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Optimization of dispersive coefficients in the homogenization of the

wave equation in periodic structures

G. Allaire∗ T. Yamada†

July 2, 2016

Abstract

We study dispersive effects of wave propagation in periodic media, which can be modelled by adding a fourth-
order term in the homogenized equation. The corresponding fourth-order dispersive tensor is called Burnett
tensor and we numerically optimize its values in order to minimize or maximize dispersion. More precisely, we
consider the case of a two-phase composite medium with an 8-fold symmetry assumption of the periodicity cell
in two space dimensions. We obtain upper and lower bound for the dispersive properties, along with optimal
microgeometries.
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1 Introduction

Wave propagation in periodic heterogeneous media is ubiquituous in engineering and science. Denoting by ε the
small ratio between the period size and a characteristic lengthscale, it can be modeled by the following scalar wave
equation 

∂2uε
∂t2

− div (aε∇uε) = f,

uε(0, x) = uinit(x),
∂uε
∂t

(0, x) = vinit(x),
(1.1)

with periodic coefficients aε(x) := a
(
x
ε

)
, a right hand side f(t, x) and initial date uinit(x), vinit(x). For simplicity,

we assume that the domain of propagation is the full space Rd. It does not change much our results to consider
another domain but the case of the full space avoids to discuss the boundary conditions, as well as the issue of
boundary layers in the homogenization process. Here, a(y) a Y -periodic symmetric tensor and Y is the unit cube
[0, 1]d. We assume that, for 0 < α ≤ β,

α Id ≤ a(y) ≤ β Id for a.e. y ∈ Y. (1.2)

For very small values of ε, problem (1.1) can be studied by means of the homogenization theory [10], [12], [28],
[45], [51]. The result of homogenization theory is that the solution uε of (1.1) can be well approximated by the
solution u of the following homogenized wave equation

∂2u

∂t2
− div (a∗∇u) = f,

u(0, x) = uinit(x),
∂u

∂t
(0, x) = vinit(x),

(1.3)

where, in the periodic homogenization setting, a∗ is a constant effective tensor given by an explicit formula involving
cell problems (see Section 2 for details).

Although it is less classical, it is known that the homogenized equation can be improved by adding a small
fourth-order operator and modifying the source term. This is the concept of “high order homogenized equation”
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that goes back to [10], [46] and has been studied by many authors [1], [2], [4], [21], [22], [30], [48]. In the present
setting it reads

∂2vε
∂t2

− div (a∗∇vε) + ε2D∗ ∇4vε = f + ε2div (d∗∇f) . (1.4)

where D∗ is a fourth-order tensor, called Burnett tensor and studied in [17], [19], [20], and d∗ is some second-order
tensor (see Section 2 for details). Equations (1.3) and (1.4) can be established by two different methods: two-scale
asymptotic expansions (Section 2), and Bloch wave expansions (Section 3). The interpretation of D∗ is that it plays
the role of a dispersion tensor. This is explained and numerically illustrated in Section 4. In particular, for long
times of order up to ε−2, (1.4) is a better approximation of the wave equation (1.1) than (1.3) (this key observation
was first made by [46] and further discussed in the references, just quoted above).

Dispersion is classically defined as the phenomenon by which waves with different wavelengths propagate with
different velocities. In practice, it induces severe deformations of the profile of the propagating waves in the long
time limit. Here we focus exclusively on dispersion induced by homogenization and not by the more classical
dispersion effects arising in the high frequency limit (or geometric optices, see e.g. chapter 3 in [42]). In such
a homogenization setting, dispersion can occur only in heterogeneous media. Since composite materials (which
are of course heterogeneous) are ubiquituous in engineering, it is therefore very important to study its associated
dispersion properties. Dispersion can be a good thing or a bad thing, depending on the type of applications which
we have in mind. Clearly, dispersion is a nasty effect if one is interested in preserving the profile of a wave or signal
during its propagation. On the opposite, dispersion could be beneficial if one wants to spread and thus diminish
the intensity of, say, a sound wave. In any case, it makes sense to optimize the periodic structure, namely the
coefficient a(y) in (1.1), in order to achieve minimal or maximal dispersion. There are a few rigorous bounds on the
dispersive properties of periodic structures [19], [20] but no systematic numerical study. The goal of the present
paper is to make a first numerical investigation in the optimization of these dispersive properties. We restrict
our attention to two-phase composite materials with isotropic constituants. In this setting there is an extensive
literature on the precise caracterization of the set of all possible values of the homogenized tensor a∗ (see [3], [51]
and references therein). However, to our knowledge, nothing is known about the Burnett tensor D∗ (except the few
bounds in [19], [20]). Therefore, we use shape optimization techniques in order to optimize the values of D∗ for a
two-phase composite with prescribed volume fractions. Since D∗ is a fourth-order tensor, to simplify the analysis,
we restrict ourselves to a plane 2-d setting and to a geometric 8-fold symmetry in the unit cell Y , which yields a
kind of isotropy for D∗.

A key feature of the dispersion tensor D∗ is that, contrary to the homogenized tensor a∗, it is not scale invariant.
More precisely, we prove in Lemmas 6.1 and 6.3 that if the periodicity cell is scaled by a factor κ then the dispersion
tensor D∗ is scaled by κ2. Actually, even if the periodicity cell is fixed to be the unit cube Y , then the microgeometry
can be periodically repeated k times in Y (with k ≥ 1 any integer) and the dispersion tensor D∗ is thus divided by
k2. In other words, by considering finer details in the unit periodicity cell, the dispersion tensor D∗ can be made as
small as we want (in norm). As a consequence, the minimization of (norm of) D∗ is an ill-posed problem (except
if geometric constraint are added) while one can expect that the maximization problem is meaningfull.

More specifically, we consider coefficients defined by

a(y) = aA1YA(y) + aB1YB (y),

where aA, aB > 0 are two constant real numbers, YA and YB are a disjoint partition of Y , 1YA(y),1YB (y) are the
corresponding characteristic functions. Denote by Γ = ∂YA∩∂YB the interface between the two phases A and B. We
rely on the level set method [39] for the shape optimization of the interface Γ, as is now quite common in structural
mechanics [8], [38], [52]. Under an 8-fold symmetry assumption for the unit cell Y , the dispersion tensor D∗ is
characterized by two scalar parameters α and β. We numerically compute Pareto fronts in the plane (α, β) when
minimizing or maximizing D∗ under two equality constraints for the phase proportions and for the homogenized
(scalar) tensor a∗, as well as an inequality constraint for the perimeter of the interface Γ. Such an inequality
constraint for the perimeter is not necessary (and indeed is not active at the optima) when maximizing dispersion.
However, the perimeter constraint is required and active when minimizing dispersion since smaller details of the
phase mixture yield smaller dispersion (this refinement process is stopped by the perimeter constraint). It turns out
that computing these Pareto fronts is a delicate task since the optimization process is plagued by the existence of
many local optima (in contrast, our algorithm easily finds global optima when optimizing the homogenized tensor
a∗). Therefore, we rely on a complicate strategy of continuation, re-initialization and non-convex approximation
in order to obtain robust (hopefully global) optimal distributions of the two phases which minimize or maximize
dispersion. Our main finding is that the upper Pareto front (which of course depends on the phase properties
and proportions) seems to be a line segment. The corresponding optimal configurations are smooth and simple
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geometric arrangements of the two phases. Note that the checkerboard pattern seems to be optimal for maximal
α and β. We conclude this brief description of our results by recognizing that other type of dispersive properties
have already been optimized in a different context [32], [44], [50].

Let us now describe the contents of our paper. In Section 2 we recall the two-scale asymptotic expansion method
for periodic homogenization, as introduced in [10], [12], [45]. We closely follow the presentation of [4]. The main
result is Proposition 2.2 which gives (1.4) as a “high order homogenized equation”. In Proposition 2.5 we recall
a result of [17] which states that the Burnett tensor D∗ is non-positive, making (1.4) an ill-posed equation. This
inconvenient will be corrected later in Section 4.

In Section 3 we recall the classical theory of Bloch waves [12], [15], [17], [43], [54] which is an alternative method
for deriving the homogenized problem (1.3), as well as the high order homogenized equation (1.4). The main
result is Lemma 3.1, due to [16], [17], which proves that the Burnett tensor D∗ is the fourth-order derivative of the
so-called first Bloch eigenvalue.

Section 4 explains how to correct equation (1.4) to make it well-posed (see Lemma 4.1). The main idea is a
Boussinesq trick (i.e., replacing some space derivatives by time derivatives) which is possible because (1.4) is merely
an approximation at order ε4.

Section 5 presents some one-dimensional numerical simulations of wave propagation in a periodic medium. It
compares the solutions of the original wave equation (1.1) with those of the homogenized equation (1.3) and the
Boussinesq version of the high order homogenized equation (1.4). It demonstrates that, for long times of order ε−2,
the approximation is much better with (1.4) rather than with (1.3).

Section 6 discusses some properties of the Burnett tensor D∗. First, we explain that, contrary to the homogenized
tensor a∗, the fourth-order tensor D∗ depends on the scaling of the periodicity cell. More precisely, if the cell Y is
scaled to be of size κ > 0, then D∗ is scaled as κ2D∗. It implies that small heterogeneities yield small dispersion
while large heterogeneities lead to large dispersion (see Lemma 6.3). Second, we prove that a standard 8-fold
symmetry assumption of the coefficients a(y) in the unit cell Y (or of the two-phase geometry 1YA(y),1YB (y))
implies that the Burnett tensor D∗ is characterized by simply two scalar parameters.

Section 7 computes the shape derivative, i.e. the shape sensitivity, of the tensor D∗ with respect to the position
of the interface Γ. Our main result is Theorem 7.3 which gives a rigorous shape derivative. From a numerical point
of view, Theorem 7.3 is difficult to exploit because it involves jumps of discontinuous solution gradients through
the interface Γ. Therefore, following [5], in Proposition 7.6 we compute a simpler shape derivative for a discretized
version of D∗.

Section 8 explains our numerical setting based on the level set algorithm of Osher and Sethian [39] and on
a steepest descent optimization algorithm. Constraints on the volume, the perimeter and the the homogenized
tensor A∗ are enforced by means of Lagrange multipliers. We iteratively update the Lagrange multipliers so that
the constraints are exactly satisfied at each iteration of the optimization algorithm.

Section 9 contains our numerical results on the optimization of the Burnett tensor D∗ with respect to the interface
Γ. Since a first numerical test in Subsection 9.1 shows that dispersion can be minimized by a fine fragmentation
of the two phase mixture (which is just stopped at a length-scale determined by the perimeter constraint), we
later focus on determing the Pareto upper front for dispersion. It is not known if the set of dispersion tensor D∗

is convex or if its upper bound is a concave curve in the (α, β) plane. Thus, we explain in Subsection 9.2 that a
quadratic function of α and β is optimized in order to be able to cope with a non-concave upper bound. In the
same subsection we explain our intricate optimization strategy in order to avoid the many local optima that can
be found. It is a combination of continuation, varying initializations and refinement process of the Pareto front.
We are quite confident in our numerical approximation of the Pareto front since we checked it is insentitive to the
choice of interface initializations, and of parameters for the minimized quadratic function. In Figure 16 we compare
the upper Pareto front for various aspect ratios of the two phases, while in Figure 18 the comparison is made for
various volume fractions. Eventually, Subsection 9.3 is devoted to the optimization of the other dispersion tensor
d∗ which is responsible for the dispersion of the source term in the righ hand side of the high order homogenized
equation (1.4).

Finally Section 10 is devoted to the (technical) proof of Theorem 7.3 which was stated in Section 7.

Notations

In the sequel we shall use the following notations.

1. (e1, . . . , ed) denotes the canonical basis of Rd.

2. Y = [0, 1]d denotes the unit cube of Rd, identified with the unit torus Rd/Zd.
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3. H1
♯ (Y ) denotes the space of Y -periodic functions in H1

loc(Rd).

4. H1
♯,0(Y ) denotes the subspace of H1

♯ (Y ) composed of functions with zero Y -average.

5. The Einstein summation convention with respect to repeated indices is used.

6. All tensors are assumed to be symmetric, even if we do not write it explicitly. More precisely, if C is a n-order
tensor C = (Ci1···in)1≤i1,...,in≤d, it is systematically identified with its symmetrized counterpart CS , defined
by

CS =

(
1

n!

∑
σ∈Sn

Cσ(i1)···σ(in)

)
1≤i1,...,in≤d

,

where Sn is the permutation group of order n.

7. If C is a n-order tensor, the notation C∇nu means the full contraction

C∇nu =
d∑

i1,i2,...,in=1

Ci1,i2,...,in

∂nu

∂xi1 · · · ∂xin
,

where C is indistinguishable from its symetric counterpart CS .

2 Two-scale asymptotic expansions

In this section we briefly recall the method of two-scale asymptotic expansion [10], [12], [45] and, in particular,
explain how dispersion can be introduced in a so-called higher-order homogenized equation, as first proposed by
[46], and studied by many others [48], [22], [30], [21], [9], [1], [2], [4].

The starting point of the method of two-scale asymptotic expansion is to assume that the solution of (1.1) is
given by the following ansatz

uε(t, x) =
∞∑

n=0

εn un

(
t, x,

x

ε

)
,

where y → un(t, x, y) are Y -periodic. This ansatz is formal since, not only the series does not converge, but it
lacks additional boundary layer terms in case of a bounded domain. Plugging this ansatz in (1.1) and using the
chain rule lemma for each term

∇
(
un

(
t, x,

x

ε

))
=
(
∇xun +

1

ε
∇yun

)(
t, x,

x

ε

)
,

we deduce a cascade of equations which allow us to successively compute each term un(t, x, y). To make this
cascade of equations explicit, we introduce the following operators

Ayy := −divy
(
a(y)∇y ·

)
Axy := −divx

(
a(y)∇y ·

)
− divy

(
a(y)∇x ·

)
Axx := −divx

(
a(y)∇x ·

)
,

(2.1)

which satistify, for any function v(x, y),

− div
(
a(ε−1x)∇v(x, ε−1x)

)
=
(
ε−2Ayyv + ε−1Axyv +Axxv

)
(x, ε−1x). (2.2)
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Then, we deduce the cascade of equations

order ε−2, 0 = Ayyu0

order ε−1, 0 = Ayyu1 +Axyu0

order ε0, f = Ayyu2 +Axyu1 +Axxu0 +
∂2u0
∂t2

order ε1, 0 = Ayyu3 +Axyu2 +Axxu1 +
∂2u1
∂t2

...

order εn−2, 0 = Ayyun +Axyun−1 +Axxun−2 +
∂2un−2

∂t2

...

(2.3)

These equations are solved successivelt by means of the following lemma, called Fredholm alternative (see [10], [12],
[45] for a proof).

Lemma 2.1. For g(y) ∈ L2(Y ), consider the following problem{
− divy

(
a(y)∇yw

)
= g in Y,

y 7→ w(y) Y -periodic.
(2.4)

It admits a solution w(y) ∈ H1
♯ (Y ), unique up to an additive constant, if and only if the right hand side satisfies

the following compatibility condition ˆ
Y

g(y) dy = 0.

Thanks to Lemma 2.1 we now deduce from (2.3) the formulas for succesive terms un in the ansatz. These
formulas will imply a separation of variables, namely each function un(t, x, y) is a sum of products of cell soutions
depending only on y and on space derivatives of the homgenized solution u(t, x). Before we start the study of
the cascade of equations, we emphasize two important notations for the sequel. First, according to the Fredholm
alternative of Lemma 2.1, all cell solutions, introduced below, have zero-average in the unit cell Y . Second, all
tensors below are symmetric (i.e. invariant by a permutation of the indices) since they are contracted with the
symmetric derivative tensors ∇k

xu(t, x). Nevertheless, for the sake of simplicity in the notations, we do not explicitly
symetrize all tensors but the reader should keep in mind that they are indeed symmetric.

