Antipolis,

France
cecchine@i3s.unice.fr

Sébastien Mosser
Université Nice – Sophia

Antipolis
CNRS, I3S, UMR 7271
06900 Sophia Antipolis,

France
mosser@i3s.unice.fr

Philippe Collet
Université Nice – Sophia

Antipolis
CNRS, I3S, UMR 7271
06900 Sophia Antipolis,

France
collet@i3s.unice.fr

ABSTRACT
Sensor networks are classically used in the Internet of Things
to collect data, typically supporting Smart Cities or Smart
Homes use cases. However, a deep knowledge of these net-
works is needed to properly develop applications over the
deployed systems. This leads to a target mismatch: de-
velopers know how to exploit the collected data to develop
large-scale “smart” systems, but do not have enough knowl-
edge to technically enact and compose such behaviors on a
given sensor network. In this paper, we envision a tooled ap-
proach that supports data collection policies management at
a higher level of abstraction, fostering reuse. We discuss an
architectural abstraction based on workflow concepts assist-
ing developers in expressing data collection policies. The
resulting architectures are then composable to be enacted
on the same sensor network, but they can also be partially
reused through a selection operator.

CCS Concepts
•Software and its engineering →Abstraction, model-
ing and modularity; Domain specific languages; •Computer
systems organization → Embedded software;

Keywords
Sensor network, software architecture, software reuse

1. INTRODUCTION
According to the Gartner group, up to 26 billions of things
could be connected to the Internet by 2020. These physi-
cal objects are interconnected between each others, forming
the Internet of Things [7], and creating a mesh of devices
producing huge information flows. This mesh is mainly or-
ganised around sensor networks deployed in large scale sens-
ing infrastructures, such as smart cities or smart buildings,
which continuously collect data about their environment.

The emergence of sensor networks entails the development of
many new applications using these data. The main challenge
here is the gap that naturally exists between what a devel-
oper knows about the sensor networks and how the relevant
data can be collected. For now, the sensor network needs
to be configured at the hardware level and programmed at
a low level according to the expressed needs. This activ-
ity is extremely tedious for developers as they need to un-

derstand the diverse architectures of sensor networks and
deal with low-level programming languages (e.g., C, nesC)
and concepts. Moreover, experts cannot easily reuse, par-
tially or not, data collection policies defined by other ex-
perts on different deployments. Abstractions over wireless
sensor networks do not cover the expression and reuse of
data collection policies [16] while dedicated languages are
platform-specific.

This paper aims to highlight an approach dedicated to sup-
port developers interacting with sensor networks. We advo-
cate that some architectural abstractions, based on workflow
concepts, should be provided to developers. They would en-
able them to interact with a sensing infrastructure in a more
intentional way (i.e., what they expect from the sensor net-
work) instead of working at a lower level (i.e., how such data
are retrieved in the infrastructure). Grounded in workflow,
the provided architecture have to be complemented by a
composition operator, to automate the composition of sev-
eral policies on the same infrastructure, and by a selection
operator, enabling partial reuse of any data collection policy.

2. MOTIVATIONS
According to a recent study [11], each year in France, drivers
spend 70 million hours looking for a parking space, which
represents 10% of the global traffic and a loss of 700 Me.
Detecting illegal parking is also a concern in cities as it cre-
ates traffic jams and dangerous situations. To address these
kinds of issues, a city may use several applications to moni-
tor parking facilities. Each application relies on one or more
data collection policies, i.e., sets of operations performed
on data to convert them into knowledge [8]. To illustrate
the definition of data collection policies, we chose various
Smart Parking application scenarios from different Euro-
pean projects as they are representative of real experiments
with deployment in cities (e.g., Santander, Spain) and usage
by citizens. The following scenarios, adapted from simpli-
fied but non-trivial Smart Parking use cases, rely on data
collections from sensor networks:

A. Information screens. To help people to park their car
where space is available, the city should deploy screens
showing the number of available parking spots per dis-
trict.

B. Real-time free parking monitoring. The city should
know in real-time the number of free parking spots.



If this amount falls under a threshold, an alert should
be displayed on screens located outside the city to en-
courage citizens to commute.

C. Availability of disabled parking spaces. Disabled people
should receive notification if adapted parking spots are
available in the nearby area. Town-planners want also
to know the number of free disabled parking spots to
monitor the urban parking policy.

Cities share common concerns and develop their application
and data collection policies in their own corner, without tak-
ing into account potential reuse between and inside applica-
tions, nor between deployed sensing infrastructures. Consid-
ering the important investment required by the installation
of a sensor network1, reusing infrastructures is necessary.
As data collection policies inside them are at the same time
quite complex and fine tuned for a specific deployment, we
advocate that reuse should be supported at the level of data
collection policies by being able to easily and efficiently use
several of them on the same infrastructure, but also by se-
lecting only the relevant part of a given policy for another
developer or scenario.

