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Demystifying the asymptotic behavior of global
denoising

Antoine Houdard, Andrés Almansa and Julie Delon

Abstract—In this work, we revisit the global denoising frame-
work recently introduced by Talebi & Milanfar, with the classic
formalism of diagonal estimation. We analyze the asymptotic
behavior of its mean-squared error restoration performance
when the image size tends to infinity. We introduce precise
conditions both on the image and the global filter to ensure and
quantify this convergence. We also discuss open issues concerning
the most challenging aspect, namely the extension of these results
to the non-oracle case.

Index Terms—Diagonal Estimation, Global Denoising, Wiener
Filtering, Asymptotic study

I. INTRODUCTION

The story of image denoising, and more generally of image
restoration, is probably as old as the story of image processing.
If classic image denoising methods have always gathered
various mathematical tools, such as neighborhood filters [1],
variationnal models [2], non linear Partial Differential Equa-
tions [3] or transform domain estimation [4], the last true
revolution came with the introduction of patch-based methods
in 2004. At the time, trendy restoration approaches (total
variation or wavelet thresholding) were not able to provide
a satisfying trade off between texture preservation, flat areas
restoration, detail reconstruction, and apparition of oscillating
artifacts.

The idea behind patch-based approaches, also called non-
local approaches, was mostly to exploit the self-similarity in
images in order to significantly improve the performance of
image denoising algorithms. The first denoising algorithms
relying on this idea appear in 2004 with the successive
introduction of the Discrete Universal Denoiser for binary
images [5], [6], of the UINTA filters [7] and of the Non Local
Means [8]. Authors of these approaches propose to reduce the
noise variance, assumed additive and Gaussian, by averaging
repeated structures in images, the average being weighted by
the similarity between these structures. In practice, the success
of these approaches was partly due to the resistance of patches
to noise, and to the fact that they created less artifacts in
images than the best concurrent methods at the time. These
non local methods have inspired a considerable body of works
ever since, under the form of variants and improvments [9],
[10], extensions to other noise models [11], [12], or to more
complex inverse problems [13], [14], [15]. Several principles
underly the recent devlopments of these non local methods:
the Bayesian paradigm, which necessitates good prior distri-
butions on patches [16], [17], [18], [19], the use of sparse
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representations on well adapted dictionnaries [20], [21], and
very lately the reintroduction in this framework of transform-
domain approaches [22], [23], [24].

Leading methods nowadays are all patch-based. These ex-
tremely popular approaches have been adopted in a huge
range of applications. Their underlying assumption being that
similar patches can be seen as independent realizations of the
same distribution, the performance of a denoising algorithm
should increase when the number of realization increases.
Theoretically, this should lead to a form of asymptotic opti-
mality when the image size tends toward infinity. Consistency
results, under stationnarity hypotheses, have been shown for
instance for the DUDE algorithm [5], [6] and for the Non
Local Means [8]. Now, despite their non-local nature, most
of these algorithms limit the search area for similar patches
to a medium-sized nighborhood around each pixel. Doing
otherwise would confront them to a dilemma [25]. A larger
search size means potentially more similar patches, reducing
the variance of the denoising estimator. However increasing
the search area in natural images also tends to increase the
risk to consider dissimilar patches as similar, thus increasing
the bias of the denoising estimator. Most authors found the
best compromise in relatively small search areas. As a conse-
quence, increasing the image size does not necessarily improve
denoising performance. This observation was supported by
extensive experimentation by [26], who showed that even if
an infinite database of natural image examples was available,
non-local denoising performance would attain an asymptotic
performance that does not tend to infinite signal to noise
ratio. Non-local methods seemed to be doomed to fundamental
limits that could not be overcome.

In 2012, Talebi and Milanfar [27], [28] proposed a truly
global denoising approach where each pixel is used to denoise
every other pixel. They claimed in a subsequent paper [29] that
this approach is asymptotically optimal, in the sense that “the
mean-squared error monotonically decays with increasing
image size”, regardless of image content. In this context,
this paper raises again the question: can non-local denoising
methods be fixed in such a way that they attain infinite PSNR
when given an infinite number of examples (or an image of
infinite size) ? The debate is open by their algorithm that shows
that given an oracle, such an asymptotic performance seems
to be possible. However two questions are still left open:

1) What conditions has to satisfy an infinite natural image
for the asymptotic result to hold?

2) Do these conclusions extend to the non-oracle case?

This article tries to give a precise answer to the first question,
and some elements of response to the second one. To do so, we
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revisit the theory of diagonal estimation (refered to as Wiener
filtering in Talebi’s paper) that was first developed for wavelet
bases, and reused in the context of non-local filters by Talebi
and Milanfar.

