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Wavelet Operators and Multiplicative

Observation Models - Application to SAR

Image Time Series Analysis

Abdourrahmane M. Atto1,∗, Emmanuel Trouv�e1, Jean-Marie Nicolas2, Thu-Trang Lê1

Abstract—This paper first provides statistical prop-

erties of wavelet operators when the observation model

can be seen as the product of a deterministic piece-

wise regular function (signal) and a stationary random

field (noise). This multiplicative observation model is

analyzed in two standard frameworks by considering

either (1) a direct wavelet transform of the model

or (2) a log-transform of the model prior to wavelet

decomposition. The paper shows that, in Framework

(1), wavelet coefficients of the time series are affected

by intricate correlation structures which blur signal

singularities. Framework (2) is shown to be associated

with a multiplicative (or geometric) wavelet transform

and the multiplicative interactions between wavelets

and the model highlight both sparsity of signal changes

near singularities (dominant coefficients) and decorre-

lation of speckle wavelet coefficients. The paper then

derives that, for time series of synthetic aperture radar

data, geometric wavelets represent a more intuitive and

relevant framework for the analysis of smooth earth

fields observed in the presence of speckle. From this

analysis, the paper proposes a fast-and-concise geomet-

ric wavelet based method for joint change detection and

regularization of synthetic aperture radar image time

series. In this method, geometric wavelet details are

first computed with respect to the temporal axis in

order to derive generalized-ratio change-images from

the time series. The changes are then enhanced and

speckle is attenuated by using spatial block sigmoid

shrinkage. Finally, a regularized time series is recon-

structed from the sigmoid shrunken change-images.

Some applications highlight relevancy of the method for

the analysis of SENTINEL-1A and TerraSAR-X image

time series over Chamonix-Mont-Blanc.

Index Terms—Wavelets ; Geometric convolution ; Syn-
thetic Aperture Radar ; Image Time Series Analysis.
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SYNTHETIC Aperture Radar (SAR) image time series

issued from new generation sensors show minute

details. Indeed, the evolution of SAR imaging systems is

such that in less than 2 decades:

• high resolution sensors can achieve metric resolution,

providing richer spatial information than the deca-

metric data issued from ERS or ENVISAT missions.

• the earth coverage has increased: recent satellites such

as TerraSAR-X and Sentinel-1A repeat their cycle in

a dozen of days.

The increase of those spatial and temporal resolutions

makes information extraction tricky from highly resolved

SAR image time series. This compels us re-considering

data features and representations in order to simplify

data processing.

The paper presents a parsimonious framework for

the analysis of huge data associated with multiplica-

tive type interactions. These data are observed in many

situations, for instance when acquiring signals from

radar/sonar/ultrasonic waves [1]/[2]/[3],[4], when analyz-

ing seasonality from meteorology data [5] or when focus-

ing on proportionality in economy data [6] and political

sciences [7]. We focus speci�cally on SAR systems, a

challenging imagery domain with huge amount of data

a�ected by multiplicative type interactions.

From the literature, analysis of SAR image time se-

ries has been mainly performed on short-length image

sequences. This is the consequence of SAR data cost (very

high), long satellite revisit time and short satellite lifetime,

among other issues. Literature concerns both theoretical

and application guided methods for:

• identifying appropriate statistics/similarity measures

[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], etc.;

• detecting and analyzing speci�c features, for instance

urban areas expansion [8], [18], [19], glaciers dynamics

[13], [20], [21], snow cover mapping [22], sea clutter

analysis [23], forest mapping [24], earthquake mon-

itoring [8], sea ice motion analysis [25], coastline

detection [26], soil erosion [27], etc.;

• regularizing SAR data for speckle reduction and fea-

ture enhancement [19], [24], [26], [28], [29].
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Most of these methods yield computationally greedy algo-

rithms because they have been built for the sole sake of

performance over short-length image sequences.

For long-time sequences such as those expected with the

future Sentinel constellation, a direct application of these

methods is not an option: this direct application may be

unthinkable due to computational cost and unnecessary

for performance/robustness. Indeed, dense/long temporal

sampling results in redundant information on the time axis

so that a purely temporal analysis may be su�cient for

monitoring of most large scale earth structures.

The issue raised by new generation SAR sensors is thus

revisiting these methods with the sake of adapting them

to long and dense temporal image samples. Among the

references provided above, we consider hereafter wavelet

based approaches derived in [8], [13] for change detection

and in [29],[30] for image regularization.

For change detection, [8] computes a log-ratio change

measure and applies a wavelet transform to this log-ratio

measure in order to emphasize di�erent levels of changes.

In contrast, [13] computes the wavelet transform of images

prior to change detection by using probabilistic pixel

features.

For image regularization, [29] and [30] propose wavelet

shrinkages by using: 1) a parametric Bayesian approach

[29] and 2) a non-parametric sigmoid based approach [30].

The wavelet transform applies on the spatial axes for both

parametric and non-parametric methods, so as to be more

robust to speckle. Despite the somewhat di�erent strategy,

parametric and non-parametric approaches can be shown

equivalent up to a probabilistic prior speci�cation.

The present paper revisit [8], [13], [29] and [30] for deriv-

ing a joint and intuitive framework for change detection

and regularization. The main contributions provided by

the paper are enumerated through the following paper

organization. Section II provides statistical properties of

standard (additive) wavelet transforms on a multiplicative

observation model. It highlights the non-stationarities of

wavelet coe�cients when the decomposition applies di-

rectly on the multiplicative interactions. A multiplicative

wavelet de�nition from algebraic inference is described

in Section III. Its statistical properties on multiplicative

observation models are discussed in the same section. This

wavelet transform is shown to be associated with sta-

tionary and decorrelated noise coe�cients when focusing

on homogeneous radiometry sections. Section IV provides

block sigmoid shrinkage functions for change information

enhancement. Section V then exploits both shrinkage and

decorrelation induced by the multiplicative wavelets to

propose a joint �ltering and change detection method

for high resolution SAR image time series. Section VI

concludes the work.

II. Statistical properties of additive wavelet

transforms on multiplicative observation models

A. Problem formulation

A multiplicative observation model involving

strictly positive interactions of a piecewise regular

deterministic function f and a random process X can be

written as:

y = fX = f+ f(X− 1). (1)

In the model given by Eq. (1), function f is observed in a

multiplicative signal-independent-noiseX or, equivalently,

in an additive signal-dependent-noise f(X−1). We assume

that X = (X[k])k∈Z denotes a stationary sequence of

(strictly) positive real random variables.

The (standard) wavelet transform operates on Eq. (1) in

a way such that (linearity with respect to `+' operation)

Wy =Wf+Wf(X− 1). (♣)

Question: assuming sparsity of W on f, what are the

statistical properties of the noisy observation Wy?

In a noisy environment, the useful sparsity is strongly

linked to the noise properties since noise a�ects the non-

zero coe�cients, and thus a�ects the quality of the approx-

imation that can be obtained by considering those non-

zero coe�cients. Noise being Wf(X− 1) in model (♣),
the issue is then the statistical properties of this quantity.

The following �rst recalls basics on wavelet transforms

(Section II-B). Then Section II-C provides the statistical

properties of wavelet coe�cients of the noise involved in

case (♣).

B. Basics on wavelet based transforms

In the following, we are interested in multi-scale de-

composition schemes involving, up to a normalization

constant, some paraunitary �lters (H0,H1) associated

with a wavelet decomposition, see [31], [32], among other

references.

