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Event–Triggered Observation
of Nonlinear Lipschitz Systems via Impulsive

Observers
L. Etienne, S. Di Gennaro,

Abstract

In this paper we investigate the observation problems for a class of nonlinear Lipschitz systems, subject to network constraints.
In order to address this problem, an impulsive observer is designed, making use of the event–triggered technique in order to diminish
the network usage. The proposed observer ensures practical state estimation. The output sampling is done on a periodic basis, but
the data transmission is regulated by an event–triggering mechanism. The performance of the observer is tested in simulations of
a flexible joint.

Impulsive observer, Event triggered sampling, Nonlinear systems.

I. INTRODUCTION

State observation, or estimation, is one of the central problem in system theory. Since the seminal work of Luenberger (1966),
many works have treated this problem, both for linear and nonlinear systems. Recently, impulsive observers for continuous–
time systems have been proposed (Raff, 2007; Chen, 2011, 2013) and, using discontinuous Lyapunov functions, sufficient
conditions for the existence of these observers have been derived in terms of linear matrix inequalities (LMIs). Further recent
developments in the design of impulsive observers can be find in Khaled (2013) for linear systems and in Andrieu (2010),
Guillen (2013), Dinh (2015) for nonlinear systems.

In this work this kind of observers is used to estimate the state of a nonlinear Lipschitz system, where the sensor data are
communicated via a wireless channel. Regarding this latter aspect, the theoretic assumption of continuous output sensing is
not verified in practice. In fact, with the use of digital devices, the output is sampled at discrete time instants. The output
sampling can be performed on the basis of a periodic/aperiodic sampling, or on an event–triggered basis. The advantage of
the classic approach with periodic sampling is to allow the closed–loop system to be analyzed on the basis of sampled–data
formalism (Astrom (1997) for linear systems, and Karafyllis (2009), Postoyan (2012)). On the other hand, the main drawback
is the fact that the sampling instant does not depend on the output value, and therefore the output is sampled also if its value
is not varied sensibly since the last sampling. In this sense, the classic sampling is done in “open–loop”. In order to make the
sampling time dependent on the output value, one possibility is the use of the event–triggered policy.

Event–triggered sampling has been already considered in other contexts, e.g. those in which some specific tasks have to be
completed before sampling a variable. More recently, driven by the necessity of reducing the bandwidth used in the wireless
channel, such an event–triggering mechanism has been reconsidered to reduce the amount of data transmitted. In fact, while
the output can be continuously or, rather, periodically or aperiodically sampled, the data transmission is decided by an event–
triggering mechanism. Moreover, event–triggered techniques allow the execution of computation tasks as rarely as possible, so
minimizing the energy consumption and leaving the digital processor available for other tasks.

In this paper this mechanism is considered as key technique, along with the impulsive observer to design an observer
ensuring practical state estimation. The output sampling is done on a periodic basis, but the data transmission is regulated
by the aforementioned event–triggering mechanism. This mechanism is usually called periodic event–triggered sampling. The
periodicity ensures implicitly the existence of a minimum iter–event time, i.e. a nonzero time interval between two transmission
events. In this work, in particular, the impact of the event–triggered technique on the design of an impulsive observer is analyzed.
Some studies are available on this particular subject (see Donkers (2010), Lehmann (2011), Tallapradaga (2012), Tallapradaga
(2013) and the references therein). The vast majority of the existing literature is dedicated to linear systems. On the contrary, the
field of observation of nonlinear system with event triggered communications has been subject of little investigation (Etienne
(2015), Abdelrahim (2015)).

The event–triggered sampling technique has been developed in recent years (Arzen, 1999), as substitute of the time–periodic
sampling, see for instance Heemels (2012) for an introduction to the topic and, for further details, Astrom (2003), Heemels
(2008), Lunze (2010), Tabuada (2007), Wang (2011). In the case of the event–triggering the sampling is performed in order to
ensure that some desired properties established in the continuous–time design, primarily the asymptotic convergence to zero
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of the observation error, can be maintained under sampling. Conceptually, this means to introduce a feedback in the sampling
process, with a constant monitoring of the output to determine if the desired properties is ensured.

The structure of the article is the following. In Section 2, the observation problem is formulated and the structure of the
impulsive observer is given. In Section 3, this problem is solved for a class of Lipschitz nonlinear systems, in terms of LMIs.
In Section 4, this impulsive observer is applied to a one–link manipulator with flexible joint. Finally, in Section 5, some
conclusions are drawn.