Computation of u0: since the source term is zero, the solution is constant with respect to y,

u0(t, x, y) = u(t, x).

Computation of u1: the source term satisfies the compatibility condition and by linearity we obtain

u1(t, x, y) = −χi(y)
∂u

∂xi
(t, x) + ũ1(t, x), (2.5)

where χi and χ
(1)
η =

∑d
i=1 ηiχi are solutions in H1

♯,0(Y ) of the equations

Ayy χi = − divy (aei) and Ayy χ
(1)
η = − divy (aη) , for η ∈ Rd. (2.6)

Computation of u2: the third equation of (2.3) has a solution if and only if its source term has a zero Y -average,
which leads to the homogenized equation

∂2u

∂t2
− div (a∗∇u) = f, (2.7)

where the homogenized symmetric matrix a∗ is given by

a∗η :=

ˆ
Y

(
aη − a∇yχ

(1)
η

)
dy, for η ∈ Rd. (2.8)
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Inserting (2.5), the third equation of (2.3) becomes

Ayyu2 = −∂
2u

∂t2
+ f + divy (a ej)

∂ũ1
∂xj

+
(
aij − a∇yχi · ej − divy (χi a ej)

) ∂2u

∂xixj
.

(2.9)

Hence, defining for i, j ∈ {1, . . . , d}

bij := aij − a∇yχi · ej − divy (χi a ej) , with

ˆ
Y

bij = a∗ij , (2.10)

u2 can be written as

u2(t, x, y) = χij(y)
∂2u

∂xixj
(t, x)− χi(y)

∂ũ1
∂xi

(t, x) + ũ2(t, x), (2.11)

where the functions χij and χ
(2)
η := χijηiηj are the solutions in H1

♯,0(Y ) of the equations

Ayy χij = bij −
ˆ
Y

bij = bij − a∗ij and Ayy χ
(2)
η = b η · η − a∗η · η, for η ∈ Rd. (2.12)

Note that only the symmetric part of bij plays a role in (2.9) and the same is true for χij in (2.11).

Computation of u3: starting from here, namely for n ≥ 3, the solvability condition of the Fredholm alternative
for the existence of un is

ˆ
Y

(
∂2un−2

∂t2
− divx

(
a(y)(∇xun−2 +∇yun−1)

))
dy = 0 . (2.13)

Thus, there exists a solution u3 in (2.3) if and only if (2.13) is satisfied for n = 3 which, since the Y -averages of
the cell solutions χi are zero, leads to an equation for ũ1

∂2ũ1
∂t2

− div (a∗∇ũ1) = C∗ ∇3u, (2.14)

with a tensor C∗ defined by

C∗
ijk :=

ˆ
Y

(
a∇yχij · ek − aij χk

)
dy. (2.15)

It turns out, by symmetry in i, j, k, that this tensor vanishes, C∗ = 0 (see [35], [4]). Therefore, since its inital data
vanishes, the function ũ1 vanishes too,

ũ1(t, x) = 0. (2.16)

Let us now compute u3 which, by (2.3), is a solution of

Ayyu3 = − ∂2ũ1
∂t2

(t, x) + χi(y)
∂3u

∂t2∂xi
(t, x)−Axyu2 −Axxu1. (2.17)

Replacing u2 and u1 by their expressions (2.11) and (2.5), introducing the solutions wk in H1
♯,0(Y ) of

Ayywk = χk, (2.18)

the solutions χijk in H1
♯,0(Y ) of

Ayy χijk = cijk −
ˆ
Y

cijk, for i, j, k ∈ {1, . . . , d}, (2.19)

where
cijk := a∇yχjk · ei + divy (χjk a ei)− aij χk, (2.20)

and using (2.6), (2.10), u3 can be written as

u3(t, x, y) = wi(y)
∂3u

∂xi∂t2
(t, x) + χijk(y)

∂3u

∂xi∂xj∂xk
(t, x)

+χij(y)
∂2ũ1
∂xi∂xj

(t, x)− χi(y)
∂ũ2
∂xi

(t, x) + ũ3(t, x),

(2.21)
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Equation of u4: there exists a solution u4 in (2.3) if and only if condition (2.13) for n = 4 is satisfied. Replacing
u2 and u3 by their formulas (2.11) and (2.21) leads to an equation for ũ2

∂2ũ2
∂t2

− div (a∗∇ũ2) = C∗ ∇3ũ1 + B∗ ∇4u+ div

(
d∗∇∂2u

∂t2

)
, (2.22)

where B∗ is defined by

B∗
ijkℓ :=

ˆ
Y

(
aij χkℓ + aim

∂χkℓj

∂ym

)
dy, for i, j, k, ℓ ∈ {1, . . . , d}. (2.23)

and

d∗ij =

ˆ
Y

a∇ywi · ej dy =

ˆ
Y

χi χj dy, for i, j ∈ {1, . . . , d}. (2.24)

We simplify (2.22) by recalling that C∗ = 0 and using the homogenized equation (2.7) to replace ∂2u
∂t2 by f +

div (a∗∇u). Then, introducing the tensor
D∗ = −B∗ − a∗ ⊗ d∗, (2.25)

we deduce that (2.22) is equivalent to

∂2ũ2
∂t2

− div (a∗∇ũ2) = −D∗ ∇4u + div (d∗∇f) . (2.26)

We do not compute explicitly u4 (although it is possible) since our only interest in studying the equation for u4 is
to find the homogenized equation (2.26) for ũ2. We are now in a position to collect the above results and to give
an approximate formula for the exact solution uε of (1.1)

uε(t, x) ≈ u(t, x) + ε u1

(
t, x,

x

ε

)
+ ε2 u2

(
t, x,

x

ε

)
, (2.27)

where u is a solution of the homogenized equation (2.7), u1 is defined by (2.5) and u2 by (2.11). Each term, u1
and u2 is the sum of a zero Y -average contribution and of ũ1 and ũ2 defined by

ũ1(t, x) =

ˆ
Y

u1(t, x, y) dy and ũ2(t, x) =

ˆ
Y

u2(t, x, y) dy,

which are defined as the solutions of (2.14) and (2.26), respectively. Furthermore, we know from (2.16) that
ũ1(t, x) = 0 is identically zero. Therefore, on average, (2.27) implies that

uε(t, x) ≈ u(t, x) + ε2 ũ2(t, x) := vε(t, x). (2.28)

It is possible to find a single approximate equation for vε by adding equation (2.7) with (2.26) multiplied by ε2: it
yields

∂2vε
∂t2

− div (a∗∇vε) + ε2D∗ ∇4vε = f + ε2div (d∗∇f) + O(ε4). (2.29)

Neglecting the term of order ε4 in (2.29) gives the “higher order” homogenized equation (1.4), as announced in the
introduction.

We summarize our results in the following proposition.

Proposition 2.2. The “high order” homogenized equation of the wave equation (1.1) is

∂2vε
∂t2

− div (a∗∇vε) + ε2D∗ ∇4vε = f + ε2div (d∗∇f) . (2.30)

Remark 2.3. Writing an effective equation for a truncated version of the non oscillating ansatz has been studied
in various settings (see [10], [46], [30], [21], [48]) under the name of “higher order homogenization”. Proposition
2.2 gives the “second order” homogenized equation which is a proposed explanation of dispersive effects for wave
propagation in periodic media [46], [30], [21], [1], [2] or of second gradient theory in mechanics [48].

Remark 2.4. Note that the initial data did not enter the entire asymptotic process which is purely formal at this
stage.
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A fundamental property of the Burnett tensor D∗, discovered by [17], is that it is non-positive.

Proposition 2.5 ([17]). The fourth-order tensor D∗, defined by (3.3), satisfies for any η ∈ Rd

D∗ (η ⊗ η) : (η ⊗ η) = −
ˆ
Y

a∇y

(
χ(2)
η − 1

2

(
χ
(1)
η

)2) · ∇y

(
χ(2)
η − 1

2

(
χ
(1)
η

)2)
dy ≤ 0, (2.31)

where χ
(1)
η is defined by (2.6) and χ

(2)
η by (2.12).

Remark 2.6. If the tensor D∗ were non-negative, equation (2.30) would be well-posed. Unfortunately, D∗ has the
wrong sign, i.e. it is non-positive and (2.30) is thus not well-posed. We shall see in Section 4 how to modify it to
make it well-posed by using a Boussinesq trick.

Remark 2.7. The tensor D∗ arises in the two-scale asymptotic expansion process as the coefficient fourth-order
tensor of the fourth-order derivative ∇4u. Recall from our notations that D∗∇4u means the full contraction of both
fourth-order tensors. Therefore, only the symmetric part of D∗ is accessible by this method. In other words, D∗

belongs to the class of fully symmetric fourth-order tensors which satisfy, for any permutation σ of {i, j, k, l},

D∗
ijkl = D∗

σ(i)σ(j)σ(k)σ(l) .

This class of fully symmetric fourth-order tensors is completely characterized by the knowledge of their quartic form

D∗ (η ⊗ η) : (η ⊗ η) =

d∑
i,j,k,l=1

D∗
ijklηiηjηkηl .

Indeed, differentiating the quartic form four times with respect to ηi, ηj , ηk, ηl allows us to recover the (symmetrized)
coefficient D∗

ijkl.

In one space dimension, the formula for D∗ is simpler, as stated in the next lemma.

Lemma 2.8 ([17]). In one space dimension, we have D∗ = −a∗d∗ where a∗ is defined by (2.8) and d∗ is defined
by (2.24).

3 Bloch wave method

Another method of homogenization is the so-called Bloch wave decomposition method [43], [54]. Its application
to periodic homogenization is discussed in [12], [15]. It relies on a family of spectral problems for the operator
Ayy in the unit cell Y . More precisely, for a given parameter η ∈ Y , we look for eigenvalues λ = λ(η) in R and
eigenvectors ϕ = ϕ(η) in H1

#(Y ), normalized by ∥ϕ∥L2(Y ) = 1, satisfying

A(η)ϕ = λ(η)ϕ ∀y ∈ Y,

where A(η) is the translated (or shifted) operator defined by

A(η) := −
(

∂

∂yk
+ 2πi ηk

)[
akℓ

(
∂

∂yℓ
+ 2πi ηℓ

)]
. (3.1)

with, of course, A(0) = Ayy. The above spectral problem for A(η) in the unit torus Y , the so-called Bloch problem,
admits an infinite countable number of non-negative eigenvalues and corresponding normalized eigenfunctions [43],
[54]. We are interested in the first eigenvalue λ1(η) which is the relevant one in the homogenization process. When
η = 0, one can check that λ1(0) = 0 is a simple eigenvalue of A(0) = Ayy with constants as eigenfunctions. Regular
perturbation theory proves then that λ1(η) is simple and analytic in a neighborhood of η = 0. We recall some
results from [16], [17] about the fourth-order Taylor expansion of λ1(η) at η = 0.

Lemma 3.1. The first eigenvalue λ1(η) admits the following fourth-order expansion:

λ1(η) = 4π2a∗η · η + (2π)4D∗ · (η ⊗ η ⊗ η ⊗ η) + O(|η|6), (3.2)

where 1
8π2∇2

ηλ1(0) = a∗ is the homogenized matrix defined by (2.8) and D∗ is the symmetric fourth-order tensor
1

4!(2π)4∇
4
ηλ1(0) (also called Burnett tensor) which is equivalently defined by

D∗
ijkl := −

ˆ
Y

(
aij χkℓ + aim

∂χ̂kℓj

∂ym

)
dy, for i, j, k, ℓ ∈ {1, . . . , d}, (3.3)
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where the functions χij are defined by (2.12) and χ̂ijk are the solutions in H1
♯,0(Y ) of

Ayy χ̂ijk = a∗ij χk + cijk −
ˆ
Y

cijk dy, for i, j, k ∈ {1, . . . , d}, (3.4)

where χk are given by (2.6) and cijk are given by (2.20).

As usual, the tensor D∗ and the functions χ̂ijk are understood as symmetrized (this is obvious for D∗ which
arises as the fourth-order derivative of the eigenvalue λ1). Note that the functions χ̂ijk are different from the
previous ones χijk defined by (2.19) since χ̂ijk = χijk + a∗ij wk.

Remark 3.2. As a by-product of Lemma 3.1 it was shown in [16] that the η-derivatives of the first eigenfunction
ϕ1(y, η) coincide with the solutions of some cell problems.

A fundamental property of the Bloch waves is that they diagonalize the operator Ayy in L2(Rd). More precisely,
we have the following Bloch wave decomposition written in rescaled variables x = εy and ξ = η/ε.

Lemma 3.3. Any function f ∈ L2(Rd) can be decomposed as

f(x) =
∑
n≥1

ˆ
ε−1Y

αε
n(ξ)ϕn

(x
ε
, εξ
)
e2πix·ξdξ (3.5)

where

αε
n(ξ) =

ˆ
Rd

f(x) e−2πix·ξ ϕn

(x
ε
, εξ
)
dx , (3.6)

and ϕn(y, η) is the n-th normalized eigenfunction of (3.1). Furthermore, it satisfies Parseval equality
ˆ
Rd

|f(x)|2dx =
∑
n≥1

ˆ
ε−1Y

|αε
n(ξ)|2dξ. (3.7)

We now explain how the Bloch wave method is used for the homogenization of the wave equation (1.1). First,

we recall the definition of the Fourier transform f̂(ξ) of a function f(x) ∈ L2(Rd)

f(x) =

ˆ
Rd

f̂(ξ)e2πix·ξdξ . (3.8)

For simplicity, let us replace the fixed (with respect to ε) initial data and source term in (1.1) by well-prepared

initial data and source in terms of Bloch waves. Denoting by ûinit(ξ), v̂init(ξ) and f̂(t, ξ) the Fourier transforms of
uinit(x), vinit(x) and f(t, x) (in the sense of (3.8)), we introduce these new forcing term and initial data

fε(t, x) =

ˆ
ε−1Y

f̂(t, ξ)ϕ1

(x
ε
, εξ
)
e2πix·ξdξ , (3.9)

uinit

ε (x) =

ˆ
ε−1Y

ûinit(ξ)ϕ1

(x
ε
, εξ
)
e2πix·ξdξ, vinit

ε (x) =

ˆ
ε−1Y

v̂init(ξ)ϕ1

(x
ε
, εξ
)
e2πix·ξdξ,

and change (1.1) into 
∂2uε
∂t2

− div (aε∇uε) = fε(t, x),

uε(0, x) = uinit

ε (x),
∂uε
∂t

(0, x) = vinit

ε (x).
(3.10)

Similarly, using Lemma 3.3, we decompose the solution of (3.10) as

uε(t, x) =

ˆ
ε−1Y

ûε1(t, ξ)ϕ1

(x
ε
, εξ
)
e2πix·ξdξ, (3.11)

Since the eigenbasis {ϕn} diagonalizes the elliptic operator, equation (3.10) is reduced to a family of ordinary
differential equations: for any ξ ∈ ε−1Y , ûε1(t, ξ) is a solution of the following ordinary differential equation

d2ûε1
dt2

+ ε−2λ1(εξ)û
ε
1 = f̂(t, ξ),

ûε1(0, ξ) = ûinit(ξ),
dûε1
dt

(0, ξ) = v̂init(ξ).
(3.12)
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Using the Taylor expansion (3.2) of λ1, we deduce that
d2ûε1
dt2

+
(
4π2a∗ξ · ξ + ε2(2π)4D∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ)

)
ûε1 = f̂(t, ξ) + O(ε4),

ûε1(0, ξ) = ûinit(ξ),
dûε1
dt

(0, ξ) = v̂init(ξ).
(3.13)

At least formally, dropping the O(ε4) in the above equation, ûε1(t, ξ) is well approximated by v̂ε(t, ξ) which is the
Fourier transform of the solution vε(t, x) of the following high order homogenized equation

∂2vε
∂t2

− div (a∗∇vε) + ε2D∗ · ∇4
xvε = f(t, x),

vε(0, x) = uinit(x),
∂vε
∂t

(0, x) = vinit(x),
(3.14)

This equations is identical to the “higher order” homogenized equation (1.4), or (2.29), except for the right hand
side which does not feature the additonal term ε2div (d∗∇f). This is due to our replacement of the original right
hand side f by its well-prepared variant fε, defined by (3.9) (see [4] for a more complete explanation).

