
HAL Id: hal-01340882
https://hal.science/hal-01340882v1

Submitted on 2 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unsteady granular flows down an inclined plane
Stanislav Parez, Einat Aharonov, Renaud Toussaint

To cite this version:
Stanislav Parez, Einat Aharonov, Renaud Toussaint. Unsteady granular flows down an inclined plane.
Physical Review E , 2016, 93, pp.042902. �10.1103/PhysRevE.93.042902�. �hal-01340882�

https://hal.science/hal-01340882v1
https://hal.archives-ouvertes.fr


Unsteady granular flows down an inclined
plane

Stanislav Parez,1a Einat Aharonov,1 and Renaud Toussaint2

1 Institute of Earth Sciences, Hebrew University, Givat Ram, 91904
Jerusalem, Israel.

2 Institut de Physique du Globe de Strasbourg, Universite de
Strasbourg/EOST, CNRS, 5 rue Descartes, 67084 Strasbourg Cedex, France.

Abstract

The continuum description of granular flows is still a challenge despite their
importance in many geophysical and industrial applications. We extend pre-
vious works, which have explored steady flow properties, by focusing on
unsteady flows accelerating/decelerating down an inclined plane in the sim-
ple shear configuration. We solve the flow kinematics analytically, including
predictions of evolving velocity and stress profiles and the duration of the
transient stage. The solution shows why and how granular materials reach
steady flow on slopes steeper than angle of repose and how they decelerate on
shallower slopes. The model might facilitate development of natural hazard
assessment, and may be modified in the future to explore unsteady granular
flows in different configurations.

a Email: stanislav.parez@mail.huji.ac.il
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1 Introduction

Accelerating and decelerating granular materials control many geophysical
situations, with notable examples being landslides and geological faults. Un-
derstanding their flow would allow us to predict their energy and total de-
formation, and estimate the risk of natural hazards. While steady granular
flows are complex but relatively well understood, unsteady flows, prevailing
in nature, still lack a theoretical description. Many fundamental questions
regarding unsteady flows are still open. Under what conditions does a gran-
ular flow reach steady state and why? How does the velocity profile evolve?
What controls the time scale on which the flow accelerate/decelerate? What
shear rate and shear stress control the energy dissipation? In this paper, we
answer these questions for free surface dry granular flows down a slope.

Our knowledge about granular flows mostly comes from laboratory ex-
periments and computer simulations. As a result, three flow regimes were
classified [1]: “solid” in which grains interact via long-lasting frictional con-
tacts and deform slowly, “gaseous” in which grains interact through collision
lasting shortly compared to the deformation time scale, and “liquid” which
is a transition between the two previous. For a flow down a slope, the three
regimes can be attained by changing the slope angle θ [2–4]. If θ is small,
no flow is observed but only an elastic deformation, or the flow decelerates if
it was already set in motion previously. Once θ exceeds the angle of repose,
the flow accelerates. The increasing rate of collisions eventually leads to a
steady flow. If, however, the slope is steep enough the flow keeps accelerating
because the energy that grains receive during a free fall between collisions
exceeds the dissipation. Here we study the liquid regime, in which flow is
possible yet not too vigorous.

Steady granular flows have been investigated for more than a half a cen-
tury, resulting in good knowledge of their rheology [5–8], flow regimes [2,3,33],
scaling [9,10] and effects of boundary conditions [11,12]. On the other hand,
unsteady flows have been discussed much less and have been described only
approximately using depth-averaged models, a.k.a “shallow water models”,
or computer simulations. Neither of the approaches has established analyti-
cal forms of velocity and stress profiles, which are required to access energy
dissipation, or the associated destructive potential of the flow. In addition,
friction coefficient is known from physics and geophysics to depend on shear
rate or relative sliding velocity between two surfaces [6–8,12–14]. Knowledge
of shear rate could thus facilitate development of theoretical friction models.

Depth-averaged models for granular flows arise from the depth-averaged
mass and momentum conservation equations, originally derived by Savage
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and Hutter [15]. The resulting equations for mean velocity neglect spatial
variation of velocity inside the moving body. Hence, the depth-averaged
models are less accurate if shear rate is large. Flow down a slope or channel
flow were studied by [15–21], including analytical solutions for evolution of
mean velocity, front position and thickness. These agree with experimental
measurements [15,17,18,21] as long as the spatial fluctuations of velocity are
small.