A one-level wavelet decomposition involves splitting a

given functional space Wj,n ⊂ L2(R), de�ned as the

closure of the space spanned {τ2jkWj,n : k ∈ Z} into direct
sums of subspaces (Wj+1,2n+ε)ε∈{0,1}, spanned respec-

tively by {τ2j+1kWj+1,2n+ε : k ∈ Z}ε∈{0,1}, where τkf :

t 7−→ f(t − k). The splitting of Wj,n follows from deci-

mated arithmetic convolution operations:

Wj+1,2n+ε(t) =
∑
`∈Z

hε[`]Wj,n(t− 2`). (2)

for ε ∈ {0, 1}, where hε denotes the impulse response of

the scaling �lter (when ε = 0) or the wavelet �lter (when

ε = 1).

The consequence of Eq. (2) is that a function g having

coe�cients c = (c[`])`∈Z ∈ `2(Z) on {τ2jkWj,n : k ∈ Z}:

g =
∑
`∈Z

c[`]τ2j`Wj,n ∈Wj,n
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can be expanded1 in terms of

g =
∑
`∈Z

c0[`]τ2j+1`Wj+1,2n︸ ︷︷ ︸
∈Wj+1,2n

+
∑
`∈Z

c1[`]τ2j+1`Wj+1,2n+1︸ ︷︷ ︸
∈Wj+1,2n+1

For ε ∈ {0, 1}, function g coe�cients cε = (cε[`])`∈Z on

{τ2j+1kWj+1,2n+ε : k ∈ Z}ε∈{0,1} satisfy

cε[k] =
∑
`∈Z

hε[`]c[`− 2k]. (3)

Thus, in practice, starting the decomposition from a func-

tion f ∈W0,0,

f =
∑
`∈Z

c[`]τ`W0,0,

the subband Wj,n coe�cients of f follow from

cj,n[k] =
∑
`∈Z

hj,n[`]c[`− 2
jk] (4)

where the Fourier transform Hj,n of hj,n is:

Hj,n(ω) = 2j/2

[
j∏
`=1

Hε`(2
`−1ω)

]
. (5)

Eq. (4) can be used in practice for computing discrete

wavelet transforms from sample observations (terminolo-

gies of `discrete wavelet transform' when n ∈ {0, 1}, `dis-

crete wavelet packet transform' when n ∈ {0, 1, . . . , 2j−1},

`adapted discrete wavelet packets' for a suitable selec-

tion of n-indices). Some splitting schemes involving non-

decimation (factor 2j in Eq. (4)) are also available and

yield the concept of frames and the notion of stationary

wavelet transforms [33]. The reader can refer to the general

literature on wavelets for more details on wavelet trans-

forms.

C. Stochasticity properties of the additive wavelet co-

e�cients

In model (♣), noise is associated with a random se-

quence having the form

Y[k] = f[k](X[k] − 1). (6)

Since we have assumed that (X[k])k∈Z are stationary,

say EX[k] = µ0 and autocorrelation function RX[k, `] =

E [X[k]X[`]] , RX[k− `], then:

• The mean of Y[k] is

EY[k] = f[k](µ0 − 1). (7)

• The autocorrelation function of Y, RY[k, `] =

E [Y[k]Y[`]] satis�es, by taking into account Eq. (6):

RY[k, `] = f[k]f[`] (RX[k− `] − 1) . (8)

1Equalities hold true in L2(R) sense in these expansions.

Remark 1: Eqs. (7) and (8) above highlight that the

additive signal-dependent noise Y is non-stationary in

general, except in some very few cases, for instance when

f is constant.

Let us now analyze the wavelet coe�cients ofY. Denote

by C+
j,n the coe�cients of Y on subband Wj,n. We have

C+
j,n[k] =

∑
`∈Z

hj,n[`]f[`− 2
jk](X[`− 2jk] − 1). (9)

It follows that

EC+
j,n[k] = (µ0 − 1)

∑
`∈Z

hj,n[`]f[`− 2
jk] (10)

and the autocorrelation function R+
j,n[k, `] =

E
[
C+
j,n[k]C

+
j,n[`]

]
of C+

j,n is:

R+
j,n[k, `] =

∑
p∈Z

∑
q∈Z

hj,n[p]hj,n[q]×

f[p− 2jk]f[q− 2j`]×(
RX[p− q− 2j(k− `)] − 1

)
. (11)

From Eq. (11), we derive that C+
j,n is non-stationary in

general due to the presence of the term f[p−2jk]f[q−2j`]

in Eq. (11) and this, even if µ0 = 1 in Eq. (10).

Remark 2 (Non-stationarity of C+
j,n for exponential

type function f): Assume that µ0 = 1 and function f

satis�es f[k]f[`] = f[k + `] (exponential type functions),

where f does not reduce to the constant 1. In this case,

we derive

R+
j,n[k,`]=

f[−2j(k+ `)]

2π
×(∫π

−π

γX0(ω) |Gj,n(ω)|
2
ei2

j(k−`)ω dω

)
(12)

where Gj,n = F ∗Hj,n and F is the Fourier transform of

f. The non-stationarity of C+
j,n is then due to the term

f[−2j(k+ `)] in Eq. (12) above.

More generally, even when assuming that µ0 = 1, it is

easy to check that most standard functions f lead to the

non-stationarity of C+
j,n. In particular, linear functions of

type f[k] = f0 × k (for certain k in a �nite set) have a

term in k` which cannot be reduced as a function of the

single variable m = k−`. High order polynomial functions

have bivariate monomial terms involving kλ`η in R+
j,n[k, `].

Functions of type sin, cos satisfy f[k]f[`] = g1[k+`]+g2[k−

`] and in this case, the contribution of g1 implies non-

stationarity as in the exponential case given above, etc.

An appealing case of a stationary sequence C+
j,n corre-

sponds to a constant function f associated with a random

sequence X with unit mean:

Remark 3 (Stationarity): When µ0 = 1 and f is a

constant function: f[k] = f0, then EC+
j,n[k] = 0 and
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furthermore, we derive R+
j,n[k, `] = R+

j,n[k − `] = R+
j,n[m]

with:

R+
j,n[m] =

f20
2π

∫π
−π

γX0(ω) |Hj,n(ω)|
2
ei2

jmω dω (13)

where γX0 denotes the spectrum of the random sequence

X0 = X− 1.

γX0(ω) =
∑
m∈Z

(RX[m] − 1) e−imω.

This case of a constant function f observed in a multi-

plicative noise represents homogeneous area observation

in practical SAR applications. This case is the sole favor-

able scenario for stationarity of standard additive wavelet

details when noise is multiplicative as in model fX.

Due to the non-stationarity of C+
j,n in general (except

few cases such as that of Remark 3), modeling or es-

timating additive wavelet coe�cients of a multiplicative

model is not an easy task. The following shows that mul-

tiplicative implementations of wavelets highlight desirable

stochasticity properties for simplifying model fX.

III. multiplicative wavelet implementation -

Statistical properties on multiplicative

observation models

A multiplicative wavelet transform (multiplicative lin-

earity where W distributes over `×' operation), when

applied on model given by Eq. (1), must satisfy:

Wy = (Wf)× (WX) . (♠)

This transform is derived hereafter from multiplicative

convolution operator.

Note that performing a geometric wavelet decompo-

sition satisfying model (♠) amounts to apply a log-

transform on the input data, perform a standard wavelet

transform and apply an exponential transform on the

wavelet coe�cients of this standard transform. We con-

sider hereafter the description of such operations by di-

rectly embedding wavelet operators in a multiplicative

algebra with binary internal multiplication and external

power operation.