In any case, the differential operator of the “higher order” homogenized equation is the same whatever the
method of derivation, be it two-scale asymptotic expansions or Bloch wave decomposition. Once again, the fourth-
order tensor D∗ is a manifestation of dispersive effects tin the wave propagation.

4 Boussinesq approximation

The high order homogenized equations (1.4), (2.30) and (3.14) are not well posed since, by virtue of Proposition
2.5, the tensor D∗ has the “wrong” sign (the bilinear form associated to the operator D∗ ∇4

x is non-positive). The
goal of this section is to explain how to modify these equations in order to make them well-posed by using a classical
Boussinesq trick (see e.g. [14] for historical references). This trick has been applied in recent works [22], [30], [21],
[1], [2]. It is also well known in the study of continuum limits of discrete spring-mass lattices [31].

The key point is that both equations (3.13) and (2.29) are actually defined, up to the addition of a small
remainder term of order ε4. Therefore one can modify them adding any term of the same order ε4, without altering
their approximate validity. Let us explain the Boussinesq trick for (3.14) (the case of (2.30) is completely similar).
We define the minimum value

m = min
|ξ|=1

D∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ)

a∗ξ · ξ
, (4.1)

which is a non-positive number m ≤ 0 because of Proposition 2.5 (if m > 0 were positive, (3.14) would be well
posed and there would be nothing to do). Introducing the non-negative second order tensor C = −mId ≥ 0, we
define a fourth order tensor D∗ by

D∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ) = D∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ) + (a∗ξ · ξ) (Cξ · ξ) ≥ 0 ∀ξ ∈ Rd , (4.2)

which is non-negative in view of (4.1). Then, the Fourier transform of (3.14)

d2v̂ε
dt2

(ξ) + 4π2 (a∗ξ · ξ) v̂ε(ξ) + ε2(2π)4D∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ)v̂ε(ξ) = f̂(ξ) (4.3)

can be replaced by (
1 + ε24π2Cξ · ξ

) d2v̂ε
dt2

+
(
4π2a∗ξ · ξ + ε2(2π)4D∗ · (ξ ⊗ ξ ⊗ ξ ⊗ ξ)

)
v̂ε

= f̂(t, ξ) + ε24π2 (Cξ · ξ) f̂(t, ξ) + O(ε4),

(4.4)

since truncating (4.3) implies
d2v̂ε
dt2

(ξ) + 4π2 (a∗ξ · ξ) v̂ε(ξ) = f̂(ξ) + O(ε2).

By the inverse Fourier transform, applied to (4.4), we deduce the following equation

∂2vε
∂t2

− ε2div

(
C∇∂2vε

∂t2

)
− div (a∗∇vε) + ε2D∗ · ∇4vε = f − ε2div (C∇f) + O(ε4) ,

which is well posed because C and D∗ are non-negative.
We summarize our result in the following lemma.
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Lemma 4.1. Up to an error term of order O(ε4), the high order homogenized equation (3.14) is equivalent to

∂2vε
∂t2

− ε2div

(
C∇∂2vε

∂t2

)
− div (a∗∇vε) + ε2D∗ · ∇4vε = f − ε2div (C∇f) ,

while the high order homogenized equation (1.4) is equivalent to

∂2vε
∂t2

− ε2div

(
C∇∂2vε

∂t2

)
− div (a∗∇vε) + ε2D∗ · ∇4vε = f − ε2div ((C − d∗)∇f) , (4.5)

which are both well posed because C ≥ 0 and D∗ ≥ 0.

Remark 4.2. In 1-d, by virtue of Lemma 2.8, we have D∗ = −a∗d∗ with d∗ > 0. Therefore, in 1-d it is possible to
choose D∗ = 0 and C = d∗. Then, the right hand side of (4.5) is simply f , as in the usual homogenized equation
(1.3).

From a numerical point of view, (4.5) should be solved rather than the ill-posed original equation (1.4). Of
course, any choice of matrix C, which makes (4.2) non-negative, is acceptable. Therefore, there is a whole family of
higher order homogenized equation (4.5), all of them being equivalent up to order ε4. In this context, the dispersive
effect is measured by the fourth-order tensor D∗ and not by D∗ alone.

It was proved in [30], [21] (see also [2]) that the solution vε of (4.5) provides an approximation of the exact
solution uε of (1.1), up to an error term of order ε in the L∞

t (L2
x)-norm for long times up to Tε−2.

Remark 4.3. The dispersive character of the high order homogenized equation (4.5) can easily be checked for
plane-wave solutions, in the absence of any source term. Indeed, plugging in (4.5) a plane wave solution

u(t, x) = uei(ωt−ξ·x),

where u ∈ R is the amplitude, ω ∈ R+ the frequency and ξ ∈ Rd the wave number, we obtain the relation dispersion

ω(ξ) =

(
a∗ξ · ξ + ε2D∗ · ξ ⊗ ξ ⊗ ξ ⊗ ξ

1 + ε2Cξ · ξ

)1/2

≤
√
a∗ξ · ξ . (4.6)

For ε|ξ| ≪ 1, a Taylor expansion of (4.6) yields

ω(ξ) =
√
a∗ξ · ξ

(
1 +

ε2

2

D∗ · ξ ⊗ ξ ⊗ ξ ⊗ ξ

a∗ξ · ξ
− ε2

2
Cξ · ξ + O(ε4)

)
.

Recall from (4.2) that D∗ = D∗ +C ⊗ a∗ +R, with R · ξ ⊗ ξ ⊗ ξ ⊗ ξ ≥ 0 for any ξ. Denoting by ξ0 a minimizer in
(4.1), we have R · ξ0 ⊗ ξ0 ⊗ ξ0 ⊗ ξ0 = 0 and Rξ0 ⊗ ξ0 ⊗ ξ0 = 0 by minimality. Thus, in this optimal direction we
deduce

ω(ξ0) =
√
a∗ξ0 · ξ0

(
1 +

ε2

2

D∗ · ξ0 ⊗ ξ0 ⊗ ξ0 ⊗ ξ0

a∗ξ0 · ξ0
+ O(ε4)

)
.

From (4.6) we deduce the group velocity

V (ξ) =
dω

dξ
(ξ) =

a∗ξ√
a∗ξ · ξ

+ ε2δ(ξ) + O(ε4) ,

where the corrector term can be computed in the optimal direction

δ(ξ0) = −Cξ
0 · ξ0

2

a∗ξ0√
a∗ξ0 · ξ0

−
√
a∗ξ0 · ξ0Cξ0

Simplifying further to the isotropic case, a∗ξ0 · ξ0 = a∗|ξ0|2, we obtain

δ(ξ0) =
3m

√
a∗

2
ξ0 ⇒ V (ξ0) =

√
a∗

ξ0

|ξ0|

(
1 +

3m

2
ε2 + O(ε4)

)
.

Since m ≤ 0 by virtue of (4.1), we deduce that, up to fourth order, the group velocity is smaller when taking
into account dispersive effect. Furthermore, to reduce dispersion (namely to have V (ξ0) as close as possible to√
a∗ξ0/|ξ0|) is equivalent to minimize |m| or, in other words, to minimize the (absolute) value of D∗.
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5 Numerical simulation of the dispersive effect

To illustrate the dispersive effect and explain the role of the high order homogenized equation (4.5), we perform
some numerical experiments in 1-d. Similar computations previously appeared in [46], [2], therefore our goal is
purely pedagogical and illustrative. To simplify, the source term f is set to zero. Then, by virtue of Lemma 2.8
the one-dimensional high order homogenized equation (1.4) reads as follows:

∂2vϵ
∂t2

− a∗
∂2vϵ
∂x2

− ϵ2a∗d∗
∂4vϵ
∂x4

= 0.

By virtue of Lemma 4.1, this equation is equivalent, approximately up to an error of O(ε4), to

∂2vϵ
∂t2

− ϵ2C
∂4vϵ
∂x2∂t2

− a∗
∂2vϵ
∂x2

+ ϵ2a∗(C − d∗)
∂4vϵ
∂x4

= 0, (5.1)

where C ≥ 0 plays the role of a parameter (a scalar in 1-d). Following the test case of [2], in the numerical
simulations, the periodic coefficient is

a
(x
ϵ

)
=

√
2 + sin

(
2π

(
x

ϵ
− 1

4

))
,

with ϵ = 0.05. Then, the homogenized tensor a∗ and dispersive tensor d∗ are a∗ = 1 and d∗ = 0.00909633,
respectively. The computational domain is Ω = (−0.5, 0.5), complemented with periodic boundary conditions,
and we discretize it with a space step ∆x = 1/2000 and a time step ∆t = 0.02 ×∆x. We use a leapfrog scheme
in time and, in space, a fourth-order centred finite difference scheme for the diffusion term and a second order
centred scheme for the dispersive term. We consider two different sets of initial condition which are non-oscillating.
The first type of initial data features a zero initial velocity and triggers two waves (see Figure 1) propagating
symmetrically in opposite directions:

vϵ(t = 0, x) = exp

(
− x2

0.05

)
− 1

|Ω|

ˆ
Ω

exp

(
− x2

0.05

)
dx and

∂vϵ
∂t

(t = 0, x) = 0 .

The second set of initial data yields a single wave (see Figure 2) for the standard homogenized equations, propagating
with group velocity

√
a∗:

vϵ(t = 0, x) = exp
(
−64x2

)
− 1

|Ω|

ˆ
Ω

exp
(
−64x2

)
dx and

∂vϵ
∂t

(t = 0, x) = −
√
a∗x

32
exp

(
−64x2

)
.

In Figure 1 and Figure 2, we compare the numerical solutions of the original wave equation (1.1), of the homogenized
wave equation (1.3) and of the high order homogenized equation (5.1), for three different values of the C parameter,
and at different times T . The five different curves are: case 1, the solution of (1.1); case 2, the solution of (1.3);
case 3, the solution of (5.1) with C = d∗; case 4, the solution of (5.1) with C = 2d∗ and case 5, the solution of
(5.1) with C = 4d∗.

We notice that all solutions are very close (in the supremum norm) for short times (say T = 1) while for larger
times (say T = 100) only the solutions of the high order homogenized equation stay close to the ”exact” solution
(while the homogenized solution propagates at the wrong speed, a clear manifestation of dispersive effects not
taken into account in (1.3)). At very long times (say T = 400), the agreement between the exact and high order
homogenized solutions is very good for the first example but less convincing for the second example: this may be
due to the more complex profile of the solutions which may be more prone to numerical diffusion/dispersion that
pollute their accuracy for such long times. In any case, the high order homogenized equation (5.1) is clearly a
better approximation than the standard homogenized equation (1.3).

6 Some properties of the Burnett tensor D∗

We first investigate the dependence of D∗ to the choice of the periodicity cell. For any integer k ≥ 1, define the
coefficients

ak(y) = a(ky) in Y,

which are just the periodic repetition of smaller cells of size 1/k in the unit cell Y . The same microstructure or
geometry can be modeled by a or ak but with a different value of the small parameter. Define

ϵk = kϵ.
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Figure 1: Plot of the solutions of equations (1.1), (1.3) and (5.1) with the first type of initial conditions.
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Figure 2: Plot of the solutions of equations (1.1), (1.3) and (5.1) with the second type of initial conditions.
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Then we have

a
(x
ϵ

)
= ak

(
x

ϵk

)
.

In other words, if more periodic patterns are present in the unit cell, there are less unit cells in the macroscopic
domain and the ratio ϵk is larger. One can reproduce the homogenization process of Section 2 with these new
coefficients ak and small parameters ϵk. According to Proposition 2.2, the new high order homogenized equation
of the wave equation (1.1) is

∂2vε
∂t2

− div (a∗k∇vε) + ε2kD∗
k ∇4vε = f + ε2kdiv (d

∗
k∇f) , (6.1)

with new homogenized properties a∗k,D∗
k, d

∗
k corresponding to the new coefficient ak.

Lemma 6.1. For any integer k ≥ 1, one has

a∗k = a∗, D∗
k = k−2D∗, d∗k = k−2d∗.

In other words, ε2kD∗
k = ε2D∗ and ε2kd

∗
k = ε2d∗.

Proof. Let us denote by χk
i and χk

ij the cell solutions for the coefficients ak. It is easily seen that

χk
i (y) =

1

k
χi(ky), χk

ij(y) =
1

k2
χij(ky),

from which we deduce the desired properties.

Remark 6.2. As a consequence of Lemma 6.1, the dispersion tensor can be made as small as desired (in norm) by
considering smaller and smaller periodic patterns in the unit cell. However, there is no contradiction because the
product ε2kD∗

k is constant. In any case, there is no point in minimizing the norm or a negative linear combination
of entries of D∗, except if one adds a geometrical constraint (like an upper bound on the perimeter) which would
prevent the unlimited fragmentation of the periodic microstructure.

A similar result holds true if one considers a scaled version of the unit cell.

Lemma 6.3. For any real number κ > 0, consider a scaled periodicity cell Z = (0, κ)d. Introduce the scaled variable
z := κy, with y ∈ Y , and define the Z-periodic coefficients aκ(z) := a( zκ ). Then, its homogenized coefficients satisfy

a∗κ = a∗, D∗
κ = κ2D∗, d∗κ = κ2d∗.

Proof. Note first that, when computing homogenized formula on Z, one has to average on the cell Z which has
volume κd. Let us denote by χκ

i and χκ
ij the cell solutions for the coefficients ã. It is easily seen that

χκ
i (z) = κχi

( z
κ

)
, χκ

ij(z) = κ2χij

( z
κ

)
,

from which we deduce the desired properties.

Remark 6.4. As a consequence of Lemma 6.3, if one can change the periodicity cell, then the dispersion tensor
can be made as large (or small) as desired by considering larger (or smaller) periodicity cells. However, for a given
physical configuration, there is no contradiction because the product ε2κD∗

κ is constant. In any case, if one fix the
periodicity cell to be Y = (0, 1)d, then one cannot use this scaling argument and the norm of D∗ can be bounded
from above. Indeed, in 1-d, for a two-phase mixture of aA, aB in proportions γ, (1− γ), the following upper bound
on −D∗ was proved in [19]

−D∗ ≤ 1

12
(a∗)2γ2(1− γ)2(a−1

A − a−1
B )2,

and this upper bound is uniquely attained by a simple laminate of aA, aB with just one point-interface in the unit
cell Y = (0, 1).