Computer simulations allow to examine velocity profile and flow evolu-
tion, which are difficult to study experimentally. Acceleration down an in-
clined plane, sometimes followed by deceleration on a flat plane (landslide ge-
ometry), was addressed by [1,22–24] using Discrete element method (DEM).
Results reveal that the (top) free surface moves faster than the bottom sur-
face, shearing the mass completely throughout its thickness. Yet, the ana-
lytical solutions for velocity and stress profiles are known only for the steady
flow [2, 3, 5, 7, 9, 10]. Also, the duration of the accelerating flow before the
steady flow is reached has not been investigated.

The present analytical solution describes granular flows under simple
shear induced by gravity (see Fig. 1). The flow is uniform in both lateral and
longitudinal directions, and thickness h is kept constant. As a result, flow
properties are functions of depth y and time t only. Simple shear geometry
is simple enough to allow for an analytical solution, yet describes essential
features of many natural flows, such as landslides, avalanches or geophysical
faults. These can often be approximated as two-dimensional chute flows, or
as flow confined between two walls, with the parallel component of veloc-
ity dominating the other components. Note however that elongation and
flattening of the flow (observed for landslides) is neglected here.

We first review equations describing rheology of dry granular flows and
derive the velocity field for the flow on an inclined plane (Section 2). Then
we introduce numerical simulations that serve as a test to our analytical
model (Section 3). Finally, we show the analytical model reproducing the
kinematics observed in simulations and we explain why, how and in what
time scale a flow reaches its final stage, be it steady state for accelerating
flows or the rest for decelerating flows (Section 4).

2 Theory

Here, we derive analytical forms of velocity, shear rate and stress profiles for
a granular flow of constant thickness down an inclined plane. Acceleration
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of the flow is a result of the action of gravitational and friction forces

Φsρ
∂v

∂t
= Φsρg sin θ − ∂τ

∂y
(1)

where θ is the inclination angle, v(y, t) is the velocity along the flow direction,
τ(y, t) is the shear stress, g is the gravitational acceleration, ρ is the grain
mass density and Φs is the solid fraction. Φs is uniform with depth [2] and
constant (a very week dependence on flow velocity has been found [1,6,7,12]).
As a result, the normal stress N(y, t) is lithostatic: N = Φsρg cos θy.

To form a closed set of equations we need another relation between τ and
v, i.e. a rheological law. Friction in granular materials has been found to be
shear rate dependent [6–8,13]. The only local dimensionless quantity for dry
granular flows that contains shear rate is the so-called inertial number I(y, t)

I =
γ̇d√
N/ρ

, (2)

where d is the grain size and γ̇(y, t) is the shear rate (the negative sign is
because y axis is pointing downwards)

γ̇ = −∂v
∂y

. (3)

The friction coefficient µ(y, t) (also dimensionless) can then be expressed
as an expansion in I. The linearized version of the friction law is

µ ≡ τ

N
= tan θr + βI , (4)

where θr is the dynamic angle of repose and β is another material parameter
(tan θr ≈ 0.35 and β ≈ 0.6 for glass beads [1]). This type of rheology, in
which µ is a function of I, has been verified for a variety of systems and
boundary conditions [1, 6, 7, 18] and holds as long as plastic processes are
negligible. Since β has been found positive, friction increases with shear rate
under constant normal stress. The linear approximation, Eq. (4), is valid for
the liquid flow regime studied here, which corresponds to inertial number of
the order of 10−3−10−1 [1,7]. For larger inertial numbers, the flow is collision
dominated and eventually becomes turbulent. In this regime, the linear law
breaks down.

The resulting shear stress τ = µN is

τ = tan θrΦsρg cos θy + ρβd
√

Φsg cos θy γ̇ . (5)

4



The first term is rate independent, and is usually of larger magnitude. The
second term accounts for the increase of shear stress with shear rate. Con-
sequently, friction force increases as the flow accelerates.

Taking the spatial derivative of Eq. (1) and using the constitutive relation
Eq. (5), we arrive at a single equation for γ̇

∂γ̇

∂t
= βd

√
1

Φs

g cos θ
∂2

∂y2
(
√
y γ̇) . (6)

A diffusion equation for shear rate was introduced in Ref. [12] and used to
determine transient time to obtain steady Couette flow in a simple shear cell.
Note that for a flow under gravity investigated here, the diffusion coefficient
is non-uniform.

We will solve Eq. (6) along with the following boundary/initial conditions:

(a) τ(0, t) = 0 ,

(b) v(h, t) = 0 , (7)

(c) v(y, 0) = v0(y) ,

where h is flow thickness. The boundary conditions can be stated as: (a)
the top surface of the flow is free of stresses, (b) the velocity at the bottom
of the flowing mass is zero (the ground surface is rough), and (c) the initial
velocity is v0(y).