A. Multiplicative (geometric) convolution

The binary operation considered in the following is the

multiplication (× symbol) over positive real numbers R+.

Consider a data sequence x = (x[`])`∈Z, with x[`] ∈ R+

for every ` ∈ Z. Since this sequence represents a multi-

plicative phenomenon, then

• \zero" or \nothing" or \no change" corresponds to

the identity element \1"

• a \small" value is a value close to 1 (10−3 and

103 have the same signi�cance in terms of absolute

proportion,

• a missing value must be replaced by 1,

• shrinkage forces to 1, the coe�cients that are close to

1.

The multiplicative algebra implies de�ning the support

of the sequence x as the sub-sequence composed with

elements that are di�erent from 1. We will thus use

the standard terminologies of �nite/in�nite supports with

respect to the above remark. When such a sequence x is

in�nite, we will assume that log(x) = ((logx[k])k∈Z) ∈
`2(Z).
When considering a scalar sequence (impulse response

of a �lter for instance) h = (h[`])`∈Z where h[`] ∈ R for

every ` ∈ Z, then we will keep the standard terminology

related to support de�nition from non-zero elements (non-

null real numbers).

The multiplicative convolution de�ned below is based

on this binary operation (notation x × y , xy for x, y ∈
R+) and real scalar power operations (notation a∧x , xa

for x ∈ R+ and a ∈ R).

De�nition 1 (Multiplicative convolution): Let h =

(h[`])`∈Z denote the impulse response of a digital �lter.

We de�ne the multiplicative convolution of x and h on

(R+,×,∧) as:

y[k] = x> h[k] ,
∏
`∈Z

(x[`])
h[k−`]

=
∏
`∈Z

(x[k− `])
h[`] , h> x[k]. (14)

One can remark that, in contrast to the standard convo-

lution operation on (R,+,×) sequences, discrete sequence
h plays here a non-commutative scalar role with respect

to x since the external operation `power' used in Eq. (14)

is not commutative. This justi�es the second , in Eq.

(14): the equality x>h = h>x applies index-wise on the

multiplicative convolution, given that the scalar sequence

h operates to the power of elements of x, by de�nition.

If h ∈ `2(Z), then x > h[k] exists and is �nite for

almost every k since we have assumed that log(x) ∈ `2(Z).
Depending on h, Eq. (14) makes the computation of

multiplicative approximations and details of the input

data x possible.

An example of multiplicative approximation is obtained

by the so-called geometric mean of a �nite sequence

{x1, x2, . . . , xN}:

y = N
√
x1x2 · · · xN =

N∏
`=1

x
1/N
` . (15)

This geometric mean is associated with an N-length Haar-

type approximation �lter

h0[k] = ν for k = 1, 2, . . . , N. (16)
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Multiplicative approximations computed by using the �l-

ter h0 (low pass �lter) will thus be called geometric

approximations. Filter h0 can be associated with a Haar-

type detail �lter:

h1[k] = (−1)k−1ν for every k = 1, 2, . . . , N (17)

which performs geometric di�erencing (ratio involving

several consecutive elements), where constant ν > 0 is

�xed so as to impose paraunitarity for the corresponding

pair of �lters (ν =
√
2/2 for standard Haar wavelet �lters

when N = 2). For the sake of standardizing terminology,

the multiplicative convolution of Eq. (14) will be called

geometric convolution whatever the �lter used and the

same holds true for the wavelet transform de�ned below.

B. Multiplicative (geometric) wavelet decomposition

In the following, we consider the same paraunitary

wavelet �lters (h0,h1) ∈ `2(Z)× `2(Z) as in Section II-B.

Let

h[k] = h[−k].

De�ne the wavelet decomposition of x with respect to

the geometric convolution (geometric wavelet decompo-

sition) by:

c1,0[k] = x> h0[2k], (18)

c1,1[k] = x> h1[2k] (19)

and, recursively, for ε ∈ {0, 1} (wavelet packet splitting

formalism described in [32]):

cj+1,2n+ε[k] = cj,n > hε[2k]. (20)

In the decomposition given by Eq. (20) above, sequence

cj+1,2n+ε represents:

• geometric approximation of cj,n when ε = 0,

• geometric di�erencing (ratio details) of cj,n when ε =

1.

The level j = 0 coe�cients represent the input sequence x.

As in the standard case, the above wavelet packet splitting

is associated to a wavelet decomposition when subspace

splitting concerns only approximations (cj,0)j>1.

Proposition 1 (Geometric wavelet reconstruction):

We have:

cj,n[k] = (�cj+1,2n > h0[k])× (�cj+1,2n+1 > h1[k]) , (21)

where

�u[2k+ ε] =

{
u[k] if ε = 0,

1 if ε = 1.
(22)

Proof: The proof is a direct consequence of the

expansion of the right hand side of Eq. (21), by taking

into account Eq. (20) and the paraunitary condition which

imposes
∑
`∈Z hε[`]hε[`− 2k] = δ[k].

Proposition 1 represents the reconstruction of the level-

j-wavelet-coe�cients from the coe�cients located at level

j + 1. As in the standard additive formulation given in

Section II-B (see Eq. (3)), di�erent wavelet decomposi-

tion schemes (orthogonal wavelets, stationary wavelets,

adapted wavelet packets, etc.) and perfect reconstructions

can be obtained from Eqs. (20) and (21) respectively.

This geometric transform is nothing but the formaliza-

tion of \log transform of data before wavelets and exp

transform of coe�cients after wavelets" in terms of an

algebraic inference where implementation implies

• executing environment (×,∧) for every call of envi-

ronment (+,×) and
• replacing calls of `0s' by `1s' (decimation corresponds

to replacing one coe�cient out of two by the number

1).

In the following, we will address the statistical properties

of the coe�cients issued from Eq. (20).

C. Statistical properties of the geometric wavelet trans-

form on Eq. (1)

The geometric wavelet decomposition W× of Eq.

(20) distributes over the product fX: W×[fX] =

(W×f) (W×X). Thus, in model (♠), with W = W×
de�ned by Eq. (20), noise contribution is W×X where

we have assumed that X = (X[k])k∈Z is a stationary

unit-mean random sequence. Assuming sparsity ofW× on

f, the focus of this section is establishing the statistical

properties of W×X.

The geometric wavelet coe�cients of the decomposition

of X on subspace Wj,n will be denoted (C×j,n)j,n (we

assume that this stochastic sequence is well de�ned in

the following). Note that if Cj+1,2n+ε[k] = Cj,n > hε[2k]

where Cj,n is a stationary sequence, then Cj+1,2n+ε
is also stationary. Since C0,0 = X is assumed to be

stationary, we derive that all geometric wavelet sequences

Cj,n are stationary for j > 0 and n ∈ {0, 1, . . . , 2j − 1}.

Let Y = logX. We assume hereafter that Y is a second-

order random process, continuous in quadratic mean. Let

Dj,n = logC×j,n. Note that Y and Dj,n are stationary

sequences. Assume that EY[k] = 0 for every k ∈ Z. Then
EDj,n[k] = 0 for every k ∈ Z.
Let RY[m] = RY[k−`] = E [Y[k]Y[`]] be the autocorre-

lation function of Y, where the �rst equality above holds

true for any pair (k, `) ∈ Z × Z such that m = ±|k − `|.

Proposition 2 below derives the autocorrelation function

RDj,n of the log-scaled geometric wavelet coe�cient Dj,n.