We now consider the effect of rotations on the periodicity cell. The analytic formula of Lemma 6.5 will be useful
to check some of our numerical results which feature equivalent shapes, up to rotations (see Remark 9.7).
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Lemma 6.5. Let R be a rotation matrix and consider the rotated variable z := Ry, as well as the rotated material
properties ã(z) := Ra(RT z)RT . Then, the homogenized properties of ã(z) satisfy

ã∗ = Ra∗RT , d̃∗ = Rd∗RT , D̃∗(ξ ⊗ ξ) · (ξ ⊗ ξ) = D∗(Rξ ⊗ Rξ) · (Rξ ⊗ Rξ).

Proof. Let us denote by χ̃i(z) and χ̃ij(z) the cell solutions for the coefficients ã(z). One can check that, for

any vector η ∈ Rd, we have χ̃
(1)
η (z) = χ

(1)
Rη(R

T z) and χ̃
(2)
η (z) = χ

(2)
Rη(R

T z), from which we deduce the desired
properties.

In order to simplify the analysis of the fourth-order tensor D∗, we choose to restrict the geometry of the periodic
coefficients. From now on we make the following 8-fold symmetry assumption on the periodic coefficient a(y):

1. y → a(y) is a scalar-valued function,

2. a is even in the sense that a = a ◦ Si for 1 ≤ i ≤ d, where Si is the symmetry operator defined by

Si(y) = (y1, ..., yi−1,−yi, yi+1, ..., yd),

3. a is 90◦-rotationally invariant in the sense that a = a ◦ Pij for 1 ≤ i, j ≤ d, where Pij is the permutation
operator defined by

Pij(y) = Pij(y1, ..., yi, ..., yj , ..., yd) = (y1, ..., yj , ..., yi, ..., yd).

Note that, by periodicity of the coefficients, one can consider that the unit cell is Y = (−1/2,+1/2)d and the above
assumption it equivalent to symmetries with respect to the principal hyperplanes (orthogonal to the main axis)
and to the diagonal hyperplanes passing through the origin.

The following result is then easily proved (see e.g. section 3 in chapter 6 of [10]).

Lemma 6.6. Under the 8-fold symmetry assumption, if w is a Y -periodic solution of

− divy
(
a(y)∇yw

)
= g in Y,

then w ◦ Si is a Y -periodic solution of

− divy
(
a(y)∇y(w ◦ Si)

)
= g ◦ Si in Y,

and w ◦ Pij is a Y -periodic solution of

−divy
(
a(y)∇y(w ◦ Pij)

)
= g ◦ Pij in Y.

Proposition 6.7. Under the 8-fold symmetry assumption, the dispersion tensor D∗ is characterized by two param-
eters α, β ∈ R

D∗ (η ⊗ η) : (η ⊗ η) = −α
d∑

i=1

η4i − β

d∑
i,j=1,i<j

η2i η
2
j , (6.2)

with constant α and β, independent of the indices i, j such that, for any i ̸= j,

α :=

ˆ
Y

a|∇χii − χi∇χi|2 dy (6.3)

β :=

ˆ
Y

(
2a(∇χii − χi∇χi) · (∇χjj − χj∇χj) + a|∇χij +∇χji − χi∇χj − χj∇χi|2

)
dy. (6.4)

Proof. The fact that, under the 8-fold symmetry assumption, the homogenized tensor a∗ is scalar is classical. Using
Lemma 6.6 one can check the following symmetry properties on the cell solutions

χi ◦ Si = −χi, χi ◦ Sj = χi for i ̸= j,

χii ◦ Sk = χii for 1 ≤ k ≤ d,

for i ̸= j χij ◦ Si = χij ◦ Sj = −χij , χij ◦ Sk = χij for k ̸= i, j.
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In particular, χij and (χiχj) have the same symmetry properties. On the other hand, we also have the following
permutation properties

χi ◦ Pij = χj , χii ◦ Pij = χjj , χij ◦ Pjk = χik for i ̸= j.

From formula (2.31) in Proposition 2.5 we find that

D∗
ijkl := −

[ˆ
Y

a∇
(
χij −

1

2
χiχj

)
· ∇
(
χkl −

1

2
χkχl

)
dy

]S
, (6.5)

where the index S means that D∗
ijkl has to be symmetrized. Now, using the permutation properties of the cell

functions, it is easily seen that

D∗
iiii = −

ˆ
Y

a|∇χii − χi∇χi|2 dy does not depend on the direction i.

Similarly,

2D∗
iijj = −

ˆ
Y

(
2a(∇χii − χi∇χi) · (∇χjj − χj∇χj) + a|∇χij +∇χji − χi∇χj − χj∇χi|2

)
dy

is independent of the couple of indices i ̸= j. Let us show that all other entries of the tensor D∗ vanish. Consider,
for example, the entry

D∗
iiij = −

ˆ
Y

a∇
(
χii −

1

2
χ2
i

)
· ∇
(
χij −

1

2
χiχj

)
dy .

We decompose it as

D∗
iiij =

d∑
k=1

−
ˆ
Y

adkiid
k
ij dy with dkii =

∂

∂yk

(
χii −

1

2
χ2
i

)
, dkij =

∂

∂yk

(
χij −

1

2
χiχj

)
.

For k ̸= i, j, the function dkii = dkii ◦ Sj is even with respect to yj , while d
k
ij = −dkij ◦ Sj is odd with respect to yj .

Therefore, the integrand adkiid
k
ij has zero average on Y . For k = i, diii = diii ◦ Si is odd with respect to yi, while

diij = diij ◦Si is even with respect to yi (as the derivative of an odd function). Again, the integrand adiiid
i
ij has zero

average on Y . Eventually, for k = j, djii = djii ◦Sj is odd with respect to yj (as the derivative of an even function),

while djij = djij ◦ Sj is even with respect to yi (as the derivative of an odd function), and the integrand adjiid
j
ij has

zero average on Y . This implies that D∗
iiij = 0.

A similar argument work for all other entries D∗
iijk, with different i, j, k, and D∗

ijkl, with different i, j, k, l. A
key ingredient is always that χij and (χiχj) have the same symmetry properties. Therefore, we obtain the desired
result.

7 Shape optimization

7.1 Two phase periodic mixture

From now on we shall study dispersive effects for wave propagation in a two-phase periodic medium. More precisely,
in the context of periodic homogenization we assume that the unit cell Y = (0, 1)d is decomposed in two subdomains
Y A and Y B , separated by a smooth interface Γ (see Figure 3). The subdomains Y A and Y B are filled with an
isotropic liner material, which coefficients aA and aB , respectively. We consider only those mixtures which satisfy
the 8-fold symmetry assumption of Section 6. Our ultimate goal is to find the set of all possible dispersion tensors
D∗ with, possibly, a volume constraint for the two phases, a perimeter constraint (on the measure of Γ) and a
prescribed homogenized property a∗. In particular, we would like to know which microstructures in the unit cell
yield minimal or maximal values of D∗. To do so, we study the shape optimization problem which determines
the optimal geometry in the unit cell Y in order to minimize some objective function depending on D∗ or more
generally on the first and second-order cell problems (which give the value of D∗ by virtue of Proposition 2.5).
More specifically, we consider coefficients defined by

a(y) = aA1YA
(y) + aB1YB

(y),
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Figure 3: Periodicity cell of a two-phase composite

where aA, aB > 0 are two constant positive real numbers, 1YA
(y),1YB

(y) are the characteristic functions of Y A

and Y B .
To optimize the dispersive properties of a periodic two-phase geometry, we consider the following objective

function:

J(Y A) =

ˆ
Y

J (y, {χi}1≤i≤d, {χij}1≤i,j≤d) dy , (7.1)

where J is a smooth function satisfying adequate growth conditions, χi is the first order cell solution of (2.6), χij

is the second order cell solution of (2.12). By virtue of Proposition 2.5, the entries of the dispersion tensor D∗ are
of the type of (7.1).

We shall minimize the objective function J(Y A) with constraints (all of them or just some of them) like volume
fraction of Y A and Y B , perimeter or measure of Γ, homogenized tensor a∗. As is well known, optimal designs do
not always exist in such problems [3], [37], [41], [51], unless some smoothness, geometrical or topological constraint
is added. We shall not discuss this issue since our goal is rather numerical than theoretical.

7.2 Shape derivative in the multi-material problem

In order to minimize the objective function (7.1), a gradient based shape optimization algorithm [34, 41, 49] is
applied. Most of the works on the Hadamard method for computing shape sensitivity are concerned with problems
where the domain boundary is the optimization variable. However, here we rather optimize an interface between
two materials and there are fewer works in this setting. Let us mention the cases of Darcy flows [13], conductivity
problems [26, 40] and elasticity systems [5, 7, 29]. There are also some works concerned with the optimization of
the homogenized tensor a∗ in terms of the cell properties a(y) [11], [24], [47]. In this work, we follow the same
approach but applied to the higher order cell problems in homogenization and to the dispersion tensor D∗.

To begin with, we recall the approach of Murat and Simon [37] for shape differentiation. For a smooth reference
open set Ω, we consider domains of the type

Ωθ = (Id + θ)(Ω),

with a vector field θ ∈W 1,∞(Rd,Rd) such that θ is tangential on ∂Ω.

Definition 7.1. The shape derivative of J(Ω) at Ω is defined as the Fréchet derivative in W 1,∞(Rd,Rd) at 0 of the
application θ → J((Id+θ)(Ω)) The following asymptotic expansion holds in the neighborhood of 0 ∈W 1,∞(Rd,Rd):

J((Id + θ)(Ω)) = J(Ω) + J ′(Ω)(θ) + o(θ) with lim
θ→0

| o(θ) |
∥ θ ∥

= 0, (7.2)

where the shape derivative J ′(Ω) is a continuous linear form on W 1,∞(Rd,Rd).

Lemma 7.2. Let Ω be a smooth bounded open set and ϕ1(x) ∈ W 1,1(Rd) and ϕ2(x) ∈ W 2,1(Rd) be two given
functions. The shape derivatives of

J1(Ω) =

ˆ
Ω

ϕ1(x) dx and J2(Ω) =

ˆ
∂Ω

ϕ2(x) ds
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are

J ′
1(Ω)(θ) =

ˆ
∂Ω

θ(x) · n(x)ϕ1(x) ds

and

J ′
2(Ω)(θ) =

ˆ
∂Ω

θ(x) · n(x)
(
∂ϕ2(x)

∂n
+H(x)ϕ2(x)

)
ds ,

for any θ ∈W 1,∞(Rd;Rd), respectively, where H is the mean curvature of ∂Ω, defined by H = divn, n is the unit
normal vector on ∂Ω and ds is the (d− 1)-dimensional measure along ∂Ω.

Theorem 7.3. The shape derivative of the objective function J, defined in (7.1) reads

J ′(Y A)(θ) =

ˆ
Γ

D
(
{χi}1≤i≤d, {χij}1≤i,j≤d, {pi}1≤i≤d, {pij}1≤i,j≤d

)
θ · nds , (7.3)

with

D = [J ] + [a](∇χi − ei)t ·
(
∇pi + ej

(
pij −

ˆ
Y

pij dy

))
t

+ [a](∇χij − χjei)t · ∇tpij

− [a−1]
(
a(∇χi − ei) · n

)(
a

(
∇pi + ej

(
pij −

ˆ
Y

pij dy

))
· n
)
− [a−1]

(
a(∇χij − χjei) · n

)(
a∇pij · n

)
,

where [∗] = ∗A − ∗B denotes the jump through the interface Γ and n = nA = −nB is the unit normal vector of Γ.
The suffix ∗t denotes the tangential component of a vector. The adjoint states pi, pij ∈ H1

#,0(Y ) are defined as the
unique periodic solutions of the following adjoint problems:

−div(a∇pi) = −∂J

∂χi
+ div

(
aej

(
pij −

ˆ
Y

pij

))
+ aej · ∇pij in Y, (7.4)

−div(a∇pij) = − ∂J

∂χij
in Y. (7.5)

Remark 7.4. In the statement of Theorem 7.3 the Einstein summation convention with respect to repeated indices
is used. The solutions of the adjoint equations (7.4) and (7.5) are defined up to an additive constant. They are
unique in H1

#,0(Y ), namely when their average on Y is zero. Therefore, when this normalization condition is used,

the integral term (
´
Y
pij) in (7.4) can safely be dropped.

Remark 7.5. The governing equation (2.12) of the second order corrector functions χij depends on the first order
corrector functions χi. Therefore, in numerical practice, the functions χij are computed after the functions χi. On
the other hand, the adjoint equation (7.4) for pi depends on pij, while the other adjoint equation (7.5) depends
merely on the corrector functions χi and χij. Therefore, the second order adjoint functions pij are computed first,
followed by the computation of the first order adjoint functions pi. This peculiarity is similar to the backward
character of the adjoint equation for a time dependent problem.

The proof of Theorem 7.3 is obtained by a standard, albeit tedious, application of the Lagrangian method for
shape derivation (see [7, 26, 40] for similar proofs). For the sake of completeness, it is given in Section 10.

7.3 Shape derivative of a discrete approximation

Although the formulation discussed in the previous subsection is satisfying from a mathematical point of view,
its numerical implementation is quite tricky since it requires one of the two following delicate algorithms. A first
possibility is to re-mesh at each iteration so that the mesh is fitted to the interface Γ: then, jumps, as well as
continuous quantities, can be accurately computed (see section 6.4 in [6]). A second possibility is to fix the mesh
and capture Γ by e.g. a level set function. In this latter case, only approximate jumps and continuous quantities
at the interface can be computed (see [7]). Both approaches are not obvious to implement in practice. To avoid
these difficulties, we use the approximated shape sensitivity in the multi-material setting proposed in [5], [33], [53].
In this formulation, the optimization problem is first discretized and second its shape sensitivity is derived. Let
us introduce a finite-dimensional space of conforming finite elements Vh ⊂ H1

0,#(Y ) in which are computed the

approximate solutions χh
i of (2.6), χh

ij of (2.12), phi of (7.4) and phij of (7.5). More precisely, χh
i ∈ Vh and χh

ij ∈ Vh
are the unique solutions of, respectively,ˆ

Y

a(∇χh
i − ei) · ∇ϕh dy = 0 ∀ϕh ∈ Vh, (7.6)
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ˆ
Y

a(∇χh
ij − χh

i ej) · ∇ϕh dy =

ˆ
Y

(aij − a∗,hij − a∇χh
i · ej)ϕh dy ∀ϕh ∈ Vh. (7.7)

The precise definitions of phi and phij will be given in the proof below. Typically, these approximate solutions are
of the type

χh
i :=

Nh∑
k=1

χi,k(Γ)φk(x), phi :=

Nh∑
k=1

pi,k(Γ)φk(x)

where Nh is the dimension of Vh, φk(x) are the shape functions and χi,k(Γ), resp. pi,k(Γ), are the nodal values
of χh

i , resp. p
h
i , which depend on the interface Γ. However, the basis functions φk are independent of Γ and, in

particular, do not satisfy any special transmission conditions at the interface Γ. It implies that the state functions
χh
i are shape differentiable [5].
We introduce the discrete objective function

Jh(Y
A) =

ˆ
Y

J
(
y, {χh

i }1≤i≤d, {χh
ij}1≤i,j≤d

)
dy . (7.8)

Proposition 7.6. The discrete objective function Jh is shape differentiable and its derivative reads

J ′
h(Y

A)(θ) =

ˆ
Γ

Dh({χh
i }1≤i≤d, {phi }1≤i≤d, ) θ · nds , (7.9)

where

Dh := [J ] + [a]

{
(∇χh

i − ei) · ∇phi + (∇χh
ij − χh

i ej) · ∇phij +∇χh
i · ejphij

−∇χh
j · ei

ˆ
Y

phij dy + ei · ej
(ˆ

Y

phij dy − phij

)}
. (7.10)

Proof. The proof follows that of Proposition 1.5 in [5]. We use the Langrangian method, which introduces a
Lagrangian Lh as the sum of the objective function and of the constraints multiplied by Lagrange multipliers,
namely the discrete variational formulations (7.6) and (7.7),

Lh(Γ, {χ̂h
i }1≤i≤d, {χ̂h

ij}1≤i,j≤d, {p̂hi }1≤i≤d, {p̂hij}1≤i,j≤d) :=ˆ
Y

J (y, {χ̂h
i }1≤i≤d, {χ̂h

ij}1≤i,j≤d) dy +

ˆ
Y

a(∇χ̂h
i − ei) · ∇p̂hi dy

+

ˆ
Y

a(∇χ̂h
ij − χ̂h

i ej) · ∇p̂hij dy −
ˆ
Y

(aij − a∗,hij − a∇χ̂h
i · ej)p̂hij dy , (7.11)

where the functions χ̂h
i , χ̂

h
ij , p̂

h
i , p̂

h
ij are any functions in Vh and with

a∗,hij =

ˆ
Y

(aij − a∇χ̂h
j · ei) dy .