The solution is found as a series solution using separation of variables
and superposition of all linearly independent solutions [25] (let us suppose
for now that the spectrum of solutions is discrete: n = 0, 1, ..)

γ̇ =
∑
n

pn(t)qn(y) , where (8)

dpn
dt

= Knpn ,

d2
(√

y qn
)

dy2
=

Kn

βd
√

1
Φs
g cos θ

qn .

The separation constants Kn are to be determined from the boundary con-
ditions.

The functions pn are exponentially growing for Kn > 0. Because we are
looking for a solution that is stable, Kn are restricted to be non-positive:
K0 = 0 and Kn ≡ −1/Tn < 0 for n > 0, where Tn are positive constants
with a dimension of time. The spatial functions qn have two independent
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solutions [26]. For small y, they behave as ∼ √y or ∼ 1/
√
y. To satisfy the

boundary condition (7a), we have to exclude the divergent solution. This
leads to the following expansion for shear rate

γ̇ =


b∗
√
y +
√
h
∑
n

bn J2/3

(
κn

(y
h

)3/4
)
e−t/Tn θ > θr ,

√
h
∑
n

bn J2/3

(
κn

(y
h

)3/4
)
e−t/Tn θ < θr ,

(9a)

(9b)

where b∗ and bn’s are yet undetermined weights, J2/3(z) is Bessel function of
the first kind [26], and κn is a dimensionless constant related to Tn

κn =
4

3

(
Φsh

3

T 2
nβ

2d2g cos θ

)1/4

. (10)

Each term in Eq. (9) is a solution of Eq. (6) that satisfies the boundary
condition (7a). If the inclination angle is larger than the angle of repose,
θ > θr, the flow accelerates towards steady state. In that case, we allow
for the time-independent solution b∗

√
y (the first term), which corresponds

to the steady flow shear rate since all other terms vanish after sufficient
time. Note that this term is identical to Bagnold shear rate profile, found in
numerous studies of steady granular flows on an incline [2, 3, 5]. For θ < θr

the flow decelerates towards the rest as γ̇(t → ∞) → 0. Therefore, the
time-independent term is discarded.

The spatial integration of −γ̇ = ∂v
∂y

yields velocity up to an integration
constant, which is allowed to be a function of time. The integration constant
is determined from Eq. (1) using the series Eq. (9a) or (9b) in Eq. (5). This
leads to the velocity formula

v(y, t) =


2

3
b∗
(
h3/2 − y3/2

)
+

16

9
h2
∑
n

bn
κ2
n

d

dy

[
√
yJ2/3

(
κn

(y
h

)3/4
)]

e−t/Tn θ > θr ,

−g cos θ(tan θr − tan θ)t+
16

9
h2
∑
n

bn
κ2
n

d

dy

[
√
yJ2/3

(
κn

(y
h

)3/4
)]

e−t/Tn θ < θr ,

(11a)

(11b)

where b∗ is

b∗ =

√
Φsg cos θ(tan θ − tan θr)

βd
. (12)
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The solution (11b) is valid as long as v(y, t) > 0. Once the velocity at given
depth y decays to zero, the layer becomes locked due to static friction and
v(y) = 0 afterwards.

To satisfy the boundary condition Eq. (7b), v(h, t) = 0, for an arbitrary
weights bn, all terms in Eq. (11) have to vanish for y = h. This constrains
the values of κn, and consequently Tn, so as to satisfy

d

dy

[
√
yJ2/3

(
κn

(y
h

)3/4
)] ∣∣∣∣∣

y=h

= 0 (13)

Tn =
16
√

Φs

9κ2
n

h3/2

βd
√
g cos θ

, n = 1, 2, ..,∞ .

In other words, κn are points where the function
√
zJ2/3(z) has an extreme

value. Since this function oscillates, we have an infinite and discrete number
of solutions, and therefore n is indeed identified with natural numbers. The
first few values of κn and Tn/T1 are given in Table 1.

Finally, the constants bn are determined from the initial condition (7c) as

bn =


−
∫ h

0

(√
ydv0/dy + b∗y

)
J2/3

(
κn(y/h)3/4

)
dy

√
h
∫ h

0
J2

2/3 (κn(y/h)3/4)
√
ydy

θ > θr ,

−
∫ h

0

√
ydv0/dyJ2/3

(
κn(y/h)3/4

)
dy

√
h
∫ h

0
J2

2/3 (κn(y/h)3/4)
√
ydy

θ < θr .