We assume that
∑
q∈Z hε[p − 2k]hε[q − 2`]RDj,n [p, q]

exists for every j > 0 and n ∈ {0, 1, . . . , 2j − 1}.

Proposition 2 (Autocorrelation Function of Dj,n):

Assume that RY has a spectrum (power spectral density)

γY(ω) =
∑
m∈Z

RY[m]e−imω
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and that γY is bounded. Denote by γDj,n , the spectrum

of Dj,n:

γDj,n(ω) =
∑
m∈Z

RDj,n [m]e−imω. (23)

We have, for j > 0, n ∈ {0, 1, . . . , 2j−1} and ε ∈ {0, 1}:

RDj+1,2n+ε
[m]=

1

2π

∫π
−π

∣∣∣Ĥε(ω)
∣∣∣2γDj,n(ω)e2imωdω, (24)

where γD0,0 = γY.

Proof: See Appendix A.

By taking into account that sequence Dj,n issues from a

�lter bank (Hε`)`=1,2,...,j (low-pass when ε` = 0 and high-

pass when ε` = 1) and has the equivalent representation

given by Eq. (5), we derive recursively from Eq. (24):

RDj,n [m] =
1

2π

∫π
−π

|Hj,n(ω)|
2
γY(ω)e2

jimω dω. (25)

Eq. (25) governs the behavior of the autocorrelation of

Dj,n. From this equation, decorrelating geometric wavelet

coe�cients involves selecting wavelet �lters such that

quantity

1

2π

∫π
−π

|Hj,n(ω)|
2
γY(ω) cos 2jmωdω (26)

behaves approximately like Dirac δ[m]. This is strongly

linked to the shape of γY and can be achieved either by:

(i) choosing a sequence of wavelet �lters such that func-

tion |Hj,n(ω)|
2
γY(ω) is approximately constant or

(ii) seeking asymptotic decorrelation with j (provided

that it applies).

Item (i) is parametric in the sense that it relates to

adapted wavelet selection for decorrelating Y. Item (ii)

(non-parametric) exploits properties of recursive convolu-

tions. For instance, if we consider the Haar wavelet �lters

(used below for illustrations), we can derive:

Proposition 3 (Haar equivalent wavelet �lter se-

quence HHaar

j,n ): A sequence (hε`)`=1,2,...,j has equivalent

�lter:∣∣HHaar

j,n (ω)
∣∣2 = 2j j∏

`=1

cos2
(
2`−2ω+ ε`

π

2

)
. (27)

Proof: See Appendix B.

In the usual wavelet splitting scheme, only approxima-

tion coe�cients are decomposed again (the shift parameter

n ∈ {0, 1}). This implies �ltering sequences with the formh0,h0, . . . ,h0︸ ︷︷ ︸
j times

,hεj+1


εj+1∈{0,1}

at decomposition level j+ 1. Consider a j-length approxi-

mation sequence
(
hHaar

0

)
`=1,2,...,j

of Haar type. Then from

Eq. (27), the equivalent �lter of this sequence can be

rewritten in the form:∣∣HHaar

j,0 (ω)
∣∣2 = 2j( sinc(2j−1ω)

sinc(2−1ω)

)2
, (28)

where sinc denotes the cardinal sine function, sincω =

sinω/ω. The autocorrelation RHaar

Dj,0
of the corresponding

geometric wavelet coe�cients is then:

RHaar

Dj,0
[m]=

2j

π

∫π
0

(
sinc(2j−1ω)

sinc(2−1ω)

)2
γY(ω)cos 2jmωdω. (29)

Proposition 4 (Limit Autocorrelation Function):

lim
j→+∞RHaar

Dj,0
[m] = γY(0)δ[m] (30)

Proof: See Appendix C.

Proposition 4 highlights an asymptotic decorrelation

property with j. This property can be extended by con-

sidering di�erent paraunitary �lters. For instance, when

considering the N-length Haar-type approximation �lter

h0 and detail �lter h1 given by Eqs. (16) and (17), the

equivalent wavelet �lter is

|Hj,n(ω)|
2
= 2j

j∏
`=1

(
sin(2`−2Nω)

sin(2−1(ω+ ε`π))

)2
. (31)

It follows that the corresponding autocorrelation RDj,n is

RDj,n [m]

=
2j

π

∫π
0

j∏
`=1

(
sin(2`−2Nω)

sin(2−1(ω+ ε`π))

)2
γY(ω) cos 2jmωdω,

=
1

π

∫π
0

j∏
`=1

(
sin(2−j+`−2Nω)

sin(2−j−1ω+ ε`
π
2
)

)2
γY

(ω
2j

)
cosmωdω

which tends to γY(0)δ[m] when j tends to ininity, for the

approximation path (n = 0).

This decorrelation property can also be extended by

considering di�erent paths, �lters and wavelet packet

splitting schemes, as done in [34] for additive noise and

arithmetic wavelet transforms.

IV. Change detection: parsimony of the

signal-versus-noise separation makes relevant

basic dissimilarity operators

A. Change information perceived from arithmetic and

geometric di�erencing

From now on, we will use the terminologies of discrete

Arithmetic Wavelet Transform (AWT) and Geometric

Wavelet Transform (GWT) to point out, respectively,

the additive and multiplicative implementations given by

Eq. (4) and Eq. (20).

When analyzing the multiplicative interactions in ob-

servation y given by Eq. (1), Section II has shown that

AWT coe�cients will be non-stationary in general whereas



7

Fig. 1. Pixel time series with 4 change dates, its noisy speckled version, as well as absolute change information from arithmetic di�erencing
(corresponds to Haar level-1 AWT details) and ratioing (geometric di�erencing, corresponds to Haar level-1 non sub-sampled GWT details).
The ratio-data have been re-scaled logarithmically so as to make comparison on a single display possible.

Fig. 2. Pixel time series with 4 change dates, its noisy speckled version, as well as absolute level 1 and 2 ratioing (non sub-sampled GWT).
The ratio-data have been re-scaled logarithmically.

GWT coe�cients are stationary and, in addition, GWT

has a noise decorrelation property (see Section III).

Let us consider the level j = 1 details obtained by using

Haar �lters with N = 2 in Eq. (17) (one vanishing moment

wavelet). These details are proportional to:

• yk − yk−1 for AWT (arithmetic di�erencing of

(R,+) elements),

• yk/yk−1 for GWT (geometric di�erencing ⇒
ratioing of (R+,×) elements).

These di�erencing operators are the basic ones used in

change evaluation. The `main di�erence' between these

basic arithmetic and the geometric di�erencing operators

on the observation model of Eq. (1) is illustrated in Figure

1.

As it can be seen in Figure 1, change information

can be retrieved without e�ort with the basic geometric

di�erencing (sparsity of change information, in addition

with noise decorrelation) whereas a non-intuitive post-
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processing needs to be performed for observing the same

changes for the arithmetic di�erencing, due to strong

correlations induced by f(X− 1). Some examples of level-

1 generalized wavelet based ratioing (geometric wavelet

di�erencing) are given below.

• Case of a biorthogonal wavelet with 2 vanishing mo-

ments:
y0.35k−1y

0.35
k+1

y0.70k

. (32)

• Case of a box spline wavelet with 2 vanishing mo-

ments:
y0.6875k−1 y0.21875k−2 y0.03125k−3

y0.6875k y0.21875k+1 y0.03125k+2

. (33)

Depending on the sharpness of the change transitions,

it might be relevant to consider multi-level changes. For

instance, the transitions between temporal observations of

Figure 1 being linear (non-instantaneous), level j = 2 Haar

geometric details are shown to discriminate well change

transitions of this observation in Figure 2.