The space Vh is independent of the interface Γ. Therefore, the Lagrangian Lh can be differentiated in the usual
manner and its stationarity is going to give the optimality conditions of the optimization problem.

By definition the partial derivative of Lh with respect to phi and phij leads to the variational formulation (7.6)
and (7.7). Next, the discrete adjoint equations are obtained by taking the partial derivative of Lh with respect to
the variables χh

i and χh
ij . It yields the following discrete variational formulations

ˆ
Y

a(∇phi + ejp
h
ij) · ∇ϕh dy +

ˆ
Y

∂J

∂χh
i

ϕh dy −
ˆ
Y

a∇phij · ejϕh dy = 0 ∀ϕh ∈ Vh, (7.12)

ˆ
Y

a∇phij · ∇ϕh dy +
ˆ
Y

∂J

∂χh
ij

ϕh dy = 0 ∀ϕh ∈ Vh, (7.13)

which are approximations of the exact variational formulations of (7.4) and (7.5).
Eventually, by a classical result (see e.g. Lemma 3.5 in [7]), the partial derivative of Lh with respect to Γ is

precisely the shape derivative of Jh. Applying Lemma 7.2 to the Lagrangian (7.11) leads to (7.10).
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Figure 4: Level set function

8 Level set and optimization algorithms

In order to make it possible to change topology by merging boundaries during the shape optimization procedure,
the level set method, introduced by Osher and Sethian [39], is used. As shown in Figure 4, the basic idea is that the
boundary is represented as the zero iso-surface of a level set function ϕ(y) and the subdomains are distinguished
by the sign of the level set function ϕ(x). More precisely, the level set function ϕ(y) is defined by

∀y ∈ Y


ϕ(y) > 0 if y ∈ Y A

ϕ(y) = 0 if y ∈ Γ

ϕ(y) < 0 if y ∈ Y B

Based on the level set representation, the approximat material property for the finite element analyses is defined
as follows:

aY (y) := aA + hw(ϕ(y))(a
B − aA), ∀y ∈ Y (8.1)

where hw : R → R is a smooth monotone approximate Heaviside function:

∀τ ∈ R, hw(τ) :=


0 if τ < −w
1
2

(
1 + τ

w + 1
π sin(πτw )

)
if − w ≤ τ ≤ w

1 if τ > w

(8.2)

where the parameter w > 0 is the width of the smoothed approximate interface. There is nothing critical in this
interface smoothing process (for example, other functions hw could be used), but it makes easier the finite element
implementation. For instance, the boundary element method [27] is not required here.

In the level set method for shape optimization, the shape changes during the optimization is represented as an
evolution of the level set function. That is, introducing fictitious time t ∈ [0, T ] (that could be interpreted as a
descent step), the shape evolution is obtained by solving the following Hamilton-Jacobi equation:

∂ϕ

∂t
+ V | ∇ϕ |= 0, t ∈ (0, T ), x ∈ Y , (8.3)

with periodic boundary conditions and where the normal velocity V is defined as a descent direction for the shape
sensitivity

J ′(Y A)(θ) = −
ˆ
Γ

v θ · nds. (8.4)

A typical simple choice is to define V as an extension of v (which is defined merely on the interface Γ by (8.4))
to the entire cell Y . However, it is well known that the shape sensitivity does not have sufficient smoothness [34]
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and following a classical regularization process we replace V by a regularized variant Vreg which is defined as the
unique solution in H1

#(Y ) of

ˆ
Y

(
ϵ2r∇Vreg · ∇Ṽ + VregṼ

)
dy =

ˆ
Γ

vṼ dy for any Ṽ ∈ H1
#(Y )

where ϵr > 0 is a regularization parameter, having the interpretation of a smoothing length (typically of the order
of a few mesh cell size). In numerical practice, since the interface Γ is not exactly meshed, we replace the interface
integral in the above variational formulation by a volume integral with a smoothed Dirac function δw(dΓ(y)) where
dΓ is the signed distance function to the interface Γ and δη is defined as follows:

δη(τ) :=


0 if τ < −η
1
2η

(
1 + cos(πτη )

)
if − η ≤ τ ≤ η

0 if τ > η

where η > 0 is a small parameter.
In order to minimize numerical dissipation in solving the Hamilton-Jacobi equation (8.3), the level set function

is reinitialized as the signed distance function dΓ at each optimization iteration by solving

∂ϕ

∂t
+ sign(ϕ0) (|∇ϕ| − 1) = 0 in Y

starting from the initial condition ϕ0(y), the prior level set function. This equation, as well as the Hamilton-Jacobi
equation (8.3), are solved by a standard second-order upwind explicit finite difference scheme.

In truth, we are performing constrained optimization so that the velocity V is not computed only in terms of
the derivative of the objective function (8.4) but also in terms of the constraints derivatives. More precisely, we
rely on a standard Lagrangian approach, i.e. we replace the objective function by the Lagrangian which is the sum
of the objective function and of the constraints multiplied by Lagrange multipliers. These Lagrange multipliers are
updated at each iteration in such a way that the constraints are exactly satisfied.

The optimization process goes on as follows. First, the level set function is initialized to represent an appropriate
initial configuration. Second, iterations of a steepest descent method start. Each iteration is made of the following
steps. In a first step, the governing equations are solved using the finite element method and the objective function
is computed. If the objective function is converged, the optimization is stopped. If not, the adjoint equations are
solved in a second step. In a third step, the Lagrange multipliers are estimated to satisfy the constraints and the
resulting shape derivative of the Lagrangian is used to deduce the velocity V in (8.3) (this velocity is regularized
as explained above). In a fourth step, the level set function is updated based on the Hamilton-Jacobi equation
(8.3). Note that the Lagrange multiplier for the volume constraint is computed using Newton’s method so that the
volume constraint is exactly satisfied. Finally, if the objective function is improved and all constraints are satisfied,
the time increment of the Hamilton-Jacobi equation is increased and we go back to the second step for the next
optimization iteration. Otherwise, the time increment is decreased and we go back to the fourth step.

9 Numerical simulations

In our numerical simulations, we impose the 8-fold symmetry condition for the two-dimensional unit cell. As shown
in Figure 5, the analysis domain is a quarter of the unit cell (for simplicity), while the design domain is one eighth
of the unit cell, namely half of the analysis domain. The design is recovered on the other half of the analysis domain
by symmetry with respect to the diagonal. The finite element analysis is performed with the FreeFEM++ software
[25]. The domain is meshed with triangular elements and we use P1 finite elements. The two phases are isotropic
with material properties aA = 10 and aB = 20, respectively. By our 8-fold symmetry assumption, the dispersive
tensor D∗ is characterized by two scalar coefficients α and β (see Proposition 6.7).

In all our numerical examples, we rely on a structured triangular mesh for the finite element analysis. This
mesh is obtained from a regular squared mesh by dividing each square in four triangles along its diagonals. The
squared mesh is used for the finite differences discretization of the Hamilton-Jacobi equation. The regularization
parameter is set to ϵ2r = 0.05, the width of the approximated Heaviside function is set to w = 0.02 and the width
of the approximated Dirac function is η = 0.055.
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Figure 5: Analysis and design domain for the unit cell

9.1 Optimizing an energy associated to D∗

In this subsection, as a first numerical test, we choose the specific direction η = (1, 1) and we minimize or maxi-
mize the energy D∗ (η ⊗ η) : (η ⊗ η) for the Burnett tensor D∗ with volume constraint, perimeter constraint and
prescribing the homogenized tensor a∗ as follows:

min
Γ

or max
Γ

J(Γ) := 2α(Γ) + β(Γ)

subject to : Gv(Γ) :=

´
Y A dy´

Y A∪Y B dy
−Gv = 0

Gp(Γ) :=

ˆ
Γ

dΓ−Gp ≤ 0

Ga∗(Γ) :=
∥∥a∗(Γ)− a∗

∥∥= 0

where Gv, Gp and Ga∗ are constraint functions for the volume, the perimeter and the homogenized tensor a∗,
respectively. The constants Gv, Gp and a∗ are prescribed values for these constraints, respectively. We shall use
the optimization algorithm of Section 8. However, it is not obvious to find an admissible initial configuration,
satisfying all constraints. Therefore, we adopt the following four-step optimization procedure, starting from any
initialization:

Step 1: optimize Gv alone to satisfy Gv = 0.

Step 2: minimize Gp, while keeping Gv = 0, to satisfy Gp ≤ 0.

Step 3: minimize Ga∗ , with the constraints Gv = 0 and Gp ≤ 0, to satisfy Ga∗ = 0.

Step 4: optimize J(Γ), with the constraints Gv = 0, Gp ≤ 0 and Ga∗ = 0.

In this subsection, we use a 50× 50 structured mesh for the analysis domain. The isotropic materials A and B
have material properties aA = 10 and aB = 20. The upper limit of the perimeter constraint is set to Gp = 1.5. We
conisder two cases for the volume constraint: either Gv = 0.9 or Gv = 0.1, which can be interpreted as material
A being the inclusion in the first case, and material B being the inclusion in the second case. By symmetry, the
homogenized tensor a∗ is isotropic and its prescribed scalar value is set to 10.705 in the first case and 18.72 in the
second case. The relative error for judging whether the constraint function Ga∗ is satisfied is set to 5× 10−3.

Figures 6 and 7 show initial and optimal configurations when material A (in black) is the inclusion and when
material B (in white) is the inclusion, respectively. We test three different initial configurations, for which the
optimal configurations may be quite different. Therefore, we guess there are many local optimal solutions for this
type of optimization problems. In the minimization cases, the inclusions are changed to more complex and detailed
shape. This is consistent with our Remark 6.2 which states that smaller inclusions yield smaller dispersion (in
absolute value). On the other hand, in the maximization cases, the smaller inclusions may merge and give rise to
simpler optimal shapes.
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(a) Initial configuration
of case 1

(b) configuration after
step 3; α = 2.094× 10−3,
β = 2.903 × 10−3,
J = 7.092× 10−3

(c) minimized solution of
case 1; α = 1.590× 10−3,
β = −1.995 × 10−3, J =
1.185 × 10−3, J/J0 =
0.1670, Gp: active

(d) maximized solution of
case 1; α = 9.979× 10−4,
β = 5.932 × 10−3, J =
7.928 × 10−3, J/J0 =
1.179, Gp: non-active

(e) Initial configuration
of case 2

(f) configuration after
step 3; α = 1.566× 10−3,
β = 2.880 × 10−3,
J = 6.012× 10−3

(g) minimized solution of
case 2; α = 1.979× 10−3,
β = −2.425 × 10−3, J =
1.533 × 10−3, J/J0 =
0.2549, Gp: active

(h) maximized solution of
case 2; α = 2.296× 10−3,
β = 1.521 × 10−3, J =
6.113 × 10−3, J/J0 =
1.017, Gp: non-active

(i) Initial configuration of
case 3

(j) configuration after
step 3; α = 5.339× 10−4,
β = 4.862 × 10−3,
J = 5.929× 10−3

(k) minimized solution of
case 3; α = 9.226× 10−4,
β = −4.680 × 10−4, J =
1.377 × 10−3, J/J0 =
0.2323, Gp: active

(l) maximized solution of
case 3; α = 7.778× 10−4,
β = 6.550 × 10−3, J =
8.106 × 10−3, J/J0 =
1.367, Gp: non-active

Figure 6: Volume fraction Gv = 0.9 (material A, in black, being the inclusion)
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(a) Initial configuration
of case 4

(b) configuration after
step 3; α = 3.808× 10−3,
β = 5.195 × 10−3,
J = 1.281× 10−2

(c) minimized solution of
case 4; α = 3.903× 10−3,
β = −6.129 × 10−3, J =
1.677 × 10−3, J/J0 =
0.1308, Gp: active

(d) maximized solution of
case 4; α = 1.332× 10−3,
β = 1.113 × 10−2, J =
1.379 × 10−2, J/J0 =
1.077, Gp: non-active

(e) Initial configuration
of case 5

(f) configuration after
step 3; α = 2.966× 10−3,
β = 4.893 × 10−3,
J = 1.083× 10−2

(g) minimized solution of
case 5; α = 3.897× 10−3,
β = −6.151 × 10−3, J =
1.643 × 10−3, J/J0 =
0.1518, Gp: active

(h) maximized solution of
case 5; α = 1.331× 10−3,
β = 1.112 × 10−2, J =
1.378 × 10−2, J/J0 =
1.273, Gp: non-active

(i) Initial configuration of
case 6

(j) configuration after
step 3; α = 9.965× 10−4,
β = 8.009 × 10−3,
J = 1.000× 10−2

(k) minimized solution of
case 6; α = 2.241× 10−3,
β = −2.234 × 10−3, J =
2.247 × 10−3, J/J0 =
0.2247, Gp: active

(l) maximized solution of
case 6; α = 1.334× 10−3,
β = 1.117 × 10−2, J =
1.384 × 10−2, J/J0 =
1.384, Gp: non-active

Figure 7: Volume fraction Gv = 0.1 (material B, in white, being the inclusion)
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Remark 9.1. The perimeter constraint is active in all cases of minimizing J(Γ) and non-active in all cases of
maximizing J(Γ). This is consistent with our Remark 6.2.

9.2 Upper bounds on the dispersive effect

The goal of this subsection is to numerically find upper bounds on the coefficient α and β of the isotropic dispersive
tensor D∗ defined in Proposition 6.7. Recall that this isotropy condition is the result of our 8−fold symmetry
assumption in the unit cell. Without this assumption, the tensor D∗ is characterized by 5 independent coefficients
in 2− d (and 15 in 3− d), which seriously complexifies the task of finding upper bounds. We restrict ourselves to
upper bounds since, by virtue of Remark 6.2, an optimal lower bound on −D∗ is zero (which is achieved by taking
smaller and smaller repetition of the same microstructure in the unit cell). Of course, non trivial lower bounds
could be found if one adds a perimeter constraint but we did not explore this issue and instead focus only on upper
bounds.