(14a)

(14b)

In the last relation we used Eq. (9) and orthogonality of qn’s for different

n (see Appendix):
∫ 1

0

√
zJ2/3

(
κnz

3/4
)
J2/3

(
κmz

3/4
)

dz ∼ δnm. In Table 1,
we give a few values of bn corresponding to the initial velocity v0 = 0 (flow
accelerating from the rest) or v0 = 2b∗(h3/2− y3/2)/3 (flow decelerating from
steady state).

In general, one needs to calculate bn’s for all n for which the factor
exp (−t/Tn) is greater than a desired accuracy. Using these bn’s in Eqs. (11)
and (9) gives the accurate profiles of the velocity and shear rate fields (and
also the shear stress field related by Eq. (5)). Nevertheless, for a first order
approximation, when we restrict to the n = 1 term only, the velocity field
Eq. (11) simplifies to

v(y, t) =


2

3
b∗
(
h3/2 − y3/2

) (
1− e−t/T1

)
θ > θr ,

− g cos θ(tan θr − tan θ)t+ v0(y)e−t/T1 θ < θr .

(15a)

(15b)

The corresponding shear rate and shear stress field can be derived using their
definitions Eqs. (3) and (5).
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3 Simulations

The numerical simulations are used as a benchmark for the theory derived
above. They employ the Discrete Element Method (DEM) [27], in which the
Newtonian equations of motion for a set of grains are solved in discrete steps.

Grains are modeled as balls with rotational and translational degrees
of freedom. They interact via visco-elastic contact forces according to the
Hertz-Mindlin contact model [28,29]

F n
ij =

√
2E

3(1− ν2)

√
Rijξijξij − γ

√
Rijξij ˙ξij ,

F t
ij = min

[
2
√

2E

(2− ν)(1 + ν)

√
Rijξij∆s, µggF

n
ij

]
, (16)

where F n
ij and F t

ij are normal and shear components of the contact force
between interacting grains i and j. Rij is the harmonic mean of the grains
radii and ξij is the overlap between the two grains. Elastic modulus E =
1.31× 1010 Pa and Poisson’s ratio ν = 0.235 were chosen to simulate quartz
grains with density ρ = 2.5× 103 kg m−3. Energy dissipation is governed by
the normal damping force (the second term in F n

ij) with damping coefficient
γ = 0.8 and by the tangential friction (F t

ij). Restitution coefficient is not
constant, but depends on velocities of colliding grains [28]. The tangential
force is initially elastic, calculated from shear displacement ∆s on contacts
of the grains from the instant the contact was formed. Once the spring
force exceeds the Coulomb friction criterion, the contact starts sliding with
a constant shear force, F t

ij = µggF
n
ij, where the grain-grain friction coefficient

is µgg = 0.5. Note that the grain-grain friction coefficient is not the same
as the macroscopic dynamic friction coefficient [30,31], which is investigated
below and found to be shear rate dependent .

Grain diameters were randomly drawn from a Gaussian distribution with
both mean value and standard deviation equal to d. The distribution is how-
ever cut, so that all diameters fall within 0.8−1.2 d. Equations of motion were
integrated using velocity Verlet algorithm [32] with a time step 0.1d

√
ρ/E

small enough to resolve elastic waves due to grain-grain collisions.

Periodic boundary conditions were applied in the direction of the flow,
which is equivalent to constant thickness boundary condition used in the
theory. The width of the simulation box along the flow direction was 96 d (no
size effects due to this scale were observed), while thickness of the flow varied
among different simulations between h = 12 − 96 d to test the volumetric
scaling.
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Granular systems are initiated as layers with random loose packing, stand-
ing on a flat horizontal surface made of static grains. Subject to vertical grav-
itational acceleration the grains sediment. By gradually turning the slope on
which material flows, the static angle of repose θsr = 17◦ and dynamic angle of
repose θr = 14◦ were found. To study acceleration we used inclination angles
θ = 17 − 25 ◦. The selected range of angles can accommodate steady flows,
see Ref. [2,3,33] for phase diagram of flow regimes. Larger inclination angles
lead to unstable acceleration and breakdown of the “liquid” flow regime. To
study deceleration we turn the slope down to an angle θ < θr = 14 ◦.