In the rest of the paper, we consider only the geo-

metric wavelet framework for a straightforward change

enhancement (sparsity of the geometric temporal details

in decorrelated noise).

B. Sigmoid enhancement of change information

Consider the synthetic image time series P =

(Pm,q(tk))k=1,2,3,4 given by Figure 3-[Row 1], wherem,q

(1 6 m,q 6 2048) refer to spatial variables and tk denotes
the time variable. Figure 3-[Row 2] provides change infor-

mation (binary masks) between the di�erent dates, with

M(tk, tk+1) denoting changes in-between dates tk and

tk+1 andM◦(t1, t2, t3, t4) the total amount of changes.

When applying a geometric wavelet transform

W×[Pm,q(•)] with respect to the time axis solely

(in practice, this assumes an accurate image registration),

then the detail subbands2
(
C×j,n[Pm,q](•)

)
16m,q62048

displayed as images in Figure 3-[Row 3] provide spatio-

temporal multiscale change information. These subbands

are hereafter called change-images. As expected

(consequence of Section III), these spatio-temporal

geometric change-images show both sparsity of change

information (changes are rare and signi�cant when

present) and stationarity/decorrelation for speckle

noise in homogeneous areas with no temporal change

information.

The change enhancement proposed below involves using

a spatio-temporal block shrinkage for smoothly penalizing

weak changes in pixel intensities. This shrinkage will

2Since J = 2 for this example, we have, in an orthogonal GWT,
3 multiscale subbands due to decimation steps (2 subbands at level
j = 1 and 1 subband at level j = J = 2). However, we consider
displaying all subbands (no decimation) excepted the border ones in
order to highlight di�erent change information.

apply through sigmoid shrinkage functions [30]. These

functions have the following form:

δτ,θ,λ(x) =
sgn(x)(|x|− τ)+(
1+ e−ζ(θ)(

|x|
λ

−1)
) , (34)

where

ζ(θ) =
10 sin θ

2 cos θ− sin θ
(35)

with sgn(x) = 1 (resp. -1) if x > 0 (resp. x < 0) and,

(x)+ = x (resp. 0) if x > 0 (resp. x < 0).
Note that since the wavelet transform is performed with

respect to the time axis, a geometric wavelet based-change-

image contains:

• either a bidate change information (level j = 1 detail

coe�cients when using a �lter h with 2 non-zero

coe�cients such as Haar �lters)

• or a multi-date change information when:

– j > 2, whatever the �lter used, provided that the

�lter has at least 2 non-zero coe�cients,

– j > 1, when the �lter used has more than 2 non-

zero coe�cients (see for instance Eqs. (32) and

(33)).

For highlighting the multi-temporal changes in

their spatio-temporal context, the above sigmoid

shrinkage function will be applied hereafter on

spatial change-image blocks of wavelet based

temporally differenced data . For a pixel intensity

Zm,q(k) pertaining to a log-scaled change-image, the

shrinkage proposed is de�ned as:

δτ,θ,λ(Zm,q(k)) =
sgn(Zm,q(k))(|Zm,q(k)|− τ)+

1+ e
−ζ(θ)

(
||VZm,q(k)||

2
λ

−1

) (36)

where VZm,q(k) is a vector with the form VZm,q(k) =

{Zm,q(k),m = m−ε0, . . . ,m+ε0, q = q−ν0, . . . , q+q0}

and ε0, ν0 are natural numbers chosen su�ciently small

(spatial neighborhood of the detail pixel (Zm,q(k)), with

|| · ||2 denoting the `2 norm. This penalized shrinkage then

consists in:

• forcing to zero all temporal log-scaled geometric

wavelet change-image pixel with spatial neighborhood

norm smaller than the �rst threshold τ,

• attenuating temporal log-scaled geometric wavelet

change-image pixel with large spatial neighborhood

norm thanks to an attenuation degree θ and a second

threshold λ.

Change information processing is thus spatio-temporal

due to the presence of variable k (geometric temporal

change-image) and the variations of spatial variables m,q.

C. Quantitative change evaluation

In [8], changes are analyzed by shrinking arithmetic

wavelet coe�cients of (standard) log-ratio images (we
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I(t1) I(t2) I(t3) I(t4)

M(t1, t2) M(t2, t3) M(t3, t4) M◦(t1, t2, t3, t4)

C×1,1[I](t2) C×1,1[I](t3) C×1,1[I](t4) C×2,1[I](t2)

AWT-SigShrinkC×1,1[I](t2) AWT-SigShrinkC×1,1[I](t3) AWT-SigShrinkC×1,1[I](t4) AWT-SigShrinkC×2,1[I](t2)

SigShrink C×1,1[P](t2) SigShrink C×1,1[P](t3) SigShrink C×1,1[P](t4) SigShrink C×2,1[P](t2)

Fig. 3. Row 1: large, small and tiny elliptical structures with di�erent shapes and overlaps, observed in synthetic speckle noise. Row 2: the
binary date-to-date and the totalM◦ change maps (true changes). Row 3: Geometric wavelet change-images of time series given in Row 1.
Row 4: [AWT-SigShrink] arithmetic wavelet based sigmoid shrinkage (for the geometric change-images given in Row 3). Row 5: [SigShrink]
direct block sigmoid shrinkage from Eq. (36) (without additional arithmetic wavelet transform) for the change-images given in Row 3.
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Fig. 4. ROC curves for: 1) AWT-SigShrink (arithmetic wavelet sig-
moid shrinkage) of geometric wavelet details and 2) SigShrink (block
sigmoid shrinkage of geometric wavelet details). The ROC curves
have been computed on the total amount of changesM◦(t1, t2, t3, t4)
occurring in the time series of images given by Figure 3.

recall that, from the formalism presented in this paper,

the standard log-ratio operator can be seen as the absolute

value of the logarithm of level j = 1 geometric Haar

details). First, the approach of [8] can be extended by

considering, not only the standard log-ratio operator,

but also generalized log-ratio operators (several levels of

geometric Haar details for instance). This extension, con-

sisting of an Arithmetic Wavelet transform and Shrinkage

of geometric wavelet details C×j,n[P] will be referred as

AWT-SigShrink C×j,n[P] in the following tests. Change

penalization from AWT-SigShrink is provided in Figure

3-[Row 4], when the shrinkage is performed by using

sigmoid based functions. AWT-SigShrink change regu-

larization appears suitable mainly for large-size abrupt

changes whereas small target change information tends to

be blurred by the arithmetic wavelet based regularization.

We then apply the block Sigmoid Shrinkage (notation

SigShrink C×j,n[P]) given by Eq. (36) directly on the

change-images of Figure 3-[Row 3]. This SigShrink oper-

ator yields change-images of Figure 3-[Row 5]. As it can

be seen in Figure 3-[Row 5], a direct sigmoid shrinkage

less impacts the sizes of small structures because it does

not involve the smoothing e�ect intrinsic to wavelet based

regularization (compare Figure 3-[Row 5] with the change

masks of Figure 3-[Row 2]).