Notations: ‖x‖, ‖M‖ denote the Euclidean norms when applied to a vector x and to a matrix M , while ‖x‖P = xTPx is
the norm induced by a symmetric positive definite matrix P . Moreover, λPmin, λ

P
max are the smallest and the biggest eigenvalues

of a square matrix P . Furthermore, R+, R+
0 will denote the set of positive real numbers and the set of positive real numbers

including zero, and N = {0, 1, 2, · · · } the set of natural numbers including zero. With I we denote the identity matrix. Finally,
t+ = lim

h→0,h>0
(t+ h), and t+k = lim

h→0,h>0
(tk + h), k ∈ N. When not necessary, the dependence on time t will be omitted.

II. PROBLEM STATEMENT

The class of systems under study is characterized by the following equations

ẋ = Ax+Bu+Dφ(Hx)

y = Cx
(1)

with x ∈ Rn the state, u ∈ Rm the input, y ∈ Rq the output, A ∈ Rn×n, B ∈ Rm×n, C ∈ Rq×n, D ∈ Rn×ν , H ∈ Rp×n are
constant matrices.

In the following one assumes that the pair (A,C) is observable. Note that milder results can be easily expressed in terms
of detectability.

In (1), Dφ(Hx) gives the structure of the nonlinearity acting on the system, with φ : Rp → Rν a nonlinear function
satisfying the following condition ∥∥φ(Hχ1)− φ(Hχ2)

∥∥ ≤ γ‖H(χ1 − χ2)‖
∀ (χ1, χ2) ∈ Rn × Rn.

(2)

It is clear that (2) implies that (1) is Lipschitz with respect to x.

Remark 2.1: For the sake of simplicity we considered a global Lipschitz constant and Rn as the domain of definition of the
system. However, under appropriate technical assumptions, the results exposed here remain valid for compact sets.

Output sensors sample the outputs periodically, but the data are transmitted to the observer for elaboration at time instants
that are a subset of the sampling instants. More precisely, while Ss = {tk = kδ}k∈N is the periodic sampling sequence for
the sensor, with δ = tk+1 − tk > 0 the sensor sampling period, the data transmission sequence is {ts`}`∈N ⊆ Ss. The situation
is depicted in Fig. 1. The data communications between the plant and the observer, assumed instantaneous, take place only at
the discrete time instants ts` .

tsℓ

D
ata tran

sm
ission

δ

ts1 ts2 ts3 ts4 ts5
kδ

Observer

y(tsℓ )

System
y(t)

Sensor
u(t)

x̂(t)

Fig. 1. Sensor sampling and transmission time instants.
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The observation problem consists of determining an event–triggering condition, fixing the time instants in which the sampled
output data are sent to the observer, and an impulsive state observer having the structure

˙̂x = Ax̂+Bu+Dφ(Hx̂)

x̂(kδ+) = x̂(kδ) + δG
(
y(ts`)− ŷ(kδ)

)
= (I − δGC)x̂(kδ) + δGCx(ts`)

(3)

such that x̂(t) tends asymptotically to x(t) in a practical sense. In (3), x̂(kδ+) is the left limit of x̂(t), and G ∈ Rn×q is the
observer gain matrix. Note that the right limit is x̂(kδ−) = x̂(kδ). The observer dynamics correspond to a copy of the system
dynamics between sampling instants kδ, (k + 1)δ, while it undergoes a jump in the state at the sampling instants.

III. AN EVENT–TRIGGERED IMPULSIVE OBSERVER

The impulsive observer (3) will be implemented making use of a triggering mechanism, determining when the sensor
transmits the sampled data to the plant. More precisely, these data are sent to the plant at the time instants t = ts` , ` ∈ N, such
that the following event–triggering condition is satisfied

ts`+1 = min
k

{
kδ > ts` | ‖y(kδ)− y(ts`)‖ ≥ εs

}
(4)

where εs > 0 is a threshold value on the output error y(kδ)− y(ts`).
Given the system and the observer dynamics (1), (3), one has to consider both the continuous dynamics of the observation

error e(t) = x(t)− x̂(t), given by
ė = Ae+D

(
φ(Hx)− φ(Hx̂)

)
(5)

and the error discrete dynamics, due to the impulses on the observer state. These latter have the expression

e(kδ+) = x(kδ+)− x̂(kδ+)

= (I − δGC)e(kδ) + δGC
(
x(kδ)− x(ts`)

) (6)

since x(kδ+) = x(kδ−) = x(kδ). It is worth noting that, at the triggering instants ts` in which (4) is satisfied and the system
output sensor sends the sampled data to the observer, this expression reduces to

e(ts`
+) = e(kδ+) = (I − δGC)e(kδ) = (I − δGC)e(ts`)

since x(kδ) = x(ts`). In all the other discrete time instants, the term δGC
(
x(kδ)−x(ts`)

)
= δG

(
y(kδ)−y(ts`)

)
appears, which

can be seen as a perturbation induced by the absence of communications from the sensor.
As stated by the following result, the event–triggering condition (4) along with an appropriate choice of the observer gain

ensure the exponential practical stability of the observation error (Lakshmikantham, 1990). It is worth noting that this is true
also when the system dynamics (1) are not stable.