4 Results

4.1 Flow density

The derivation of the flow velocity carried out in the Theory section relies on
the presumption that the solid fraction Φs is constant and uniform through-
out the granular layer. In fact, Φs is a weak function of I [1,6,7,12], however,
its variation can be neglected compared to variations of velocity and shear
stress. This point is illustrated in Fig. 2, where we show solid fraction pro-
files at a number of time instants during a simulation of h = 96 d = 9.6 m
thick flow. The flow first accelerates on a 17◦ slope starting from rest. After
reaching the steady state, the slope is turned down to 0◦ and the flow de-
celerates on a flat plane. The solid fraction at all instants of the simulation
remains the same within its fluctuations, while, as we will see later, velocity
and shear stress vary significantly.

4.2 Stress evolution and flow stability

Here we verify and calibrate the rheological law Eq. (4). Fig. 3(a) shows
depth-averaged shear and normal stresses as functions of time. The data
were obtained from DEM simulation for θ = 17◦ > θr, i.e. the flow acceler-
ates towards steady state. While the normal stress is constant and equal to
lithostatic stress, N = Φsρg cos θy, the shear stress increases from its min-
imum value limγ̇→0 τ = tan θrΦsρg cos θy (see Eq. (5)) towards the steady
flow value τ = Φsρg sin θy, which can be derived from Eq. (1). Similarly, the
friction coefficient µ = τ/N (not shown) evolves following the evolution of τ .

Fig. 3(b) shows the µ(I) rheology, i.e. the friction coefficient µ increases
linearly with the inertial number I, in accordance with Eq. (4). The linear
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behavior was found for the whole range of angles leading to a stable flow
and for all studied system dimensions: d = 0.001− 0.1 m, h = (12− 120)d,
indicating “liquid-like” regime of the flow.

The rheological parameters θr and β are independent of depth except for
close to the ground surface y = h, so Eq. (4) holds locally. On the other
hand, the parameters were found to moderately depend on the thickness for
thin layers (with thickness of a few times d) due to non-local effects [34].
In addition, β varies with θ. In simulations, increasing θ from 17◦ to 25◦

resulted in the decrease of β by 40%.

Based on Fig. 3 we can understand why a flow can reach a steady state.
According to Eq. (1), acceleration of the flow is given by the difference be-
tween the driving gravitational force g sin θ and the resisting friction force
∂τ/∂y. This difference is non-negative only if θ > θr (if the flow starts from
rest, a larger static friction angle θsr needs to be overcome). As the flow
accelerates, γ̇ increases due to increasing v. In line with Eq. (5), increas-
ing γ̇ leads to increasing τ and therefore increasing ∂τ/∂y. Eventually, the
friction force ∂τ/∂y balances the gravitational force. At that moment the
acceleration vanishes and the flow reaches steady state. From then on, fric-
tion and inertial number fluctuate around their constant steady flow values
(I∞ = 0.041 and µ∞ = 0.31 = tan 17◦ for the system shown in Fig. 3).

Note that for the Coulomb friction law, i.e. β = 0, shear stress is in-
dependent of velocity (see Eq. (5)), and thus constant with time. Such
system would accelerate unstably with uniform and constant acceleration
g cos θ(tan θ − tan θr) > 0 and would not reach steady flow apart from the
special case θ = θr.

4.3 Flow velocity

Figs. 4 and 5 show velocity for a flow accelerating from rest (top) and de-
celerating from steady state (bottom). The theoretical prediction Eq. (11)
(dashed lines), in which we neglect all terms with n > 3, is tested against
the DEM simulation results (solid lines).

Fig. 4 shows velocity profiles at discrete time instants. The flow is non-
uniform, shearing the mass throughout its thickness. If θ > θr the flow
accelerates, eventually reaching the steady state. The steady flow profile
(magenta line) is given by the first term in Eq. (11a) and is consistent with
the Bagnold rheology studied in previous works [2, 3, 5, 9, 10].

If θ < θr, the flow decelerates. For the given flow parameters (h = 96 d =
9.6 m, g = 9.8 ms−2 and θ = 17 ◦), the deceleration rate is approximately
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uniform and constant, as the first term in Eq. (11b) dominates the evolution.
Once velocity at given depth y decays to zero, the layer becomes locked
due to static friction and v(y) = 0 thereafter. Since deeper layers have lower
velocity, they stop first. Consequently, the flow becomes increasingly limited,
confined to a gradually thinning layer near the top surface.

Fig. 5 shows complementary plots of velocity evolution at a number of
different depths. If θ > θr, velocity approaches the steady flow velocity
as a series of exponentially decaying functions with characteristic times Tn.
By the time T1 (= 33 s for the system in the figure) all terms in the series
in Eq. (11) with n > 1 vanished (see Table 1 for relative values of Tn)
and the n = 1 term dominates the time evolution. Acceleration decays as
∼ exp(−t/T1) and velocity increases approximately as ∼ 1− exp(−t/T1).