Finally, a comparison based on Receiver Operating

Characteristic (ROC, probability of detection versus prob-

ability of false alarm for threshold values ranging from

minimal to maximal change-image values, see Figure 4)

measurements illustrate the advantages and limitations of

both approaches:

• for more than 20% of false positives (high toleration

of false positives!), then AWT-SigShrink is slightly

preferable than SigShrink,

• for less than 20% of false positives, the SigShrink

probability of detection is higher than that of AWT-

SigShrink, . . . , for example, at 5% of false positives,

AWT-SigShrink yields 60% of true positives whereas

SigShrink yields 80% of true positives.

Thus, for change information enhancement, a direct block

sigmoid shrinkage (SigShrink) is preferable than an arith-

metic wavelet based regularization (AWT-SigShrink), es-

pecially when we have no a priori on the sizes and

the types of changes (case of glacier surface monitoring

addressed hereafter).

V. Geometric wavelets for joint change

detection and regularization of polarimetric

SAR image time series

A. Block sigmoid shrinkage of polarimetry vec-

tors/matrices

We consider a PolSAR scattering/covariance image time

series P =
(
Puvm,q(k)

)
, where:

• (u, v) ∈ {H,V}× {H,V}, H/V stands for Horizontal /

Vertical respectively and

• ([m,q], k) refer to (spatial, time) variables, with 1 6
m 6M, 1 6 q 6 Q and 1 6 k 6 K.

We have Puvm,q(k) = Iuvm,q(k)Θuvm,q(k) where I denotes

moduli and Θ stands for unit-norm complex exponential

phase terms. The temporal geometric wavelet transform

is chosen to apply on Iuvm,q(•): the transform is performed

to decompose series Iuvm,q(k) with respect to the time

variable k solely. Terms Θuvm,q(k) are stored and added

after regularization of moduli time series I.
Section IV has shown that spatio-temporal block shrink-

age of geometric change-images makes change enhance-

ment possible. For polarimetry images, the geometric

wavelet transform is chosen to be separable with respect

to polarimetry channels whereas the shrinkage of Eq. (36)

can be either:

• scalar

δτ,θ,λ(Z
uv
m,q(k)) =

sgn(Zuvm,q(k))(|Z
uv
m,q(k)|− τ)+

1+ e
−ζ(θ)


∣∣∣∣∣∣∣∣VZuvm,q(k)

∣∣∣∣∣∣∣∣
2

λ
−1

 (37)

where Zuvm,q(k) is a pixel moduli pertaining to a log-

scaled PolSAR change-image.

• or vectorial where neighborhood V consists of `p

norms of PolSAR covariance moduli vector/matrix

change-images:

δτ,θ,λ(Z
uv
m,q(k)) =

sgn(Zuvm,q(k))(|Z
uv
m,q(k)|− τ)+

1+ e−ζ(θ)U(Zm,q(k),λ)
(38)
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where

U(Zm,q(k), λ) =


∣∣∣∣∣
∣∣∣∣∣V∣∣∣∣∣∣(Zuvm,q(k))(u,v)∈{H,V}2

∣∣∣∣∣∣
p

∣∣∣∣∣
∣∣∣∣∣
2

λ
− 1


The time series regularization principle is then to

use shrunken geometric wavelet change-images for recon-

structing a time series with sharp pixel change transitions.

This is the joint parsimonious change evaluation and

time series regularization proposed in this paper. We will

use the following parameters for block sigmoid shrinkage:

p = 1, parameter τ0 is the universal threshold of [35],

θ = π/5 and λ ∈ {λ1, λ2}, where λ1 = τ0, λ2 = 2τ0. The

sigmoid shrinkage operator is denoted Sλ.
Note that when 2J PolSAR image samples are available,

then, by restricting the wavelet transform to the time

axis and by performing a level J decomposition, we have

to take into account the levels j = 1, 2, . . . , J change-

images, with 2J−j change-images at decomposition level

j 6 J (decimation in order to reject redundant change

information).

The overall computational complexity depends on 2

main factors and remains reasonable since it relies only

on basic operations (does not involve curves �tting, it-

erative optimization procedures or maximum likelihood

solutions):

• applying a temporal wavelet transform (M×Q×O(K)
for the orthogonal transform and M×Q×O(K2) for
non-decimated/stationary versions of the transform)

on the logarithms of each moduli of the input time

series and using an inverse wavelet transform (same

complexity as the decomposition);

• applying a pixelwise shrinkage function involving

sums and exponentiations on a small spatial change-

image pixel neighborhood (3×3).
Note also that the method is highly parallelizable since

the sole recursion is linked to a single axis: the temporal

axis concerned by the wavelet transform.

B. Application to Sentinel-1A dual-polarimetric SAR

image time series

The geometric temporal wavelet shrinkage for both

change information enhancement and time series regular-

ization aims at simplifying the analysis of long series of

SAR images. Indeed, the challenge in exploiting such huge

data is in dimensionality handling and requires methods

that have very low computational load.

Sentinel constellation of the European Space Agency

(ESA) is a source of such long time image sequences. The

data considered in this section corresponds to an area

covering the glaciers Mer de Glace and Argenti�ere, in

the mountainous Chamonix-Mont-Blanc site, in France.

Since the launch of Sentinel-1A in April 2014, a time

series of PolSAR data over this test site has been acquired:

the test dataset is described in Figure 5 (images are

available free of charge from ESA repository). This time

series, denoted P, is composed of 11 dual PolSAR IW

level-1 Single Look Complex (SLC) SAR images acquired

in descending pass from November 15, 2014 to March

15, 2015 with 12 days sampling period. Co-registration of

image samples has been made thanks to a corner reector

�xed on a stable area of the test site. A sample image, P2,
is displayed in Figure 5 with a Pauli color rendering in

order to enhance dual-polarimetry information.

Di�erent types of changes can occur on this glacier

site due to the long period of observation: for instance

snow fall, snow accumulation in speci�c areas, serac falls,

avalanches, human activities, etc. It is worth noticing

that a pixel-per-pixel and date-per-date search is possible,

see for instance [36]. However, this is with very high

computational cost, in comparison with the geometric

temporal wavelet shrinkage proposed below. Speci�cally,

we consider both scalar sigmoid shrinkage (polarimetry

channels are considered independently for building VZ in

Eq. (36)) and vector sigmoid shrinkage (VZ is a sequence

of `p-norms of PolSAR channels) for comparison purpose.

Change information from geometric wavelets:

Due to the limited size of the paper, only one geometric

wavelet change-image is displayed in Figure 6-Top. As

expected, the details look stochastic, except in few areas.

Some areas where signi�cant changes appear in Figure 6-

Top are indicated on the photographic map of Figure 6-

Bottom:

• a serac fall area on the Argenti�ere glacier (blue-line),

• an accumulation area near the glacier of Bossons

(yellow-dashed),

• the borders of glacier Mer de Glace (magenta-dotted).

Changes detected on the borders of Mer de glace glacier

can be due to co-registration errors. However, since Ar-

genti�ere glacier borders do not respond equivalently, this

suspicious behavior needs to be confronted with ground

truth because these change responses can reveal other

phenomena such as glacier and moraine constriction.

Change enhancement:

Scalar sigmoid shrinkage (polarimetry channels are con-

sidered independently) of Figure 6-Top yields the change-

image given by Figure 7-Top whereas vector sigmoid

shrinkage leads to the change-image of Figure 7-Bottom.

One can notice that the latter enhances more accurately

polarimetry change information than the former.