In software engineering, reusability is presented as a key con-
cept allowing “a better domain architecting and engineering
[...] supported both by reuse frameworks and by domain-
specific business languages” [4]. However, these policies are
designed by developers unfamiliar to programming speci-
ficities inherant to sensing infrastructures (e.g., staged pro-
gramming, energy-saving programs). To allow developers to
express data collection policies on sensing infrastructures,
classical approaches rely on the usage of Domain Specific
Languages (DSL) or graphical languages. Traditional ap-
proaches target only one type of platform and do not allow
one to deploy the program across multiple platforms dis-
tributed over a sensing infrastructure. To reuse a policy
over different sensing infrastructure, a developer should use
a language adapted to her need abstracting the underlying
complexity of such infrastructures. This leads to our first
question, what would be the right level of abstrac-
tion for reuse? (Q1)

Then, the heterogeneity of sensing infrastructures prevents
the reuse of the same code or standard processes between
different infrastructures, even if the need is the same. For
example, both Smart Santander [14] and Butler Smartlife [1]
projects propose extremely similar Smart Parking applica-
tions, but they both have been developed from scratch. To
make the development of wireless sensor network applica-
tions easier, a developer should address both data processing-
related concerns and network-related concerns [16]. Although
there are reuse mechanisms for network-related concerns [16],
there is still a lack of approaches in reusing data collection
policies. As the redefinition of applications can be time-
consuming, error-prone and results in multiple definitions of
the same concepts, a developer should be able to reuse data
collection policies. But as some part of these previous data
collection policies can be irrelevant for her own needs, she
should also be able to select only a sub-part of it. Therefore,
our second question is how to enable the reuse of data
collection policies? (Q2)

1e.g., 15 Me have been invested for the Smart Park-
ing infrastructure within the city of Nice, France
(http://enstotoday.com/parking-worth-paying-for/).

3. CHALLENGES

3.1 Architectural Abstraction for Data Collec-
tion Policies

When a sensor network is deployed, users expect to collect
data in order to analyze their environment. However, before
collecting data, their needs have to be translated in data
collection policies and then deployed at the hardware level
in the sensor network.

With the aim of meeting the questions defined above, we
believe workflows as a suitable architectural abstraction to
define data collection policies for two reasons. First they
provide a convenient way to define “a sequence of activities
performed in a business that produces a result of observable
value to an individual actor of the business” [10]. Second, as
they can be assimilated to directed acyclic graphs [13], one
can use classical graph (de)composition transformations so
to allow a developer to reuse entire data collection policies
(hierarchical graphs [6]) or parts of them (pruning and weav-
ing [3] operations).

A developer should rely on a DSL leveraging the data-flow
perspective of workflow to abstract data collection policies.
A policy is then expressed by the developer by refining ac-
tivities as her own concepts, and dependencies as a data flow
between the concepts.

3.2 Reusing a data collection policy
Among the considered scenarios, a developer is likely to de-
ploy a large scale data collection policy, which needs to reuse
a previously defined policy deployed in another context or
at a smaller scale. As highlighed by question Q2, she should
not have to rewrite the whole policy to do so.

Vision. The hierarchical workflow mechanism – used for
example in the Kepler [2] and YAWL [17] workflow languages
– allows a workflow designer to encapsulate a workflow into
an other one. We plan to leverage this concept to data
collection policies with a Process concept. A Process is then
created through a two-steps transformation. First, a new
data collection policy is created from the input one, but
without any workflow inputs nor outputs. This allows us to
separate the data processing from their initial sources and
destinations and to connect it to new sensors or collectors.
Secondly, this newly created policy is encapsulated into a
Process concept. This operation as the same number of
sources (respectively destination) ports as the original policy
sources (respectively destination).

3.3 Reusing parts of a data collection policy
A previously defined policy may embed a data collection pat-
tern that satisfies most of the needs of a developer. Again
she should be able to reuse it without having to redesign
her policy. Model manipulation operators have been pro-
posed to support such requirement, for example meta-model
pruning [15]. This class of algorithm identifies the subset of
elements linked to a given one, and proceeds to a clear ex-
traction of the element and the related ones.

Vision. An interesting way to tackle this challenge would be
to provide to developers a selection operator σ allowing them
to select concepts in a given policy according to the same
pruning principles. This operator could defined as follows:



For a subset s of concepts defined in a policy p, the selection
operator creates a new policy p′ containing only the selected
concepts. If two concepts were connected in p, the selection
operation keeps this relationship. It must be noted that
the σ-operator also removes orphan concepts’ ports resulting
from the deletion of links.