Theorem 3.1: Let us consider the system (1), with (A,C) observable and φ satisfying (2). If, for a fixed sampling time
δ > 0, the following LMIs

N1 ≤ −εI, N2 ≤ −εI, N3 ≤ 0 (7)

where

N1 =

(
P1A+ATP1 + γ2HTH +

P2 − P1

δ
P1D

P1D −I

)

N2 =

(
P2A+ATP2 + γ2HTH +

P2 − P1

δ
P2D

P2D −I

)

N3 =

( −P2 P1 − δP3C

(P1 − δP3C)T −P1

)
have solutions P1, P2, P3, with Pi = PTi > 0, i = 1, 2, for an ε > 0, then the observer (3), with the event–triggering condition
(4), and the gain G = P−1

1 P3, ensures that the origin of error dynamics (5), (6) is globally practically exponentially stable,
with attractive set

Iεs =
{
‖e‖ ≤ ρs

}
, ρs =

√
λmax

λmin

δ‖G‖
1− e−δε̄/2

εs (8)

where ε̄ = ε/λmax, and λmin = min
{
λP1

min, λ
P2

min

}
, λmax = max

{
λP1

max, λ
P2
max

}
.
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Remark 3.2: It is worth noting that in (7) the sampling period δ is fixed a priori. Therefore, (7) constitute a set of classic
LMIs.

Proof. The error dynamics (5), (6) can be rewritten as follows

ė = Ae+Dd2

e(kδ+) = (I − δGC)e(kδ) + δGCd3

(9)

with d2 = φ(Hx) − φ(Hx̂) and d3 = x(kδ) − x(ts`). Following Suykens (1998), Raff (2007), let us consider the Lyapunov
candidate Vo(e, t) = ‖e‖2P (t), where P (t) is a time–varying matrix given by the following convex combination of the matrices
P1, P2

P (t) = P1 +
t− kδ
δ

(P2 − P1) = λP1 + (1− λ)P2

λ =
(k + 1)δ − t

δ
∈ [0, 1)

(10)

defined for t ∈ (kδ, (k + 1)δ]. This combination allows constructing an appropriate Lyapunov function which, under the
hypotheses (7), can show the practical exponential stability. For, first note that P (kδ+) = P1 and P ((k+1)δ) = P2. Considering
that P (t) is periodic with period δ, its definition can be extended for all t ≥ 0. Note also that λmin‖e‖2 ≤ Vo ≤ λmax‖e‖2.
Using (9), and

Ṗ (t) =
P2 − P1

δ

obtained from (10), one works out

V̇o = eT
(
PA+ATP +

P2 − P1

δ

)
e

+ eTPDd2 + dT2 D
TPe+ dT2 d2 − dT2 d2

∀ t ∈
(
kδ, (k + 1)δ

]
.

Using (2)
‖d2‖2 ≤ γ2eTHTHe

and considering the definition of P (t) one gets

V̇o ≤ eT
(
PA+ATP +

P2 − P1

δ
+ γ2HTH

)
e

+ eTPDd2 + dT2 D
TPe− dT2 d2

= ξTN1ξ + (t− kδ)ξT N̄ξ

=
(k + 1)δ − t

δ
ξTN1ξ +

t− kδ
δ

ξTN2ξ

for t ∈ (kδ, (k + 1)δ], where ξ =
(
eT dT2

)T
and N̄ = (N2 −N1)/δ. Hence, using (7), one finally obtains

V̇o ≤ −ε
(k + 1)δ − t

δ
‖ξ‖2 − εt− kδ

δ
‖ξ‖2 = −ε‖ξ‖2

≤ −ε‖e‖2 ≤ −ε̄Vo

i.e. V̇o is bounded by a negative definite function for all t ∈ (kδ, (k + 1)δ]. Therefore,

Vo(t) = e−ε̄(t−t0)Vo(t0)

∀ t0, t ∈ (kδ, (k + 1)δ], t0 ≤ t
(11)

and, in particular,
Vo
(
(k + 1)δ

)
≤ e−δε̄Vo(kδ+). (12)