We use numerical (gradient-based) optimization to find such upper bounds and, more precisely, the Pareto front
in the (α, β) plane for given phase properties and proportions. Our goal is thus to obtain the curve of upper bounds
for all possible (α, β), which is alike the celebrated Hashin-Shtrikman bounds [23] but for dispersive effects. If the
set of all possible (α, β) were convex, then the upper Pareto front could be obtained by maximizing all possible
linear convex combination of α and β:

max
Γ

θα(Γ) + (1− θ)β(Γ) (9.1)

subject to : Gv(Γ) = 0, Gp(Γ) ≤ 0, Ga∗(Γ) = 0

where θ ∈ [0, 1] is a parameter, the phase proportion and the homogenized tensor a∗ are constrained, and a
perimeter constraint is added on the interface Γ to exclude too fragmented configurations. Unfortunately, it is not
known whether the set of all possible (α, β) is convex or not and solving (9.1) for different values of θ ∈ [0, 1] would
yield an upper bound merely on the convex envelope of this unknown set.

(a) linear formulation (b) parabolic formulation

Figure 8: Comparison between the linear and parabolic formulations; the contour colors represent values of the
objective function with const.1 < const.2 < const.3.

In order to capture a possibly non-convex upper bound, we modify (9.1) by replacing the linear objective
function by a rotated quadratic one. The main idea (see Figure 8) is to locally approximate the Pareto front
by parabolas the main axis of which is oriented by an angle θ with respect to the horizontal axis. Discretizing
uniformly the angle as 0 ≤ θi ≤ π

2 , for i = 1, 2, ..., n, we introduce rotated coordinatesαθi

βθi

 :=

 cos θi sin θi

− sin θi cos θi

αN

βN

 ,

αN

βN

 :=


α(Γ)−αmin

αmax−αmin

β(Γ)−βmin

βmax−βmin

 ,

where αmax, αmin, βmax, βmin are maximum and minimum values for α and β (see Remark 9.2 for their evaluation).
Therefore, αN and βN represent normalized α and β. Then, we replace the liner formulation (9.1) by the following
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(a) step 5; optimal solutions
for θ1, θ2, θ3 are computed with
the initial shape obtained at
step 4.

(b) step 6; next point θi+1

for maximizing Ji+1 is defined
as the mid-point of the near-
est neighbor pair having the
longest distance.

(c) step 7; two optimizations
for the new parameter θi+1 are
run for different initializations,
being the optimal solutions for
θj and θk.

(d) step 7; two candidates for
the optimal solution of Ji+1 are
obtained.

(e) step 8; the optimal solution
of Ji+1 is selected as the best
of the two candidates.

(f) step 9; previous solutions
are deleted if the new i + 1-th
optimal solution is better.

(g) step 9; Pareto front is up-
dated.

(h) step 11; if the solution for
θ = 0 is deleted, the new point
is set to θ = 0 and the two ini-
tializations are taken as the op-
timal solutions for θ = π/2 and
θ = θi.

Figure 9: Optimization strategy for obtaining a Pareto front of optimal solutions

parabolic formulation

max
Γ

Ji(Γ) := αθi − cpβ
2
θi (9.2)

subject to : Gv(Γ) = 0, Gp(Γ) ≤ 0, Ga∗(Γ) = 0

where cp > 0 is a parameter for the parabola (we shall discuss its choice in a next subsection). For sufficiently large
values of cp we expect that such parabolas can better fit the possibly non-convex shape of the (α, β) set, although
one can easily imagine non-convex (but highly unlikely) shapes that cannot be approached from the outside by
parabolas. All the numerical results in this section have been obtained by using the parabolic formulation (9.2)
with a complicated discretization and initialization strategy for the angle θ that we now describe (see Figure 9).

Since the results of the previous subsection have shown evidence of possible local maxima for (9.2), we devise a
strategy to avoid as much as possible the effect of local optima and blind initializations in the optimization process.
The details of our optimization strategy are as follows:

step 1: The level set function is initialized and the parabola parameter cp is defined.

step 2: The function Gv(Γ) is optimized until satisfying Gv(Γ) = 0.

step 3: The function Gp(Γ) is minimized with Gv(Γ) = 0 until satisfying Gp ≤ 0.

step 4: The function Ga∗(Γ) is minimized with Gv = 0 and Gp ≤ 0 until satisfying Ga∗ = 0.

step 5: As shown in Figure 9 (a), starting from the optimal shape of step 4, three optimal solutions are computed
by maximizing Ji|i=1,2,3 with constraints, for the angular parameters θ1 = 0, θ2 = π/2 and θ3 = π/4. This
is the end of the initialization and we now start iterating by adding more and more angles θi and removing
those which are not optimal (step 9).
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step 6: A new discrete angle θi+1 is defined which yields a new objective function Ji+1 to be maximized. To
begin with, find a ”nearest neighbor” pair (θj , θk) such that their corresponding optimal values (αj , βj) and
(αk, βk) are farthest apart, where the distance is measured by the Euclidean distance in the normalized αN -
βN coordinate system, as shown in Figure 9(b). The pair (θj , θk) is said to be ”nearest neighbor” if no other
angle θi lies between them (the angles are not labeled in a monotone order). The next angular parameter
θi+1 is then defined as the mid-point of this pair:

θi+1 :=
θj + θk

2
.

To avoid a too fine local search, we do not consider too close pairs (θj , θk) such that |θj − θk| < ϵθ, where
ϵθ > 0 is set to 1× 10−4.

step 7: To find an optimal solution for the new discrete angle θi+1, we run two different optimization calculations.
As shown in Figure 9(c), the initialization of each run is the optimal solution for θj or θk, respectively. We
thus obtain two candidates for being the optimal solution associated to θi+1, as shown in Figure 9(d).

step 8: The values of the objective function Ji+1 for the two candidates computed in step 7 are compared. The
candidate with the largest value is kept as the optimal solution for θi+1, while the other candidate is deleted,
as shown in Figure 9(e).

step 9: To update the Pareto front, the newly obtained optimal solution Γi+1 is compared with previous optimal
solutions Γl, l = 1, 2, ...i. More precisely (see Figure 9(f) and (g)), a previous solution Γl is deleted from the
Pareto front if it is inferior to Γi+1 in the sense that:

Jl(Γl) ≤ Jl(Γi+1) .

step 10: The iterative optimization process is stopped if a maximal number nθ of discrete angles have been created.
Go to step 11, if one of the end points (θ = 0 or θ = π/2) of the Pareto front is deleted in step 9. Otherwise,
iterate by going back to step 6.

step 11: If the end point θ = 0 was deleted, then the next new discrete angle is θi+1 = 0. We perform step 7 with
two initializations, corresponding to the optimal solutions for θ = π/2 and θi, as shown in Figure 9(h). After
that go back to step 8. A symmetric argument is used in the case of the other end point θ = π/2.

In this subsection, we use a 90 × 90 structured mesh for the analysis domain. The prescribed homogenized
coefficient is set to ā∗ = 14.141667. The relative error for judging whether the constraint function Ga∗ is satisfied
is set to 5 × 10−3. The upper limit of the perimeter constraint is set to Gp = 5.0. The perimeter constraint is
never active for the final results of the Pareto front. However, it is active and useful to improve convergence for
the intermediate results.

Remark 9.2. The maximum and minimum values αmax, αmin, βmax, βmin are a priori unknown values. We
initialize them as:

αmax := 1.2α0, αmin := 0.9α0, βmax := 1.2|β0|, βmin := β0 (9.3)

where α0, β0 are the values of α and β at the optimal solution of step 4. Then, in the successive iterations, these
values are constantly updated as the maximal or minimal values of the previous computations.

Remark 9.3. The strategy is quite complex to implement and required a high computational cost at first glance.
However, the set of optimal solutions is easily updated by storing the connectivity of the Pareto optimal solutions.
In other words, the Pareto front is seen as a curve discretized by the boundary element method. Therefore, the
strategy could be extended to the three dimensional case where the length of a segment is replaced by the area of a
fictitious triangular element.

Remark 9.4. We tried the same strategy applied to the linear formulation (9.1) instead of the parabolic formula-
tion. However, we could never obtain the same results and always finished with suboptimal solutions. A possible
explanation is the presence of local minima together with non-convex level lines of the objective function.
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(a) case 1 (b) case 2 (c) case 3

Figure 10: Initial configurations

9.2.1 Comparison of initializations

Since we expect possible local minima at each individual optimization step, it is important to check that our strategy
avoids, as much as possible, local minima for the final result, i.e. for the Pareto front. Therefore, we examine the
effect of different initial configurations in step 1 upon the estimated upper bound on the set of dispersive coefficients
(α, β). Here, the parabolic parameter cp is set to 50. Figure 10 displays three different initial configurations. The
volume constraint is set to Gv = 0.5, meaning that both phases have the same proportion. The following numerical
tests are also an opportunity to check the convergence of the Pareto front as the number of discrete angles θi, and
therefore optimal shapes Γi, are added to the Pareto front.

Figure 11 shows the obtained Pareto fronts for each case of initial configuration in Figure 10. As can be clearly
seen, the estimated Pareto fronts expand as the number of points nθ increase during the optimization process and,
though very different initially, they almost overlap each other in the end, say for nθ = 500, see Figure 11 (f). As a
conclusion, we claim that our final upper Pareto front is numerically insensitive to the the initial configuration.

A striking feature of the obtained upper Pareto front in Figure 12 is that it is almost linear. We estimate
that the Pareto front is thus the line 2α + 1

2β ≈ 0.06. Although the Pareto front is almost linear, we confirm
that, in practice, the non-convexity of the curve must be taken into account during the optimization process, since
intermediate results are not convex curves.

Figure 12 features some of the obtained optimal shapes at nθ = 500 (each line of subfigures corresponds to a
different initialization of Figure 10). Clearly, the optimal configurations for each angular parameter θi are very
similar, regardless of the initial configuration (note that the shapes of the second line are identical to the ones of
the first and third lines by a simple translation in the periodicity cell).

Remark 9.5. Although the perimeter constraint is active at several intermediate optimal solutions, the constraint
is non-active on the final upper bound in all examples.

Remark 9.6. The optimal shape for the end point of the Pareto front, corresponding to maximal α, looks like
a checkerboard pattern (see the left column of Figure 12). Therefore, we computed the values of α and β for the
checkerboard pattern of Figure 13(a) and found that indeed it yields a value α = 2.86 × 10−2 which is maximal.
Therefore, we conjecture that this cherckerboard pattern is an optimal configuration for maximal α.

Although it is less obvious, the optimal shape for maximal β in Figure 12(l) looks like another checkerboard
pattern. We again computed the values of α and β for the checkerboard pattern of Figure 13(b) and obtained the
largest value β = 5.52× 10−2. Again we conjecture that this cherckerboard pattern is an optimal configuration for
maximal β.

We must admit that those checkerboard patterns are not clearly attained by our numerical optimization, which
is a clear limitation of our approach. One reason is that it may be difficult to reproduce sharp corners with an
alorithm based on (smooth) shape differentiation. Another reason is the presence of many local optima.

Remark 9.7. The two checkerboard configurations in Figure 13 are equivalent after rotation by π/4 and scaling
by a factor of

√
2. Since in Section 6 we obtained formulas for the dispersion tensor D∗ of a scaled or rotated

microstructure, it is tempting to validate our numerical computations by checking the validity of these formulas.
First, by virtue of Lemma 6.5, under the 8-fold symmetry assumption and for a rotation R of angle π

4 , the dispersive
tensor after rotation is given by:

D̃∗ (η ⊗ η ⊗ η ⊗ η) = D∗ (Rη ⊗ Rη ⊗ Rη ⊗ Rη) = −1

4
(2α+ β)

(
η41 + η42

)
− 1

2
(6α− β)η21η

2
2 .
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(d) nθ=100
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(e) nθ=200
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(f) nθ=500

Figure 11: Upper bound or Pareto front in the (α, β) plane. Dependency on the initial configurations (cases 1, 2
and 3)
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(a) case 1: θi = 0,
α = 2.87 × 10−2,
β = −4.96 × 10−2

(maximal α)

(b) case 1: θi ≃ π
10

,

α = 2.11 × 10−2,
β = −2.61× 10−2

(c) case 1: θi ≃ π
5
,

α = 1.64 × 10−2,
β = −7.92× 10−3

(d) case 1: θi ≃ 3π
10

,

α = 1.23 × 10−2,
β = 8.52× 10−3

(e) case 1: θi ≃ 2π
5
,

α = 7.60 × 10−3,
β = 2.75× 10−2

(f) case 1: θi = π
2
,

α = 9.95 × 10−4,
β = 5.29 × 10−2

(maximal β)

(g) case 2: θi = 0,
α = 2.76 × 10−2,
β = −4.83 × 10−2

(maximal α)

(h) case 2: θi ≃ π
10

,

α = 2.08 × 10−2,
β = −2.44× 10−2

(i) case 2: θi ≃ π
5
,

α = 1.60 × 10−2,
β = −6.30× 10−3

(j) case 2: θi ≃ 3π
10

,

α = 1.20 × 10−2,
β = 1.05× 10−2

(k) case 2: θi ≃ 2π
5
,

α = 7.18 × 10−3,
β = 2.93× 10−2

(l) case 2: θi = π
2
,

α = 8.33 × 10−4,
β = 5.41 × 10−2

(maximal β)

(m) case 3: θi = 0,
α = 2.86 × 10−2,
β = −4.91 × 10−2

(maximal α)

(n) case 3: θi ≃ π
10

,

α = 2.12 × 10−2,
β = −2.62× 10−2

(o) case 3: θi ≃ π
5
,

α = 1.65 × 10−2,
β = −8.22× 10−3

(p) case 3: θi ≃ 3π
10

,

α = 1.24 × 10−2,
β = 8.40× 10−3

(q) case 3: θi ≃ 2π
5
,

α = 7.69 × 10−3,
β = 2.75× 10−2

(r) case 3: θi = π
2
,

α = 9.85 × 10−4,
β = 5.24 × 10−2

(maximal β)

Figure 12: Optimal shapes of the upper Pareto front at nθ=500

(a) maximal α: α = 2.86×10−2, β = −4.97×10−2 (b) maximal β: α = 9.26× 10−4, β = 5.52× 10−2

Figure 13: Checkerboard patterns, conjectured to yield maximal α (left) and maximal β (right)
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Figure 13 (a) Figure 13 (b)

α β α β

original 2.86× 10−2 −4.97× 10−2 9.26× 10−4 5.52× 10−2

rotation 1.87× 10−3 1.11× 10−1 1.43× 10−2 −2.48× 10−2

scaling 9.32× 10−4 5.53× 10−2 2.85× 10−2 −4.96× 10−2

Table 1: Comparison of the checkerboards of Figure 13 and their rotated and scaled versions

Second, since the scaling factor between the two configurations of Figure 13 is
√
2, by virtue of Lemma 6.3, the

dispersive tensors have a ratio of 2. We confirm that our numerical results of Figure 13 satisfy those formulas,
within an error of less than 1%, as can be checked in Table 1.

9.2.2 Sensitivity to the parabolic parameter cp

We investigate the dependence of the Pareto front to the parameter cp which enters the definition of the objective
function in (9.2). The previous computations were performed with cp = 50. We now consider various values
cp = 1, 30, 60, 80 for the sole initialization of case 1 in Figure 10(a). As in Figure 11 we compute the Pareto front
in the (α, β) plane for these different values of cp.

Figure 14 shows the obtained Pareto fronts for each cases and for increasing numbers nθ of points. Except for
the case cp = 1, all fronts are almost identical for a large number of points nθ = 500. Therefore, our Pareto front
does not depend on this parameter, provided it is not too small. The bad behavior in the case cp = 1 is similar to
the observed bad behavior for the linear formulation of the optimization problem (9.1).