Speci�cally, we also provide:

• in Figure 8-Top, the AWT version of GWT change-

image given by Figure 6-Top and

• in Figure 8-Bottom, the AWT version of GWT vector

sigmoid shrinkage given by Figure 7-Bottom.
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A straightforward comparison of the results obtained high-

lights that: in multiplicative SAR interactions, the AWT

change-image is far from showing only details (images dis-

played in Figure 6-Top exhibit many contributions of the

static part of the scene). This has been justi�ed theoreti-

cally in Sections II and IV in terms of non-stationarity and

non-sparsity of AWT details, when decomposing signals

corrupted by multiplicative noise.

Regularization:

By applying inverse geometric wavelet transform on

shrunken change-images, we derive 2 regularized time

series (for scalar and vector sigmoid cases) whose sam-

ple examples are given by Figure 9. The comparison of

images given by Figures 5 and 9 emphasizes nice PolSAR

information enhancement for the vector sigmoid geometric

wavelet processing.

C. Application to Dynamic-versus-Stable area detec-

tion in TerraSAR-X image time series

The following addresses multi-date cumulative geomet-

ric wavelet based change dynamics analysis over Ar-

genti�ere glacier. The serac fall region of this glacier (see

the surface dashed in blue color on Figure 6-Bottom)

is a highly dynamic surface surrounded by stable rock

areas. This region is considered hereafter in the framework

of separability, in terms of change occurrence count,

between glacier surface [dynamic, changes in texture in

addition with glacier moving] versus rock walls [stable

when observed over a long temporal horizon].

Data description:

The time series L considered for analyzing change dy-

namics consists of 24 single look ascending TerraSAR-X

(TSX) images acquired over Argenti�ere from 2009/11/06

to 2011/09/14 (images are with 2 meter spatial resolution

and are acquired upon 11 days satellite revisit time).

Figure 10 provides some samples of L. The 5 �rst images

of Figure 10 are given for instance and the sixth image

(detection image D deduced from Argenti�ere's geophysics

and expert knowledge) is a ground truth showing:

• [in white color]: glacier surface surrounding a serac fall

area (glacier surface moves approximately 20 cm per

day). At the serac fall area located on the middle-top

of image D, the glacier surface texture is subject to

chaotic dynamics and can be assumed as permanently

changing between consecutive image acquisitions ;

• [in black color]: an almost stable area composed by

abrupt rocks, rock walls and sparse vegetation.

The issue addressed below is a multi-temporal analysis

for detecting the permanently changing area (glacier)

against the almost stable area (`non-glacier').

Experimental setup:

The experimental framework aims to compute dissim-

ilarity maps highlighting the total amount of changes

encountered from the �rst image L(t1) to the last image

L(t24). For the sake of avoiding a biased performance

assessment, we do not �x the decision threshold: we

will compute, for every method, ROC curves and areas

under ROC curves as quantitative detection performance

indicators.

Concerning the methods, we will provide comparisons

between GWT and AWT SigShrinks, as well as compar-

isons involving the following change indicators (with the

convention: similar is 0 and dissimilar is 1):

• A dissimilarity measure 1 − r involving the local

correlation coe�cient r on pixels of pairs (Lm,Lm+1).

This measure will be called \Dmap CorrCoe� " in

the following. For a change-analysis at pixel level, we

consider spatial 3× 3 boxcar neighborhood on pixels

of pairs (Lm,Lm+1) ;

• The log-ratio dissimilarity measure between Lm and

Lm+1. This measure (see [8] for instance) is de�ned

as the absolute value of the log operator on local

pixel ratios. It is denoted \Dmap LogRatio" and we

consider averaging the log-ratio values obtained on a

spatial 3× 3 boxcar neighborhood ;

• The coe�cient of variation measure considered in

the framework of [21] (the coe�cient of variation is

de�ned as the ratio between the local standard devi-

ations and means). This measure is denoted \Dmap

Coe�Varr-2-Steps" due to that the method pro-

posed in [21] is a two stage spatio-temporal change

analysis: the �rst step is a pre-detection (associated

with 3 × 3 × 3 spatio-temporal neighborhoods here-

after) and the second step is a detection-re�nement

(purely temporal non-local analysis from the pre-

detection results), see [21] for details.

For all methods, the global dissimilarity is obtained by

pairwise dissimilarity sums. In addition, we will not con-

sider post-processing (such as regularization of change

maps). This is a supplemental but di�erent issue which

can be addressed in a future work.

The experimental setup is the following for GWT and

AWT SigShrinks: we consider a Haar wavelet with 3

maximum decomposition levels (the time series L has 24

images and the maximum decomposition level, J = 3, is

such that 2J divides 24). The SigShrink operator is applied

on spatial 3×3 wavelet change-image neighborhoods. The

parameters of the SigShrink operator are τ = 0, θ = π/4

and λ is the universal threshold.

Experimental results:

Dissimilarity maps for CorrCoe�, AWT-SigShrink, Lo-

gRatio, Coe�Var-2-Steps and GWT-SigShrink are given

by Figure 11. Performance of the corresponding change

detections can be measured by using quantities such as:
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TABLE I
AUROC curve measures the different dissimilarity measures given in Section V-C. The ROC curves have been computed on
the basis of the total amount of changes detected in the TSX image time series L(t1),L(t2), . . . ,L(t24) described in Section

V-C (see samples given in Figure 10).

CorrCoe� AWT-SigShrink-J3 LogRatio Coe�Var-2-Steps GWT SigShrink-J1 GWT SigShrink-J3
58.22% 63.69% 68.53% 72.25% 73.21% 75.98%

• the true positive rate associated with a given small

false positive rate (`small' means `no larger than 10%'

in most of detection applications). This constrained

true positive rate indicator is called TPR[FA< 10%]:

a large TPR[FA< 10%] is preferable.

• the Area Under ROC (AUROC) curve. A large AU-

ROC is expected to provide a better performance.

For AWT and GWT SigShrinks, we observe increasing

performance as the maximal decomposition level varies

from 1 to 3. AWT-SigShrink (results are shown only for

J = 3 in Figure 11) shows worst multi-temporal change

detection performance, see ROC curves of Figure 12 and

AUROCs given in Table I. One can note, by comparing

results given in Figure 12 and AUROCs given in Table I,

that GWT less-relevant-detection (obtained for J = 1) is

more accurate than AWT best detection results (obtained

for J = 3). From an overall analysis, one can conclude

that GWT SigShrink with J = 3 is the best relevant

strategy both in terms of TPR[FA< 10%] and AUROC

performance indicators, see Figure 12 and AUROCs given

in Table I for validation.

VI. Conclusion

This paper has introduced the concept of geometric

wavelet transform by inference between additive and

multiplicative algebras. The paper has also derived sta-

tistical properties of wavelets in both arithmetic (stan-

dard) and geometric implementation frameworks. In the

multiplicative-noise observation model, the paper has

shown that:

• arithmetic detail wavelet coe�cients are impacted by

the presence of signal trend (large amounts of signal

contribution in detail coe�cients), whereas few signal

contributions occur in geometric detail coe�cients.

• geometric wavelets inherit stationary properties of the

input noise whereas additive stationary noise becomes

non-stationary in the arithmetic wavelet domain (im-

pact of signal trend in detail coe�cients).

Moreover, the paper has shown that the statistical

properties of geometric wavelets make them good candi-

dates for the analysis of SAR image time series: in con-

trast with arithmetic wavelets change-images, geometric

wavelet ones are with large amplitudes only near change

locations (singularities, transient signal). Change analysis

and time series regularization can thus be performed with

high performance and low computational complexity by

using block shrinkage on geometric wavelet coe�cients.

Experimental results on both synthetic and real data

have shown the relevancy of block shrinkage on geometric

wavelet coe�cients for both change analysis and time

series regularization.