Note also that in the inter–sampling

‖e(t)‖ = e−ε̄(t−t0)/2

√
λmax

λmin
‖e(t0)‖ (13)

∀ t0, t ∈ (kδ, (k + 1)δ], t0 ≤ t.
Let us now analyze the stability of the discrete error dynamics, i.e. the error dynamics in the discontinuity, considering the

same Lyapunov candidate Vo(t) = ‖e(t)‖2P (t) and recalling that

P (kδ+) = P1, P (kδ) = P ((k + 1)δ) = P2
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as already noted. Using (9), one gets

∆Vo := Vo(kδ
+)− Vo(kδ) = −eT (kδ)S2e(kδ)

+ 2δζT (P1 − δP3C)e(kδ) + δ2ζTP1ζ

with
G = P−1

1 P3, ζ = GCd3 = G
(
y(kδ)− y(ts`)

)
and

S2 = P2 − (P1 − δP3C)TP−1
1 (P1 − δP3C)

the Schur complement of the element (2,2) of the matrix −N3.
It is well–known that for Hermitian matrices, −N3 ≥ 0 is equivalent to P2 > 0 and S2 ≥ 0 (see Zhang (2005), Theorem 1.12,

pag. 34). Hence, since −N3 ≥ 0 and P2 > 0, then S2 ≥ 0. Therefore, −eT (kδ)S2e(kδ) ≤ 0. Furthermore, note that

eT (kδ)(I − δGC)TP1(I − δGC)e(kδ)

= eT (kδ)(P1 − δP3C)TP−1
1 (P1 − δP3C)e(kδ)

= eT (kδ)(P2 − S2)e(kδ) ≤ eT (kδ)P2e(kδ) = Vo(kδ).

This last observation allows writing

ζT (P1 − δP3C)e(kδ) = ζTP1(I − δGC)e(kδ)

≤
√
ζTP1ζ

√
eT (kδ)(I − δGC)TP1(I − δGC)e(kδ)

≤
√
λP1

max‖ζ‖
√
Vo(kδ) ≤

√
λmax‖G‖εs

√
Vo(kδ)

where (4) has been used. Finally,
ζTP1ζ = ‖G

(
y(kδ)− y(ts`)

)
‖2P1

≤ λP1
max‖G‖2‖y(kδ)− y(ts`)‖2

≤ λP1
max‖G‖2ε2

s ≤ λmax‖G‖2ε2
s.

Therefore,
Vo(kδ

+) ≤ Vo(kδ) + 2δ
√
λmax‖G‖εs

√
Vo(kδ)

+ δ2λmax‖G‖2ε2
s =

(√
Vo(kδ) + c

)2

≤
(
a
√
Vo((k − 1)δ+) + c

)2

a = e−δε̄/2, c =
√
λmax δ‖G‖εs, where (12) has been used, so that√

Vo(kδ+) ≤ a
√
Vo((k − 1)δ+) + c.

This linear discrete–time dynamics is exponentially stable to the origin since the dynamic matrix is Schur. Moreover, its solution
is given by √

Vo(kδ+) ≤ a
√
Vo(0+) + c

k−1∑
j=1

aj (14)

and for k →∞
lim sup
k→∞

√
λmin‖e(kδ+)‖ ≤ lim sup

k→∞

√
Vo(kδ+) ≤ c

1− a

=
c

1− e−δε̄/2
=
√
λmax

δ‖G‖
1− e−δε̄/2

εs

where the series sum exists since a < 1. Hence, lim sup
k→∞

‖e(kδ+)‖ ≤ ρs. Considering that (13) ensures that ‖e(t)‖ decreases

exponentially between kδ+ and (k + 1)δ, one can conclude that the error dynamics (5), (6) converges exponentially to the
attractive set Iεs . The convergence is global since all the passages do not depend on the initial state. This concludes the proof.
�

It is worth noting that the convergence ensured by Theorem 3.1 to Iεs is asymptotic. If one requires a finite–time convergence
one needs to enlarge Iεs . This is stated in the following result.
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Corollary 3.3: Let us consider the system (1), with (A,C) observable and φ satisfying (2). Under the same hypotheses and
notations of Theorem 3.1, the observer (3), with the event–triggering condition (4), and the gain G = P−1