Figure 15 displays the obtained optimal configurations at nθ = 500. Except in the caser of Figure 15(n), all
shapes are very similar, regardless of the parameter cp.

9.2.3 Dependence on the aspect ratio of the material properties aB/aA

We examine how the upper bound varies with the aspect ratio of the material properties aB/aA. We compare
the previous case, aA = 10 and aB = 20, called case 1 in the sequel, to the new case 2 for which aA = 10 and
aB = 25 and case 3 for which aA = 10 and aB = 30. The prescribed value for the volume constraint is Gv = 0.5
and the parabolic parameter is cp = 50. The prescribed homogenized tensors are set to a∗ = 14.141667 in case 1,
a∗ = 15.812500 in case 2 and a∗ = 17.32500 in case 3, where each value is the middle point between its upper and
lower bounds (given by the Hashin-Shtrikman bounds). Figure 16 shows the two obtained Pareto fronts which are
quite different. Both seem to be linear curves and the range of dispersion is larger for a larger aspect ratio. Remark
that, as the ratio aB/aA converges to 1, one can easily show that the first and second order cell functions χi, χij

converge to 0 and, therefore, the dispersion tensor D∗ converges to 0 too. This is consistent with our numerical
observation that the range of D∗ is smaller for smaller aspect ratio.

Figure 17 displays the obtained optimal configurations for case 2 and case 3. By comparison with Figure 12,
the optimal shapes of case 1, case 2 and case 3 are very similar.

9.2.4 Dependence on the volume constraint Gv

Next, we examine the effect of the phases proportion (or volume constraint Gv) upon the estimated upper bound
on the parameters α and β of the dispersive tensor. The values are set to Gv = 0.5 in case 1, Gv = 0.6 in case
2 and Gv = 0.7 in case 3, respectively. The material properties are set to aA = 10 and aB = 20. The prescribed
tensors are set to a∗ = 14.141667 in case 1, a∗ = 13.197500 in case 2 and a∗ = 12.324720 in case 3, where each
value is the middle point between its upper and lower Hashin-Shtrikman bounds. Figure 18 shows the obtained
Pareto optimal solutions for each cases.

As can be seen, the obtained curves are almost linear. The range of the Pareto front is maximal for Gv = 0.5
(its range should converge to the single point 0 when Gv converges to 0 or 1, i.e. in the limit of pure phases).
Figure 19 shows the obtained optimal configurations for the upper bound in cases 2 and 3. By comparison with
Figure 12, the optimal configurations of cases 1, 2 and 3 are similar.

Remark 9.8. It is easy to prove that, when the volume fraction Gv tends to 0 or to 1, then the periodic coefficients
a(y) converge to a constant, while the first and second order cell functions χi, χij converge to 0. Therefore, the
dispersion tensor D∗ converges to 0 too. This is consistent with our numerical observation that the range of D∗ is
smaller for Gv closer to 0 or 1.
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(b) nθ=20
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(c) nθ=50
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(d) nθ=100
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(e) nθ=200
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Figure 14: Sensitivity of the Pareto front to the parabolic parameter cp, for increasing numbers nθ of points
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(a) cp = 30: θi =
0, α = 2.86 × 10−2,
β = −4.96 × 10−2

(maximal α)

(b) cp = 30: θi ≃
π
10

, α = 2.11×10−2,

β = −2.63× 10−2

(c) cp = 30: θi ≃
π
5
, α = 1.66× 10−2,

β = −9.30× 10−3

(d) cp = 30: θi ≃
3π
10

, α = 1.22×10−2,

β = 9.00× 10−3

(e) cp = 30: θi ≃
2π
5
, α = 7.37×10−3,

β = 2.76× 10−2

(f) cp = 30: θi =
π
2
,

α = 1.09 × 10−3,
β = 5.39 × 10−2

(maximal β)

(g) cp = 60: θi =
0, α = 2.86 × 10−2,
β = −4.96 × 10−2

(maximal α)

(h) cp = 60: θi ≃
π
10

, α = 2.12×10−2,

β = −2.63× 10−2

(i) cp = 60: θi ≃ π
5
,

α = 1.65 × 10−2,
β = −8.04× 10−3

(j) cp = 60: θi ≃
3π
10

, α = 1.24×10−2,

β = 8.52× 10−3

(k) cp = 60: θi ≃
2π
5
, α = 7.62×10−3,

β = 2.71× 10−2

(l) cp = 60: θi =
π
2
,

α = 9.93 × 10−4,
β = 5.18 × 10−2

(maximal β)

(m) cp = 80: θi =
0, α = 2.83 × 10−2,
β = −4.90 × 10−2

(maximal α)

(n) cp = 80: θi ≃
π
10

, α = 2.08×10−2,

β = −2.56× 10−2

(o) cp = 80: θi ≃
π
5
, α = 1.64× 10−2,

β = −7.86× 10−3

(p) cp = 80: θi ≃
3π
10

, α = 1.23×10−2,

β = 9.24× 10−3

(q) cp = 80: θi ≃
2π
5
, α = 7.56×10−3,

β = 2.76× 10−2

(r) cp = 80: θi =
π
2
,

α = 9.72 × 10−4,
β = 5.18 × 10−2

(maximal β)

Figure 15: Optimal configurations at nθ = 500 for cp = 30, 60, 80

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.02  0.04  0.06  0.08

β

α

case 1

case 2

case 3

Figure 16: Pareto front of the upper bound on dispersion: case 1 (aA = 10, aB = 20), case 2 (aA = 10, aB = 25)
and case 3 (aA = 10, aB = 30)
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(a) case 2, θi = 0,
α = 5.50 × 10−2,
β = −9.10 × 10−2

(maximal α)

(b) case 2, θi ≃ π
10

,

α = 4.09 × 10−2,
β = −4.56× 10−2

(c) case 2, θi ≃ π
5
,

α = 3.26 × 10−2,
β = −9.86× 10−3

(d) case 2, θi ≃ 3π
10

,

α = 2.44 × 10−2,
β = 2.26× 10−2

(e) case 2, θi ≃ 2π
5
,

α = 1.47 × 10−2,
β = 6.06× 10−2

(f) case 2, θi = π
2
,

α = 2.79 × 10−3,
β = 1.01 × 10−1

(maximal β)

(g) case 3, θi = 0,
α = 8.55 × 10−2,
β = −1.36 × 10−1

(maximal α)

(h) case 3, θi ≃ π
10

,

α = 6.39 × 10−2,
β = −7.01× 10−2

(i) case 3, θi ≃ π
5
,

α = 5.19 × 10−2,
β = −9.37× 10−3

(j) case 3, θi ≃ 3π
10

,

α = 4.06 × 10−2,
β = 3.71× 10−2

(k) case 3, θi ≃ 2π
5
,

α = 2.59 × 10−2,
β = 9.16× 10−2

(l) case 3, θi = π
2
,

α = 6.33 × 10−3,
β = 1.54 × 10−1

(maximal β)

Figure 17: Configurations of the Pareto front in case 2 (aA = 10, aB = 25) and case 3 (aA = 10, aB = 30)
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Figure 18: Upper bounds in different prescribed value of volume constraint
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(a) case 2, θi = 0,
α = 2.52 × 10−2,
β = −3.95 × 10−2

(maximal α)

(b) case 2, θi ≃ π
10

,

α = 1.95 × 10−2,
β = −2.12× 10−2

(c) case 2, θi ≃ π
5
,

α = 1.51 × 10−2,
β = −5.42× 10−3

(d) case 2, θi ≃ 3π
10

,

α = 1.11 × 10−2,
β = 9.30× 10−3

(e) case 2, θi ≃ 2π
5
,

α = 6.81 × 10−3,
β = 2.61× 10−2

(f) case 2, θi = π
2
,

α = 8.05 × 10−4,
β = 4.55 × 10−2

(maximal β)

(g) case 3, θi = 0,
α = 1.88 × 10−2,
β = −2.55 × 10−2

(maximal α)

(h) case 3, θi ≃ π
10

,

α = 1.48 × 10−2,
β = −1.26× 10−2

(i) case 3, θi ≃ π
5
,

α = 1.15 × 10−2,
β = −1.08× 10−3

(j) case 3, θi ≃ 3π
10

,

α = 8.61 × 10−3,
β = 8.87× 10−3

(k) case 3, θi ≃ 2π
5
,

α = 5.19 × 10−3,
β = 1.97× 10−2

(l) case 3, θi = π
2
,

α = 7.95 × 10−4,
β = 3.28 × 10−2

(maximal β)

Figure 19: Optimal configurations on the upper bound in case 2 and case 3 (comparison of Gv)

9.3 Optimizing the dispersion coefficient d∗ for the source term

In the high order homogenized equation (1.4), another source of dispersion comes from the source term which is
perturbed by a second order derivative, the coefficient of which is the matrix d∗, defined by (2.24). The goal of
this subsection is to investigate the range of this matrix d∗. Under our 8-fold symmetry assumption, the tensor d∗

is a scalar matrix, i.e., can be rewritten as follows:

d∗ij = γId with γ :=

ˆ
Y

χ2
1dy .

Therefore, we minimize or maximize this dispersion coefficient γ with volume constraint, perimeter constraint and
prescribing the homogenized tensor a∗, as follows:

min
Γ

or max
Γ

J(Γ) := γ(Γ)

subject to : Gv(Γ) = 0, Gp(Γ) ≤ 0, Ga∗(Γ) = 0

We rely on the optimization algorithm of Section 8 and adopt the four-step optimization procedure of subsection
9.1, starting from the same initializations. We use a 50×50 structured mesh for the analysis domain. The isotropic
materials A and B have material properties aA = 10 and aB = 20. The upper limit of the perimeter constraint
is set to Gp = 1.5. We consider two cases for the volume constraint: either Gv = 0.9 or Gv = 0.1, which can be
interpreted as material A being the inclusion in the first case, and material B being the inclusion in the second case.
By symmetry, the homogenized tensor a∗ is isotropic and its prescribed scalar value is set to 10.705 in the first
case and 18.72 in the second case. The relative error for judging whether the constraint function Ga∗ is satisfied is
set to 5× 10−3.

Figures 20 and 21 show initial and optimal configurations when material A (in black) is the inclusion and when
material B (in white) is the inclusion, respectively. When minimizing γ, the inclusions are fragmented with smaller
and more complex details (which depend on the value of the perimeter constraint which is always active). This is
consistent with our Remark 6.2 which states that smaller inclusions yield smaller dispersion. On the other hand,
when maximizing γ, we obtain a single smooth inclusion in the unit cell and the perimeter constraint is not active.
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(a) Initial configuration
of case 1

(b) configuration after
step 3; γ = 2.4654× 10−3

(c) minimized solution of
case 1; γ = 1.5538×10−3,
Gp: active

(d) maximized solution of
case 1; γ = 3.5786×10−3,
Gp: non-active

(e) Initial configuration
of case 2

(f) configuration after
step 3; γ = 1.9652× 10−3

(g) minimized solution of
case 2; γ = 1.1584×10−3,
Gp: active

(h) maximized solution of
case 2; γ = 3.5721×10−3,
Gp: non-active

(i) Initial configuration of
case 3

(j) configuration after
step 3; γ = 1.2119× 10−3

(k) minimized solution of
case 3; γ = 9.8363×10−4,
Gp: active

(l) maximized solution of
case 3; γ = 36303× 10−3,
Gp: non-active

Figure 20: Optimal shapes for d∗ with volume fraction Gv = 0.9 (material A, in black, being the inclusion)
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(a) Initial configuration
of case 4

(b) configuration after
step 3; γ = 2.8098× 10−3

(c) minimized solution of
case 4; γ = 1.8606×10−3,
Gp: non-active

(d) maximized solution of
case 4; γ = 4.1621×10−3,
Gp: non-active

(e) Initial configuration
of case 5

(f) configuration after
step 3; γ = 2.2688× 10−3

(g) minimized solution of
case 5; γ = 8.8245×10−4,
Gp: active

(h) maximized solution of
case 5; γ = 4.1492×10−3,
Gp: non-active

(i) Initial configuration of
case 6

(j) configuration after
step 3; γ = 1.4962× 10−3

(k) minimized solution of
case 6; γ = 6.9058×10−4,
Gp: active

(l) maximized solution of
case 6;γ = 4.1065× 10−3,
Gp: non-active

Figure 21: Optimal shapes for d∗ with volume fraction Gv = 0.1 (material B, in white, being the inclusion)
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10 Proof of Theorem 7.3

This section is devoted to the proof of Theorem 7.3, which gives the shape derivative of an objective function
depending on the first-order and second-order cell solutions. As usual, we rely on the Langrangian method,
which introduces a Lagrangian as the sum of the objective function and of the constraints multiplied by Lagrange
multipliers. The governing equations are treated as constraints and the corresponding Lagrange multipliers are
precisely the adjoint states at optimality. Eventually, the shape derivative is obtained as a simple partial derivative
of the Lagrangian using Lemma 7.2. There is a slight difficulty since the solutions χi and χij of the cell problems
are not shape differentiable (in the sense of Definition 7.1) because their normal derivatives are discontinuous across
the interface Γ (see [7, 40]). However, when restricted to each subdomain Y A and Y B , the functions χi and χij

are shape differentiable. Therefore, we shall rewrite the cell equations as transmission problems and define an
adequate Lagrangian which will involve additional Lagrange multipliers for the interface transmission conditions
(see [7, 40]).

Thus, we introduce the restrictions χA
i and χA

ij to Y A, and χB
i and χB

ij to Y B , of the solutions χi of (2.6) and
χij of (2.12), 1 ≤ i, j ≤ d. They satisfy the following transmission problems:

−div(aA∇χA
i ) = −div(aAei) in Y A

−div(aB∇χB
i ) = −div(aBei) in Y B

χA
i = χB

i on Γ

aA(∇χA
i − ei) · nA = −aB(∇χB

i − ei) · nB on Γ,

(10.1)

and 
−div(aA∇χA

ij) = aAij − aA∇χj · ei − div(χA
j a

Aei)− a∗ij in Y A

−div(aB∇χB
ij) = aBij − aB∇χj · ei − div(χB

j a
Bei)− a∗ij in Y B

χA
ij = χB

ij on Γ

aA(∇χA
ji − χA

j ei) · nA = −aB(∇χB
ij − χB

j ei) · nB on Γ,

(10.2)

which, taking into account periodicity condition, are equivalent to (2.6) and (2.12), respectively. Of course, the
functions χA

i , χ
A
ij and χB

i , χ
B
ij are smooth on their subdomains, namely χA

i , χ
A
ij ∈ H2(Y A) and χB

i , χ
B
ij ∈ H2(Y B).