The paper is organized as follows. In Section II we provide
a short reminder on the theory of diagonal estimation in an
orthonormal basis. Section III uses this framework to present
the global denoising formalism and to put it into perspective
relatively to classic diagonal estimation results. The main
contribution of this paper is a novel asymptotic study of global
denoising, presented in Section IV. Basically, we introduce
precise conditions both on the image and the global filter to
ensure that the mean-squared error (MSE) for global image
denoising decays toward 0 for increasing image size. We
also discuss and show experiments on several open issues,
including the extension of these results to the non-oracle case.

II. DIAGONAL ESTIMATION : A SHORT REMINDER

A. Principle

a) Notations.: In this paper we will always consider
images as vectors of RN , where N is the number of pixels.
We consider the following image formation model

ũ = u + ε, (1)

where u is a deterministic unknown image and ũ is the
observed image which differs from u by a Gaussian white
noise ε. Put another way, ε is the realization of a random vector
E ∼ N (0, σ2IN ). Observe that this noise model is widely used
since the Anscombe transform permits to transform the more
realistic Poisson noise in a nearly Gaussian noise with fixed
variance.

b) Diagonal estimation.: Consider the inverse problem
of recovering u from the observation ũ. In signal and image
processing, to solve this estimation problem, it is very common
to resort to so-called diagonal estimators. A diagonal estimator
û = W ũ is a non linear estimator of u that is diagonal in a
given orthonormal basis V = {Vi}i=1,...,N , which means that
it can be written

û = W ũ = V ΛV T ũ =

N∑
k=1

λk · 〈ũ, Vk〉 · Vk, (2)

where Λ is a diagonal matrix whose kth coefficient λk depends
on the observation ũ (otherwise, the resulting estimator would
be linear).

The diagonal estimation framework is widely used in image
processing: the basis V is often chosen as a Fourier or a
wavelet basis [30], [31], [4], or can for instance be built up
as an orthonormal dictionnary from the image itself [32]. The
success of these methods stems partly from the fact that if the
image u is sparse in the orthonormal basis V , these “diagonal
estimators are nearly optimal among all non linear estimators”,
as stated in [4].

B. Quadratic risk

The mean quadratic risk or mean squared error (MSE) of
a diagonal estimator can be easily derived. Let us denote by

b the projection of the unknown image u in the orthogonal
basis V , that is b = V Tu. The MSE between u and û can be
written as a function of the eigenvalues (λi) and the projection
b, as a sum of a variance and bias terms.

Proposition 1. Let û = V ΛV T ũ, with V ΛV T a deterministic
filter. Then,

MSE(û|u) =
1

N

N∑
j=1

(
(1− λj)2b2

j + σ2λ2j
)
. (3)

Proposition 1.

N ·MSE(û|u)
def
= E(‖û− u‖2)

= E(‖V ΛT ũ− V ΛV Tu‖2)︸ ︷︷ ︸
variance term

+ E(‖V ΛV Tu− u‖2)︸ ︷︷ ︸
bias term

= E(‖V ΛV T ε‖2) + E(‖(Λ− IN )V Tu‖2)

= (

N∑
i=1

λ2i )σ
2 +

N∑
i=1

(λi − 1)2 E[(V Tu)2i ].

Observe that the last equality holds only because the filter
W = V ΛV T is considered deterministic and does not depend
on the noise ε.

C. Oracle quadratic risk minimization

a) Minimization of the MSE w.r.t. the {λi}’s .: For a
fixed orthonormal basis V , the previous MSE is a convex
function of the eigenvalues λi, and reaches is global minimum
for

λ?i =
b2i

σ2 + b2i
. (4)

The corresponding minimal value of the MSE is

MSE? := MSE(λ?) =
σ2

N

N∑
j=1

λ?j =
σ2

N

N∑
j=1

b2i
σ2 + b2i

.

This formula shares similarities with Wiener filters, with the
difference that the coordinates {bi} are not expected values
but actually depends on the oracle image u. This image being
unknown, this oracle MSE cannot be attained in practice
but only represents a lower bound for the quadratic risk of
diagonal estimators in the basis V , even if it can be shown that
some well chosen thresholding estimators have a risk which
is not too far from the oracle one [4].

b) Minimization w.r.t. the {bi}’s.: The previous oracle
diagonal estimation is done in a given basis V , which could
for instance be chosen as a Discrete Cosine Transform basis
or a Wavelet basis. Obviously, the final estimation strongly
depends on this choice, and one might wonder in practice how
to optimize the selection of the basis V for a given image u.
The quantity MSE? depends only on b = V Tu, the projection
of the oracle image u on the basis V . The matrix V T being
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orthonormal, the quantity MSE? has to be minized under the
constraint ‖b‖2 = ‖u‖2.

Proposition 2. Minimizing b 7→ MSE?(b) under the con-
straint ‖b‖2 = ‖u‖2 provides the following 2N global
minimums

b? = ±‖u‖2ei

where ei is the i-th vector or RN basis.