3.4 Composing data collections policies
To perform the composition between the previous deployed
data collection policies and the new ones, we need an oper-
ator that works at the workflow level.

Vision. To tackle this challenge, we identify a composi-
tion operator ω leveraging the concept of join points intro-
duced in Aspect-Oriented Programming [9] to create exten-
sion points at the workflow level. In data collection policies,
a join point would be defined as a special data collection pol-
icy source (respectively destination) where it is possible to
connect another destination (respectively source) join point.
Each input or output port of an activity can then be ex-
tended with a join point as in the work of Mosser et al. on
Web services [12].

To perform the composition process, the ω-operator could
be defined as follows: Given two policies pa and pb, the ω-
operator matches destination join points in pa with source
join points in pb according to an association list l. It returns
a new policy p′ where each association between a destination
join point of an operation a and a source join point of an
operation b creates a link l between an output port of a and
an input port of b.

4. CONCLUSION & PERSPECTIVES
In this paper, we described a framework that helps devel-
opers in defining and reusing data collection policies over
sensor networks. The framework relies on architectural ab-
stractions based on workflow concepts, as well as on compo-
sition and decomposition operators. The composition one
enables several policies to be woven on the same infrastruc-
ture, while decomposition allows experts to partially reuse
any policy.

Future work will first aim at applying the proposed abstrac-
tion and reuse operators on Smart City scenarios and con-
sulting developers to understand how the abstraction and
the operators are used (e.g., identify whether the composi-
tion operator is more heavily used than the decomposition
one) and how they can be complemented. At mid term, we
aim at extending the proposed framework by supporting the
deployment and execution of the policies over different kinds
of sensor networks by using model-to-model transformation
techniques [5].

5. REFERENCES
[1] Butler project. http://www.iot-butler.eu/.
[2] I. Altintas, C. Berkley, E. Jaeger, M. Jones,

B. Ludascher, and S. Mock. Kepler: an extensible
system for design and execution of scientific
workflows. In 16th ICSSDM. IEEE, 2004.

[3] U. Assmann and A. Ludwig. Aspect weaving with
graph rewriting. In Generative and Component-Based
Software Engineering, pages 24–36. Springer, 2000.

[4] B. Boehm. A view of 20th and 21st century software
engineering. In 28th ICSE, pages 12–29. ACM, 2006.

[5] C. Cecchinel, S. Mosser, and P. Collet. Software
Development Support for Shared Sensing
Infrastructures: a Generative and Dynamic Approach.
In 14th ISCR, pages 221–236. Springer, 2015.

[6] G. Engels and A. Schürr. Encapsulated hierarchical
graphs, graph types, and meta types. Electronic Notes
in Theoretical Computer Science, 2:101–109, 1995.

[7] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami.
Internet of Things (IoT): A Vision, Architectural
Elements, and Future Directions. Future Generation
Comp. Syst., 29(7):1645–1660, 2013.

[8] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami.
Internet of things (iot): A vision, architectural
elements, and future directions. Future Generation
Computer Systems, 29(7):1645–1660, 2013.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In ECOOP’97.
Springer.

[10] P. Kruchten. The rational unified process: an
introduction. Addison-Wesley Professional, 2004.

[11] A. Le Fauconnier and E. Gantelet. The time looking
for a parking space: strategies, associated nuisances
and stakes of parking management in france. In ETC,
2006.

[12] S. Mosser, M. Blay-Fornarino, and M. Riveill. Web
Services Orchestrations Evolution: A Merge Process
for Behavioral Evolution. In R. Morrison,
D. Balasubramaniam, and K. E. Falkner, editors,
ECSA 2008, pages 35–49. Springer, 2008.

[13] W. Sadiq and M. E. Orlowska. Applying graph
reduction techniques for identifying structural conflicts
in process models. In Advanced Information Systems
Engineering, pages 195–209. Springer, 1999.

[14] L. Sanchez, J. Galache, V. Gutierrez, J. Hernandez,
J. Bernat, A. Gluhak, and T. Garcia. Smartsantander:
The meeting point between future internet research
and experimentation and the smart cities. In Future
Network Mobile Summit (FutureNetw), 2011, pages
1–8, June 2011.

[15] S. Sen, N. Moha, B. Baudry, and J. Jézéquel.
Meta-model Pruning. In A. Schürr and B. Selic,
editors, 12th MODELS 2009, pages 32–46, 2009.

[16] K. Tei, R. Shimizu, Y. Fukazawa, and S. Honiden.
Model-driven-development-based stepwise software
development process for wireless sensor networks.
Systems, Man, and Cybernetics: Systems, 2015.

[17] W. M. van der Aalst and A. H. ter Hofstede. Yawl: yet
another workflow language. Information systems, 2005.