If θ < θr, velocity decays towards zero. For the case θ = 0 shown here,
the deceleration is considerably faster compared to the acceleration down a
slope of θ = 17◦ shown above due to the presence of −g tan θrt in Eq. (11b).
The leading n = 1 term in the series in Eq. (11b) satisfies t << T1, and can
be expanded linearly as ∼ 1 − t/T1. The remaining terms in the series can
be neglected because of small exp(−t/Tn) and/or bn. As a consequence, the
velocity decreases approximately linearly with time.

The overall fit between the theory and the simulations is very good, lend-
ing confidence to the new theory. However, there is a noticeable deviation
between the simulation and the theoretical curves in Figs. 4 and 5, most
pronounced near the bottom surface. This deviation does not result from a
time fluctuation or statistical uncertainty, as shown by error bars present-
ing the variability from different initial configurations. In the acceleration
phase (Figs. 4a and 5a) the deviation is due to a difference in boundary
conditions. In simulations, the motion of the deepest flowing grains, subject
to largest shear and normal stresses, is intermittent and alternates between
“stick and slip” stages. This is not perfectly consistent with the no-slip
boundary condition used in the theory for brevity of analytical calculations.
For the deceleration phase (Figs. 4b and 5b) the simulation velocity profiles
have exponentially decaying tails penetrating beyond the stop depth. This
feature was explained by Kamrin and Koval [35] to be a non-local effect (not
included in the present rheological law), in which the flow above the stop
depth induces a limited flow in deeper layers despite shear stress being lower
than the yield stress.

Perhaps counter-intuitively, deceleration is not the reversed time evolu-
tion of acceleration. The difference between θ > θr and θ < θr solutions orig-
inates from allowing for a time-independent term in the expansion Eq. (8).
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For θ > θr, the time-independent term is allowed and is identical to the steady
shear rate profile b∗

√
y reached after the remaining exponentially decaying

terms vanish. For θ < θr, the time-independent term vanishes as there is not
strong enough driving force to maintain steady flow.

4.4 Transient time and its scaling

During acceleration, velocity approaches the steady flow profile as a series of
exponentially decaying functions with characteristic times Tn (see Eq. (11)).
According to Eq. (13) the relative magnitudes Tn/Tm = κ2

m/κ
2
n are uni-

versal, independent of flow dimensions or inclination angle, since κn’s are
constants equal to points of extrema of the function

√
zJ2/3(z). Because T1

is sufficiently larger than the other Tn’s (see Table 1), it dominates the time
evolution after the very initial period. Therefore, T1 is an appropriate scale
of the duration of the acceleration stage.

In Fig. 6 (points) we plot the transient time T1 obtained by fitting ∼
exp(−t/T1) to simulation data for v(y, t) − v(y, t → ∞). The simulations
were run for various values of h, d and θ. Results are compared to the
analytical prediction (solid line) given by Eq. (13), and the expected scaling
T1 ∼ h3/2/βd

√
g cos θ is recovered. Thus, T1 increases with flow thickness

as ∼ h3/2 and decreases with grain diameter as ∼ d−1, i.e. in the same
way as the steady flow velocity. The scaling with θ is more complex than
∼ 1/

√
cos θ because β also varies with θ. The decrease of β by 40% was found

on increasing θ from 17◦ to 25◦ in our simulations. T1 is not expected to vary
significantly with mechanical characteristics of grains, such as restitution
coefficient, grain-grain friction coefficient or elastic modulus, as these were
shown to have a small influence on the flow rheology [7].

5 Conclusions

While a significant progress has been made in continuum description of steady
granular flows over the past decade, unsteady flows have been much less
discussed, despite their importance in geophysical processes. In this work,
we solve kinematics of a granular flow of constant thickness on an inclined
plane. We analytically derive velocity and stress fields for both accelerating
flows, when the slope angle θ is larger than the angle of repose θr (but still is
shallow enough to reach a steady state), or decelerating flows in the opposite
case. We compared the analytical derivation to 2D DEM simulations of flow
down inclines.
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Similarly to steady flows, we find that during acceleration/deccelration
friction resistance is an approximately linearly increasing function of shear
rate. For θ > θr the shear rate increases as the flow accelerates until the
resisting friction force balances the originally prevailing gravitational force.
At that moment the net force is zero, and the flow reaches steady state. The
velocity is found to increase towards the steady flow velocity profile v∞(y)
(consistent with the Bagnold scaling) approximately as

v(y, t) ≈ v∞(y)
(
1− e−t/T1

)
. [accelerating flow]

The transient time T1, which characterizes the duration of the acceleration, is
found (both analytically and in DEM simulations) to be controlled by gran-
ular layer thickness h, grain size d, slope angle θ, gravitational acceleration
g and rheological parameter β

T1 = 0.5
√

Φs
h3/2

βd
√
g cos θ

.