1 P3, ensures that the
origin of error dynamics (5), (6) globally practically converge to the set

Iεb =
{
‖e‖ ≤ (1 + εb)ρs

}
ρs given by (8), in a time

T ≤ T%,εb =
2

ε̄
ln
d− (1 + d)e−δε̄/2

εb
, d =

1

δ‖G‖εs
%

for any fixed εb, % > 0, and for any observer initial condition such that ‖e(0)‖ ≤ %.
Proof. Since

Vo(0) = ‖e(0)‖2P2
≤ λP2

max %
2 ≤ λmax %

2

one has √
Vo(0+) ≤

√
Vo(0) + c ≤

√
λmax %+ c

and, from (14), √
λmin‖e(kδ+)‖ ≤

√
Vo(kδ+) ≤ a

√
Vo(0+) + c

k−1∑
i=0

ai

≤ ak
(√

λmax %+ c
)

+ c
1− ak

1− a
a = e−δε̄/2, c =

√
λmax δ‖G‖εs. Dividing by

√
λmin and imposing

‖e(kδ+)‖ ≤ ak
(√

λmax

λmin
%+

c√
λmin

)
+ (1− ak)ρs

= (1 + εb)ρs,
c√
λmin

1

1− a
= ρs

one gets the bound of kδ for the time T in which the error trajectory enters Iεb . �

Remark 3.4: It is worth noting that in the proposed scheme it is not necessary that the system is stable in order to ensure
the observer convergence. However, in practice numerical error may influence the observer performance.

IV. SIMULATION RESULTS
FOR A ROBOT WITH A FLEXIBLE JOINT

In this section a fourth–order model of the form (1) is considered, taken from Spong (1987), Rajamani (1998), Howell
(2002), Raff (2007) and representing the dynamics of a one–link manipulator, with a DC motor as actuator

A =


0 1 0 0

−48.6 −1.25 48.6 0

0 0 0 1

19.5 0 −19.5 0

 ,

B =
(

0 21.6 0 0
)T

C =

(
1 0 0 0

0 1 0 0

)
D =

(
0 0 0 1

)T
H =

(
0 0 1 0

)
,

with φ = 3.3 sinx3, which is a nonlinear term due to the gravity, acting on the dynamics of x4. As commented in Spong
(1987), the joint elasticity is described by a linear torsional spring, and x1 represents the rotation of the motor, x2 = ẋ1 is the
corresponding angular velocity, x3 is the angular position of the link, x4 = ẋ3 is its angular velocity. Physically, one measures
the motor position and velocity, while the measurement of the other variables is non–trivial. The input u = sin t is applied to
the system. The performance of the impulsive observer (3) is analyzed making use of this benchmark.
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Solving (7), with a sensor sampling period of δ = 0.15 s, one works out

P1 =


28.6269 −0.3675 −11.6820 1.0816
−0.3675 0.5296 −1.5176 0.0455
−11.6820 −1.5176 18.8721 −1.7201

1.0816 0.0455 −1.7201 0.7153



P2 =


22.9349 −0.5313 −11.6047 1.0195
−0.5313 0.4136 −1.9257 0.0810
−11.6047 −1.9257 20.9671 −1.8715

1.0195 0.0810 −1.8715 0.7393



G =


9.3334 1.0001
−48.7804 22.3665
−0.0524 3.3194
19.4066 −0.3167

 .

where λmin = 0.06, λmax = 37, ε = 1. Then, in order to impose a ball of convergence for the observation error of ρs = 0.012,
from (8) one obtains εs ' 3.64× 10−7. This theoretical value is highly conservative and, as a matter of fact, it is possible to
fix less restrictive values. In fact, as shown by the simulation in Figs. 2, 3 obtained with δ = 0.05 s and εs = 10−3, one can
fix well bigger event–triggering thresholds still obtaining the desired balls of convergence of dimensions ρs. As expected, at
the beginning the communications are more frequent, and become less frequent when the steady–state is reached after about
1.75 s, with an average sampling time of δav = 0.31 s.

0 1 2 3 4 5 6 7

−10
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−4

−2

0

2

4

6

8

10

5 5.5 6 6.5 7
−0.02

−0.01

0

0.01

0.02

Fig. 2. Observation error e(t), with a zoom showing‖e‖ ≤ ρs.

V. CONCLUSIONS

In this work an impulsive observer was presented for a Lipschitz nonlinear system. The event–triggering mechanism is
periodic. In the proposed scheme, for the observer convergence it is not necessary that the system is stable. The triggering
parameter for the sensor can be computed in order the ensure an upper bound on the size of the attractive set. The simulation
results show that this upper bound is not tight, and further work is necessary to obviate this over–approximation. The observer–
based stabilization problem will be the subject of a forthcoming paper.
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