The previous Proposition means that an optimal basis V?
should be such that V T? u = ‖u‖2ei, for a given i in
{1, . . . , N}. It follows that V? should be composed of the
vector u

‖u‖2 and simply completed in an orthonormal basis.
The resulting oracle filter would be

(W?)ij = ui
uj
‖u‖22

.

Again, even if this filter is not reachable since it depends on the
unknown oracle u, this results strongly support the intuitive
idea that ideal bases should provide a sparse representation
of u. In practice, diagonal estimation should be applied in a
well-adapted basis for each image, typically a basis V that
provides a fast decreasing of the {bj}. The principle of global
filtering [27], described in Section III, is to rely on classic non
linear filters from the denoising literature to choose V .

D. Non-oracle case

The oracle u and its projection b = V Tu being unavailable,
we need a way to approximate the previous estimation from
the knowledge of b̃ = V T ũ. A classic solution is to consider
thresholding estimators in a given orthonormal basis V , in
order to discard unrelevant components. For instance, hard
thresholding is implemented as

∀j ∈ {1, . . . , N}, λTj
def
=

{
1 if |̃bj | > T

0 if |̃bj | < T,
(5)

and the corresponding estimator can be written

û =
∑

1≤k≤N ; 〈ũ,Vk〉≥T

〈ũ, Vk〉 · Vk. (6)

As illustrated by Figure 1, the result of hard thresholding even
for a good choice of T is far from being as satisfying as
the oracle estimation (4), at least on a Discrete Cosine Basis.
However, for a well chosen value of T , the mean squared error
obtained with hard thresholding can still be controlled by the
one of the oracle attenuation (4).

Theorem 1 (Donoho-Johnstone [30]). Let T = σ
√

2 lnN .
The MSE provided by the thresholded eigenvalues λT satisfies
for N ≥ 4

MSE(λT ) 6 (2 lnN + 1)

(
σ2

N
+ 2 MSE(λ?)

)
.

This theorem helps to predict what kind of images can be
well denoised by hard thresholding in a given basis. For a DCT
basis for instance, we can expect a lower oracle MSE(λ?)
for smoother images, and the same property should hold for
thresholding. This is illustrated by Figure 1, which shows two

(a)

(b)

MSE = 225 MSE = 225

(c)

MSE = 167 MSE = 90

(d)

MSE = 56 MSE = 34

Figure 1. (a) Original images u, (b) Noisy images ũ with σ = 15, (c) Images
ũ denoised by hard-thresholding in a DCT basis, (d) Images ũ denoised by
diagonal estimation with the oracle λ∗i in a DCT basis.

noisy images and their respective denoised versions by oracle
attenuation and hard thresholding. For the same quantity of
noise, the second image has a better oracle result (d) than
the first one, and this is also true for the hard thresholding
result (c). We can also conclude that a basis V nearly optimal
for the oracle should also be a good choice for thresholding
estimation. Observe that the threshold T = σ

√
2 lnN is not

really optimal in practice. A good way to fix T is to resort to
the SURE estimator of the MSE [4].

III. GLOBAL FILTERING

In 2014, Talebi and Milanfar [27], [28] introduce a for-
malism called global denoising, which draws on the concept
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of diagonal estimation in order to improve current denoising
filters. As described in the previous section, a well chosen
basis should provide a sparse representation of u and a general
basis obviously cannot fit well for all natural images. The
idea of global denoising is to build V as an orthonormal basis
that diagonalizes a classic non linear denoising filter (such as
NLmeans [8]) computed on ũ. If the chosen denoising filter
is efficient, it is hoped that the coefficients bj will decrease
relatively quickly and that the diagonal estimate will be all the
more efficient.

A. Principle of global denoising.

Assuming the same image formation model (1), numerous
classic denoising filters, such as Gaussian or bilateral filters
as well as NL-means [8] type filters, can be written under the
form

û = W ũ, (7)

where W = D−1K, with K a positive definite kernel and D a
diagonal matrix with entries Dii =

∑
j Kij , i ∈ {1, . . . , N}.

Starting from a given denoising filter W , the idea of global
denoising, made popular by Milanfar in [33], [34], is to modify
this filter W , in order to decrease the mean square error
between û and u. For instance, if we assume that W can be
diagonalized in an orthonormal basis V (this can be ensured
by symmetrizing it, as described in the next section), the oracle
attenuation (4) of the eigenvalues can be applied to improve
the filter.