To conclude, it is worth emphasizing that this study was

focused on geometric approaches because of the intrin-

sic multiplicative nature of SAR interactions. Since the

geometric wavelet analysis is a framework that extends

Log-Ratio operators by considering wavelet based multi-

resolution ratioing, one can investigate di�erent strategies

for the sake of re�ning multi-resolution ratios and fusing

their corresponding detections: this re�nement is a reg-

ularization of changes which will be addressed in future

works.
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Appendix A

Proof of Proposition 2

By considering the log of C×j+1,2n+ε denoted by

Dj+1,2n+ε, we are concerned by an additive combinations

of Dj,n = logC×j,n.

The autocorrelation functions

RDj+1,2n+ε
[k, `] = EDj+1,2n+ε[k]Dj+1,2n+ε[`]

and

RDj,n [k, `] = EDj,n[k]Dj,n[`]

of Dj+1,2n+ε and Dj,n satisfy the relation:

RDj+1,2n+ε
[k, `] =

∑
p∈Z

∑
q∈Z

hε[p− 2k]hε[q− 2`]×

RDj,n [p, q] (39)

Since Dj,n is stationary: RDj,n [p, q] , RDj,n [p− q], then

Eq. (39) can be rewritten in the form

RDj+1,2n+ε
[k, `] =

∑
p∈Z

RDj,n [p]×∑
q∈Z

hε[p+ q− 2k]hε[q− 2`]. (40)
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By taking into account that (Parseval's theorem):∑
q∈Z

hε[p+q− 2k]hε[q− 2`] =∑
q∈Z

τ2k−2`−phε[q]hε[q]

=
1

2π

∫π
−π

∣∣∣Ĥε(ω)
∣∣∣2 ei(2k−2`−p)ω dω, (41)

we obtain from Eq. (40):

RDj+1,2n+ε
[k, `] =

1

2π

∫π
−π

ei(2k−2`)ω
∣∣∣Ĥε(ω)

∣∣∣2×∑
p∈Z

RDj,n [p]e
−ipω

 (42)

The proof follows from Eq. (23) and Eq. (42), by iden-

tifying the Fourier expansion of γDj,n in Eq. (42) and

by noting that RDj+1,2n+ε
[p, q] , RDj+1,2n+ε

[p − q] =

RDj+1,2n+ε
[m] where m = k− `.

Appendix B

Proof of Proposition 3

Let ε ∈ {0, 1}. The Haar scaling �lter HHaar

0 and wavelet

�lter HHaar

1 satis�es

HHaar

ε (ω) =
1

2

(
1+ (1− 2ε)e−iω

)
(43)

By taking into account Eqs. (5) and (43), we have

HHaar

j,n (ω) = 2−j/2
j∏
`=1

(
1+ (1− 2ε`)e

−iω
)
. (44)

Thus,∣∣HHaar

j,n (ω)
∣∣2 = j∏

`=1

(
1+ (1− 2ε`) cos(2

`−1ω)
)
. (45)

The proof follows by noting that (1 − 2ε`) cos(2
`−1ω) =

cos(2`−1ω + ε`π) after some straightforward simpli�ca-

tions by using trigonometry double angle properties.

Appendix C

Proof of Proposition 4

From a change of variable in Eq. (29), we obtain

RHaar

Dj,0
[m] =

1

π

∫2jπ
0

(
sinc(ω/2)

sinc(ω/2j+1)

)2
γY(

ω

2j
) cosmωdω.

First, we observe that:∣∣∣RHaar

Dj,0
[m]
∣∣∣ 6 ||γY ||∞ ×

(
1

π

∫2jπ
0

(
sinc(ω/2)

sinc(ω/2j+1)

)2
dω

)
.

and, furthermore, we have

1

π

∫+∞
0

(
sinc(ω/2)

sinc(ω/2j+1)

)2
dω = 1.

In this respect, we derive∣∣∣RHaar

Dj,0
[m]
∣∣∣ 6 ||γY ||∞

so that, from the Lebesgue dominated convergence theo-

rem,

lim
j→+∞RHaar

Dj,0
[m] = γY(0)

1

π

∫+∞
0

(sinc(ω/2))
2
cosmωdω

Proposition 4 then follows by noting that∫+∞
0

(sinc(ω/2))
2
cosmωdω = πδ[m]



16

P = {P(t1),P(t2), . . .P(t11)}
t1 = 2014− 11− 15

t11 = 2015− 03− 15

Dual PolSAR IW level-1

Data: SAR, Single Look Complex

Revisit time: 12 days

Orbit pass: descending

Resolution: 3.5 × 20 m2

P1 = P(t1) with t1 = 2014− 11− 15

Fig. 5. Sentinel-1A dual PolSAR image of the Chamonix-Mont-Blanc test site.
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D3,1[P]/
Change-image

(GWT details)

Airborne

photography

Fig. 6. [Top]: a geometric change-image of PolSAR time series P described in Figure 5. [Bottom]: airborne photography [ cRGD 73-74]
showing Chamonix urban valley (red dash-dotted), glaciers (Argenti�ere, Mer de Glace, Bossons) and localization of signi�cant changes.
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DSs3,1[P]/
Scalar SigShrink

(GWT details)

DSv3,1[P]/
Vector SigShrink

(GWT details)

Fig. 7. GWT SigShrink: Scalar (Top, DSs3,1) and vector (Bottom, DSv3,1) sigmoid shrinkages of the geometric change-image D3,1 given in
Figure 6.
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D3,1[P]/
Change-image

(AWT details)

DSv3,1[P]/
Vector SigShrink

(AWT details)

Fig. 8. [Top]: an arithmetic change-image of the PolSAR time series P described in Figure 5. Compare this AWT change-image (highly
non-stationary, impacted by scene trend) with the GWT version (almost stationary, excepted in dynamic areas) given by Figure 6. [Bottom]:
vector sigmoid shrinkage of the top image. Compare the bottom image (AWT SighShrink) with its GWT version given in Figure 7-Bottom.
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P̂s2 = P̂s(t1)
t2 =

2014− 11− 27

P̂v2 = P̂v(t1)
t2 =

2014− 11− 27

Fig. 9. Scalar (Top) and vector (Bottom) geometric wavelet regularization of Sentinel-1A PolSAR time series P described in Figure 5.
Scalar shrinkage shows red color saturation, in contrast with vector shrinkage. Compare these regularized images with their corresponding
original time sample given in Figure 5.
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L(t1) L(t13)

L(t14) L(t19)

L(t23) D

Fig. 10. Five samples of a TSX time series L = {L(t1),L(t2), . . . ,L(t24)} together with a ground truth D delimiting stable (black) and
dynamic (white) pixels. The time series L is described in Section V-C.
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DMap CorrCoe� DMap AWT-SigShrink / J = 3

DMap LogRatio DMap Coe�Var-2-Steps

DMap GWT-SigShrink / J = 1 DMap GWT-SigShrink / J = 3

Fig. 11. Dissimilarity maps (Dmaps) for the measures given in Section V-C. Dmaps represent the total amount of changes detected in the
TSX image time series L(t1),L(t2), . . . ,L(t24) described in Section V-C (see samples and ground truth given in Figure 10).
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Fig. 12. ROC curves for the di�erent dissimilarity measures given in Section V-C. ROC curves have been computed on the basis of the total
amount of changes detected in the TSX image time series L(t1),L(t2), . . . ,L(t24) described in Section V-C (see samples given in Figure 10).