For θ < θr the flow decelerates. Deceleration is not a reverse time image
of acceleration, since it includes an extra deceleration rate −g cos θ(tan θr −
tan θ) that is not present during acceleration. As a result, the deceleration
stage is faster than that of acceleration for a given flow. During decelera-
tion, a first order approximation of the velocity, as it decays from the initial
velocity v0, is shown to be:

v(y, t) ≈ v0(y)e−t/T1 − g cos θ(tan θr − tan θ)t . [decelerating flow]

DEM simulations show that the first order approximations of the tran-
sient velocity fields provide a good fit except for a very initial stage when
fast decaying corrections are important. To solve the velocity field (and the
related shear rate and shear stress fields) more accurately, Eqs. (11)–(14) are
to be used.

Several insights are gained from the present theoretical analysis regarding
the transient time to reach steady flow:

1. The transient time increases with flow thickness as ∼ h3/2. This is
a weaker dependence compared to ∼ h2 found for Couette flow in a
simple shear cell [12].

2. The transient time depends inversely on β. This implies that the less
shear strengthening the flow is (i.e. smaller β), the longer it takes the
flow to reach steady state. For slopes exceeding θr the flow will never
reach steady-state if stress is independent of shear rate (i.e. if β = 0).
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3. It is possible to assess the transient times in natural systems, e.g. land-
slides: assuming θ = 35◦, d = 1 cm and Φs = 0.6, the time scales are
expected to be of the order of T1 = 0.7 s, 23 s, 720 s for flowing layers of
thickness of h = 0.1 m, 1 m, 10 m respectively. For this calculation we
used β = 0.6 from granular experiments with glass beads [1]. Clearly,
the transient time is sensitive to the thickness of the flow. For the 10 m
thick flow the transient time is several minutes, which exceeds duration
of flows on natural slopes. It is thus predicted that thick landslides do
not reach steady flow.

4. Acceleration and declaration are not symmetrical, acceleration to steady
flow takes longer than it takes to stop the same flow. In addition, the
geometry of acceleration and deceleration is not symmetrical: while
flow accelerates eventually through the depth of the layer, stopping
occurs from the bottom upwards, so that flow becomes confined to an
increasingly thinning layer near the top, while the bottom grains have
already stopped.

These results will hopefully prove useful for understanding and predicting
natural and industrial flows.
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APPENDIX: ORTHOGONALITY RELATIONS

Here we show that the functions

qn(y) = J2/3

(
κn

(y
h

)3/4
)
, n = 1, ..,∞ (A1)

form an orthogonal system relative to the scalar product (a, b) =
∫ h

0
ab
√
y dy.

This, in turn, allows us to derive Eq. (14).

The functions qn are solutions of Eq. (8)

d2
(√

y qn
)

dy2
= − 9κ2

n

16h3/2
qn , (A2)
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which satisfy the following boundary conditions, corresponding to the bound-
ary conditions (7a) and (7b),

lim
y→0

√
yqn(y) = 0 , (A3)

d
(√

yqn
)

dy
(h) = 0 .

In the following we evaluate the integral
∫ h

0

d2(√yqi)
dy2

qj
√
y dy in two ways.

First, we use Eq. (A2)∫ h

0

d2
(√

yqi
)

dy2
qj
√
y dy = − 9κ2

i

16h3/2

∫ h

0

qiqj
√
ydy . (A4)

Second, we apply a double integration by parts∫ h

0

d2
(√

yqi
)

dy2
qj
√
y dy =

∫ h

0

√
yqi

d2
(√

yqj
)

dy2
dy = −

9κ2
j

16h3/2

∫ h

0

qiqj
√
ydy ,

(A5)

where the surface terms vanish because of the boundary conditions Eq. (A3).

Since κi 6= κj for i 6= j, comparison of Eqs. (A4) and (A5) implies the
orthogonality of the functions qn∫ h

0

qiqj
√
ydy = δij

∫ h

0

q2
j

√
ydy , (A6)

where δij is the Kronecker delta.