If Γ is smooth, they are restrictions to their subdomains of smooth functions in the entire unit cell Y . Then, for
1 ≤ i, j ≤ d, for any functions χ̂A

i , χ̂
A
ij , χ̂

B
i , χ̂

B
ij in H1

#(Y ), for any bulk ”Lagrange multiplier” functions p̂Ai , p̂
A
ij ,

p̂Bi , p̂
B
ij in H1

#(Y ) and interface ”Lagrange multiplier” functions λ̂i, λ̂ij , γ̂i, γ̂ij in H1
#(Y ), we define a Lagrangian

L as follows:

L
(
Γ, {χ̂A

i }, {χ̂A
ij}, {χ̂B

i }, {χ̂B
ij}, {p̂Ai }, {p̂Aij}, {p̂Bi }, {p̂Bij}, {λ̂i}, {λ̂ij}, {γ̂i}, {γ̂ij}

)
:=ˆ

Y A

J (y, {χ̂A
i }, {χ̂A

ij}) dy +
ˆ
Y B

J (y, {χ̂B
i }, {χ̂B

ij}) dy

−
ˆ
Y A

div
(
aA(∇χ̂A

i − ei)
)
p̂Ai dy −

ˆ
Y B

div
(
aB(∇χ̂B

i − ei)
)
p̂Bi dy

+

ˆ
Γ

λ̂i(χ̂
A
i − χ̂B

i ) ds+

ˆ
Γ

γ̂i
(
aA(∇χ̂A

i − ei) · nA + aB(∇χ̂B
i − ei) · nB

)
ds

−
ˆ
Y A

(
div
(
aA(∇χ̂A

ij − χ̂A
j ei)

)
+ aAij − â∗ij − aA∇χ̂A

j · ei
)
p̂Aij dy

−
ˆ
Y B

(
div
(
aB(∇χ̂B

ij − χ̂B
j ei)

)
+ aBij − â∗ij − aB∇χ̂B

j · ei
)
p̂Bij dy

+

ˆ
Γ

λ̂ij(χ̂
A
ij − χ̂B

ij) ds+

ˆ
Γ

γ̂ij
(
aA(∇χ̂A

ij − χ̂A
j ei) · nA + aB(∇χ̂B

ij − χ̂B
j ei) · nB

)
ds , (10.3)

where the integrals on the interface Γ, involving the Lagrange multipliers λ̂i, λ̂ij , γ̂i, γ̂ij , are meant to enforce the
transmission conditions on Γ, as they appear in (10.1), (10.2). The coefficient â∗ij is defined in terms of χ̂i by a
formula similar to (2.8) for the homogenized tensor, namely

â∗ij =

ˆ
Y

(aei − a∇χ̂i) · ej dy .
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Of course, in (10.3) the summation convention is used for 1 ≤ i, j ≤ d. The notation ˆ on top of each function
means that it is not the optimal function, but any function in H1

#(Y ). At optimality, we shall remove theˆand we
shall recover χi, χij , solutions of (10.1), (10.2), and pi, pij , solutions of (7.4), (7.5), respectively. The important
fact in the definition of L is that all variables χ̂ and p̂ are independent of Γ and defined in the fixed space H1

#(Y ).
Therefore, the stationarity of the Lagrangian is going to give the optimality conditions of the optimization problem.

In a first (and easy) step, taking the partial derivatives of the Lagrangian with respect to the Lagrange multipliers
p, λ and γ yield the state equations (10.1), (10.2). This is an obvious computation since the Lagrangian is linear
with respect to p, λ and γ, and we skip it.

In a second step, taking the partial derivatives of the Lagrangian with respect to the variables χ leads to the
adjoint equations (7.4), (7.5). In other words, for a direction of derivation ψ = (ψA, ψB) with ψA,B ∈ H1

#(Y ), we
ask that pi be determined by ⟨

∂L

∂χi
, ψ

⟩
= 0 , (10.4)

and pij by ⟨
∂L

∂χij
, ψ

⟩
= 0 . (10.5)

Let us explain the details for (10.5). We choose a test function ψ, with values ψA in Y A and ψB in Y B , which a
priori is not continuous through the interface Γ. We find⟨

∂L

∂χij
, ψ

⟩
=

ˆ
Y A

∂J

∂χA
ij

ψA dy −
ˆ
Y A

div
(
aA∇ψA

)
pAij dy +

ˆ
Y B

∂J

∂χB
ij

ψB dy −
ˆ
Y B

div
(
aB∇ψB

)
pBij dy

+

ˆ
Γ

λij(ψ
A − ψB) ds+

ˆ
Γ

γij
(
aA∇ψA · nA + aB∇ψB · nB

)
ds = 0 .

After two integration by parts, recalling the notation [·] for the jump through Γ, we deduce⟨
∂L

∂χij
, ψ

⟩
=

ˆ
Y A

(
∂J

∂χA
ij

− div
(
aA∇pAij

))
ψA dy +

ˆ
Y B

(
∂J

∂χB
ij

− div
(
aB∇pBij

))
ψB dy

+

ˆ
Γ

λij [ψ] ds+

ˆ
Γ

γij [a∇ψ · n] ds+
ˆ
Γ

([ψa∇pij · n]− [pija∇ψ · n]) ds = 0 . (10.6)

Now we choose the test function ψ which satisfies successively five different types of conditions at the interface Γ.

1. Assume ψ to have compact support in Y A. It gives⟨
∂L

∂χij
, ψ

⟩
=

ˆ
Y A

∂J

∂χij
ψ dy −

ˆ
Y A

div
(
aA∇ψ

)
pAij dy = 0,

which, by integration by parts, since ψ and its gradient vanish on Γ, leads to

−div(aA∇pAij) = − ∂J

∂χA
ij

in Y A. (10.7)

A symmetric computation works for Y B . Because of (10.7) the two integrals on Y A and Y B cancel in (10.6).

2. Assume aA∇ψA · nA = aB∇ψB · nB = 0 and [ψ] = 0 on Γ. Thus (10.6) reduces to

ˆ
Γ

ψ[a∇pij · n] ds = 0,

for any value of the trace ψ = ψA = ψB on Γ. This implies [a∇pij · n] = 0.

3. Assume just aA∇ψA · nA = aB∇ψB · nB = 0. Then (10.6) reduces to

ˆ
Γ

[ψ] (λij + a∇pij · n) ds = 0,

for any value of the jump [ψ] on Γ. This gives the optimal value of the Lagrange multiplier λij = −aA∇pAij ·
nA = aB∇pBij · nB .
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4. Assume now [a∇ψ · n] = 0. This time, (10.6) reduces to

ˆ
Γ

a∇ψ · n[pij ] ds = 0,

for any value of the trace a∇ψ · n = aA∇ψA · nA = aB∇ψB · nB . Thus we find [pij ] = 0 on Γ.

5. Finally if ψ does not satisfy any condition at the interface, (10.6) reduces to

ˆ
Γ

[a∇ψ · n] (γij − pij) ds = 0,

which gives the optimal value of the Lagrange multiplier γij = pij on Γ.

The five above items imply that pij is indeed a solution of (7.5) and furthermore the optimal Lagrange multipliers
are determined.

Similarly for (10.4), taking a test function ψ, with discontinuous values ψA in Y A and ψB in Y B , after integrating
by parts, we find⟨

∂L

∂χi
, ψ

⟩
=

ˆ
Y A

(
∂J

∂χA
i

− div
(
aA∇pAi

)
− div

(
aApAijej

)
− aA∇pAij · ej +

(ˆ
Y

pij

)
div(aAej)

)
ψA dy

+

ˆ
Y B

(
∂J

∂χB
i

− div
(
aB∇pBi

)
− div

(
aBpBijej

)
− aB∇pBij · ej +

(ˆ
Y

pij

)
div(aBej)

)
ψB dy

+ 2

ˆ
Γ

[aψpijej · n] ds+
ˆ
Γ

([ψa∇pi · n]− [pia∇ψ · n]) ds−
(ˆ

Y

pij

) ˆ
Γ

[ψaej · n] ds (10.8)

+

ˆ
Γ

λi[ψ] ds+

ˆ
Γ

γi[a∇ψ · n] ds−
ˆ
Γ

γij [aψej · n] ds = 0 ,

where the terms in factor of (
´
Y
pij) come from the differentiation of â∗ij .

1. Taking ψ to have compact support in Y A, or in Y B, yields the bulk equation (7.4) away from Γ.

2. Assume aA∇ψA · nA = aB∇ψB · nB = 0 and [ψ] = 0 on Γ. Thus (10.8) reduces to

2

ˆ
Γ

ψ[apijej · n] ds+
ˆ
Γ

ψ[a∇pi · n] ds−
(ˆ

Y

pij

)ˆ
Γ

ψ[aej · n] ds−
ˆ
Γ

γijψ[aej · n] ds = 0

for any value of the trace ψ = ψA = ψB on Γ. Since we already know that γij = pij , this implies [a(∇pi +
pijej − (

´
Y
pij)ej) · n] = 0.

3. Assume just aA∇ψA · nA = aB∇ψB · nB = 0. Then (10.8) reduces to

ˆ
Γ

[ψ]

(
λi + a(∇pi + pijej − (

ˆ
Y

pij)ej) · n
)
ds = 0,

for any value of the jump [ψ] on Γ. This gives the optimal value of the Lagrange multiplier λi = −a(∇pi +
pijej − (

´
Y
pij)ej) · n.

4. Assume now [a∇ψ · n] = 0. This time, (10.8) reduces to

ˆ
Γ

a∇ψ · n[pi] ds = 0,

for any value of the trace a∇ψ · n. Thus we find [pi] = 0 on Γ.

5. Finally if ψ does not satisfy any condition at the interface, (10.8) reduces to

ˆ
Γ

[a∇ψ · n] (γi − pi) ds = 0,

which gives the optimal value of the Lagrange multiplier γi = pi on Γ.
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The five above items imply that pi is indeed a solution of (7.4) and furthermore the optimal Lagrange multipliers
are determined.

Finally, in a third and final step, we apply Lemma 7.2 to the computation of the partial derivative of the
Lagrangian L with respect to Y A in the direction θ. By a classical result (see e.g. Lemma 3.5 in [7]), we know
that this partial derivative of L is precisely the shape derivative of J ,

J ′(Y A)(θ) =

⟨
∂L

∂Γ
, θ

⟩(
Γ, {χA,B

i }, {χA,B
ij }, {pA,B

i }, {pA,B
ij }, {λi}, {λij}, {γi}, {γij}

)
when the right hand side is evaluated at the optimal state and adjoint solutions (i.e. without .̂). It remains to
compute the partial shape derivative of L and to show that it is equal to the right hand side of (7.3).

As a preliminary step, we perform an integration by parts in the definition (10.3) of the Lagrangian to make it
more symmetric. It yields

L
(
Γ, {χ̂A,B

i }, {χ̂A,B
ij }, {p̂A,B

i }, {p̂A,B
ij }, {λ̂i}, {λ̂ij}, {γ̂i}, {γ̂ij}

)
:=

ˆ
Y A

J A dy +

ˆ
Y B

J B dy (10.9)

+

ˆ
Y A

aA(∇χ̂A
i − ei) · ∇p̂Ai dy +

ˆ
Y B

aB(∇χ̂B
i − ei) · ∇p̂Bi dy

+

ˆ
Γ

λ̂i(χ̂
A
i − χ̂B

i ) ds+

ˆ
Γ

(
(γ̂i − p̂Ai )a

A(∇χ̂A
i − ei) · nA + (γ̂i − p̂Bi )a

B(∇χ̂B
i − ei) · nB

)
ds

+

ˆ
Y A

(
aA(∇χ̂A

ij − χ̂A
j ei) · ∇p̂Aij + (−aAij + â∗ij + aA∇χ̂A

j · ei)p̂Aij
)
dy

+

ˆ
Y B

(
aB(∇χ̂B

ij − χ̂B
j ei) · ∇p̂Bij + (−aBij + â∗ij + aB∇χ̂B

j · ei)p̂Bij
)
dy

+

ˆ
Γ

λ̂ij(χ̂
A
ij − χ̂B

ij) ds+

ˆ
Γ

(
(γ̂ij − p̂Aij)a

A(∇χ̂A
ij − χ̂A

j ei) · nA + (γ̂ij − p̂Bij)a
B(∇χ̂B

ij − χ̂B
j ei) · nB

)
ds .

To obtain the shape derivative, Lemma 7.2 is applied to the Lagrangian (10.9) and the resulting expression is
evaluated at the optimal states, adjoints and Lagrange parameters (i.e. without .̂). This leads to⟨

∂L

∂Γ
, θ

⟩
=

ˆ
Γ

(
J A − J B

)
θ · nds (10.10)

+

ˆ
Γ

(
aA(∇χA

i − ei) · ∇pAi − aB(∇χB
i − ei) · ∇pBi

)
θ · nds

+

ˆ
Γ

(
aA(∇χA

ij − χA
j ei) · ∇pAij + (−aAij + a∗ij + aA∇χA

j · ei)pAij
)
θ · nds

−
ˆ
Γ

(
aB(∇χB

ij − χB
j ei) · ∇pBij + (−aBij + a∗ij + aB∇χB

j · ei)pBij
)
θ · nds

+

ˆ
Γ

λi
∂(χA

i − χB
i )

∂n
θ · nds

+

ˆ
Γ

(∂(γi − pAi )

∂n
aA(∇χA

i − ei) · nA +
∂(γi − pBi )

∂n
aB(∇χB

i − ei) · nB
)
θ · nds

+

ˆ
Γ

λij
∂(χA

ij − χB
ij)

∂n
θ · nds

+

ˆ
Γ

(∂(γij − pAij)

∂n
aA(∇χA

ij − χA
j ei) · nA +

∂(γij − pBij)

∂n
aB(∇χB

ij − χB
j ei) · nB

)
θ · nds ,

where we have already taken into account the continuity on Γ of the functions χ and p, as well as the optimal
values of the Lagrange parameters γ = p (in particular, it cancels all terms in factor of the mean curvature H in
the shape derivatives of surface integrals). We simplify (10.10) by recalling the normal flux interface conditions
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from (10.1) and (10.2), and the optimal value of λ. It yields⟨
∂L

∂Γ
, θ

⟩
=

ˆ
Γ

[J ]θ · nds+
ˆ
Γ

[a(∇χi − ei) · ∇pi]θ · nds (10.11)

+

ˆ
Γ

[a(∇χij − χjei) · ∇pij ]θ · nds+
ˆ
Γ

[−aij + a∇χj · ei]pij θ · nds

−
ˆ
Γ

a(∇pi + pijej − (

ˆ
Y

pij)ej) · n[
∂χi

∂n
]θ · nds

−
ˆ
Γ

[
∂pi
∂n

]a(∇χi − ei) · n θ · nds

−
ˆ
Γ

a∇pij · n[
∂χij

∂n
]θ · nds

−
ˆ
Γ

[
∂pij
∂n

]a(∇χij − χjei) · n θ · nds ,

Several integrands in (10.11) are discontinuous across the boundary Γ. To make their values more precise, we
rewrite them into continuous normal and tangential components, so the jumps appear only on the coefficient a and
its inverse a−1. For example

[a(∇χi − ei) · ∇pi] = a(∇χi − ei) · n [
∂pi
∂n

] + [a(∇χi − ei)t] · ∇tpi

= [a−1]
(
a(∇χi − ei) · n

)(
a∇pi · n

)
+ [a](∇tχi − ei) · ∇tpi

and
[a(∇χij − χjei) · ∇pij ] = [a−1]

(
a(∇χij − χjei) · n

)(
a∇pij · n

)
+ [a](∇tχij − χjei) · ∇tpij .

Some calculations leads to⟨
∂L

∂Γ
, θ

⟩
=

ˆ
Γ

[J ]θ · nds+
ˆ
Γ

[a](∇χi − ei)t · (∇pi + eip̃ij)t θ · nds (10.12)

−
ˆ
Γ

[a−1]
(
a(∇χi − ei) · n

)(
a(∇pi + ej p̃ij) · n

)
θ · nds

+

ˆ
Γ

[a](∇χij − χjei)t · ∇tpij θ · nds

−
ˆ
Γ

[a−1]
(
a(∇χij − χjei) · n

)(
a∇pij · n

)
θ · nds ,

with p̃ij = pij −
´
Y
pij . This finishes the proof of Theorem 7.3.
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