Initial condition for shear rate

The solution for shear rate γ̇, Eq. (9), is a linear combination of qn functions
with weights bn that need to be determined from the initial condition

γ̇(y, t = 0) = −dv0

dy
, (A7)

corresponding to Eq. (7c).
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Multiplying Eq. (9) for t = 0 by bi
√
y and integrating over the range of

y ∈ (0, h) leads after some rearrangements to

bi =


−
∫ h

0

(√
ydv0/dy + b∗y

)
qidy√

h
∫ h

0
q2
i

√
ydy

θ > θr ,

−
∫ h

0

√
ydv0/dyqidy√

h
∫ h

0
q2
i

√
ydy

θ < θr .

(A8a)

(A8b)

where the sum was reduced to a single term thanks to Eq. (A6). The last
equation is identical to Eq. (14).
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Table 1. Parameters κn, Tn and bn used in the expansions in Eqs. (9) and
(11). ban and bdn given here correspond to the initial velocity v0 = 0 (for
a flow accelerating from the rest) and v0 = 2b∗(h3/2 − y3/2)/3 (for a flow
decelerating from steady state) respectively. While the absolute values of Tn
and bn depend on the system dimensions, material properties and inclination
angle, their relative values given below are universal.

n κn Tn/T1 ban/b
∗ bdn/b

∗

1 1.87 1 -1.30 1.30
2 4.99 0.14 0.30 -0.30
3 8.12 0.053 -0.14 0.14

y

θ
g

Figure 1. (color online). Geometry of the studied system depicted on a
snapshot form a DEM simulation. An infinite granular layer accelerates down
a slope inclined at an angle θ. The red envelope for the velocity vectors v(y, t)
denotes the velocity profile predicted by Eq. (11). The shades of the grains
indicate contact stress: the dark grains are most stressed.
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y
[m

]

Φs

Figure 2. Solid fraction profiles recorded in a simulation of a h = 96 d = 9.6 m
thick flow accelerating on a θ = 17 ◦ slope and decelerating on a flat plane
thereafter. The profiles were taken at times when the system starts flowing
(—), in the middle of the acceleration stage (· · · ), on reaching the steady flow
(− − −) and in the middle of the deceleration stage (− · ·−). The shown 2D
solid fraction of 0.80 can be mapped to 3D solid fraction of 0.54 [23].
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Figure 3. (a) Depth averaged shear and normal stresses evolution observed
in DEM simulation of the flow with h = 96d = 9.6 m and θ = 17 ◦. The normal
stress is multiplied by the steady state friction coefficient tan 17 ◦ = 0.31 to
match the steady state shear stress value. (b) Friction coefficient τ/N as
a function of inertial number I for the same system. Points are simulation
data at a series of time instants during the acceleration. The course of time
is indicated by the arrow. The solid line is a fit to Eq. (4), resulting in
tan θr = 0.26± 0.01 and β = 1.35± 0.08, where the uncertainty of the fit was
calculated based on the deviation among values for different y.
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Figure 4. (color online). Velocity profiles at various time instants during
(a) acceleration down a slope of θ = 17 ◦ and (b) deceleration on a flat plane
θ = 0 ◦. The times, at which profiles were recorded, increase with the line
thickness (from left to right in (a) and from right to left in (b)). The solid
lines are simulation results while the dashed lines are analytical predictions of
Eq. (11) for the granular flow with h = 96 d = 9.6 m and the angle of repose
θr = 14 ◦. In the case of the accelerating flow (a), the time T1 characterizes the
time required to reach the steady flow. The error bars indicate uncertainties
of velocity profiles associated with different initial configurations.
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Figure 5. (color online). Velocity evolution during (a) acceleration down a
slope of θ = 17 ◦ and (b) deceleration on a flat plane θ = 0 ◦. Each line is
velocity at a depth y = 0.3 m − 9.3 m , where the depth increases from the
upper line towards the lower line, inside the h = 96 d = 9.6 m thick flow.
The solid lines are simulation results while the dashed lines are analytical
predictions of Eq. (11). Note that deceleration (b) is not the reversed evolution
of acceleration (a). The error bars indicate uncertainties of velocity associated
with different initial configurations.
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Figure 6. Scaling of T1, the characteristic acceleration time scale, with flow
thickness h, average grain size d and inclination angle θ. Points are simulation
results for systems with h = 12 − 96 d, d = 0.1 m, θ = 17 ◦ (squares); h =
48, 70 or 96 d, d = 0.1 − 1 m, θ = 17 ◦ (circles); h = 48 d, d = 0.1 or 1 m,
θ = 18− 25 ◦ (triangles). The solid line is the analytical prediction, Eq. (13).
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