B. Symmetrizing the filter W

To ensure the fact that W can be diagonalized, the authors
of [27] propose to replace this filter by a doubly stochastic
version W s of W which minimizes the cross-entropy∑

i,j

W s
ij log

W s
ij

Wij
. (8)

In practice, this minimization problem can be solved numeri-
cally with the Sinkhorn algorithm, which consists in iteratively
normalizing the rows and the columns of W until convergence.
Starting from a positive definite kernel K, it can be shown
that the resulting filter W s is positive definite, symmetric and
doubly stochastic, and that its eigenvalues are very close to
those of W [33]. In practice, the denoising results obtained
with this symmetrized filter appear to be equivalent or slightly
better than the ones obtained with W [33], [35]. In the
following, we always consider the filter W in its symmetric
and doubly stochastic version.

C. Deterministic filter

The mean-squared error formulation (3) is valid only if
the filter W = V ΛV T is deterministic. This assumption
is sensible when V is fixed, as a DCT or wavelet basis
for instance. However when the filter W comes from the
noisy image ũ, this hypothesis does not hold. To test this
claim, we compare, for different choices of the filter W ,

the theoretical MSEtheo computed by formula (3) with the
experimental mean-squared error

MSEeval =
1

N

N∑
j=1

|uj −W ũj |2.

Figure 2 shows the relative error
|MSEeval−MSEtheo |

MSEtheo
for the

following filters W , computed on three different images:
1) a Non-Local Means filter [8] computed on the original

image u (called NLM oracle);
2) a Non-Local Means filter computed on the noisy image

ũ (called NLM);
3) a Non-Local Means filter computed on a version of ũ

already denoised by NL means (called pre-filtered NLM);
The first filter is independent from the noise present in ũ, so
the relative error is very small. On the contrary, the NL-means
filter computed directly on the noisy image strongly depends
on the noise realization, and the relative error between the
theoretical and experimental MSE remains above 10% for all
three images. Finally, observe that the mere fact to prefilter the
image on which the NL-means kernel is computed permits to
decouple the filter W from the noise, at least enough for the
theoretical MSEtheo to be a good predictor of MSEeval.

(a) (b) (c)

images (a) (b) (c)

NLM 34.2 % (± 3.0) 24.6 % (± 1.9) 11.2 % (± 0.9)
O-NLM 6.6 % (± 3.0) 0.3 % (± 1.9) 0.4 % (± 0.9)
P-NLM 6.8 % (± 1.7) 2.7 % (± 0.3) 1.0 % (± 0.3)

Figure 2. Relative error
|MSEeval−MSEtheo |

MSEtheo
between the theoretical MSE

provided by formula (3) and the experimental MSE, for three images and three
different filters W (NL-Means computed on the u, NL-Means computed on
the ũ, NL-Means computed on a prefiltered version of ũ. The mean and
standard deviation have been computed on 5 different realisations of noise
with σ = 15 for each image.

D. Discussion

By producing a basis V that is well-adapted to the image
we want to denoise, global image denoising usually produces
better results than a diagonal estimation on a DCT or wavelet
basis. However, global denoising still suffers from two major
issues:
• first, the oracle u is needed in practice to compute the

vector b and optimize the eigenvalues;
• second, memory cost and computation time are un-

tractable because of the eigendecomposition of the filter
W of size N ×N .
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In order to bypass the first issue, we saw in section II-D that
hard or soft thresholding could provide MSE results controlled
by the optimal MSE∗. Another possibility would be to try
multiple sets of eigenvalues and keep the ones minimizing a
SURE estimator of the MSE. This is the solution proposed by
the GLIDE algorithm [28]. The second issue can be solved by
computing only a small percentage of eigenvectors. In GLIDE,
Talebi and Milanfar make use of the Nyström extension in
order to approximate the filter W and its first eigenvalues.

IV. ASYMPTOTIC STUDY

In this part, we study the asymptotic behavior of the MSE
given by formula (3) when the image size increases. In [29],
the authors claim that global denoising is asymptotically
optimal. In order to explore the precise conditions of this
convergence, we define in Section IV-B a reasonable model
for an image whose size grows to infinity. We also assume
a parametric model for the decay of the coefficients bj , and
we derive in Section IV-C different conditions of convergence
for the MSE and its corresponding decay rate. Finally, in
Section IV-D2, we discuss and illustrate these different results
and the realism of these models for different choices of images
and filters W .

In the following, we always consider that the filter W is
independent from the noise ε.

A. Upper bound on the optimal MSE

We have seen in Section II that the oracle risk for diagonal
estimation was given by

MSE? =
σ2

N

N∑
j=1

b2j
σ2 + b2j

,

with b = V Tu the projection of the oracle image u in the
eigenbasis V . Now, this MSE can be upper bounded by the
l1-norm of b divided by N :

MSE? =
σ2

N

N∑
j=1

b2j
σ2 + b2j

6
σ2

N

N∑
j=1

b2j
2σ|bj |

=
σ

2N
‖b‖1. (9)

The authors of [29] suggest that this upper bound might
converge towards 0 when N grows to infinity. In order to
prove this convergence, they assume that the coefficients bj
drop off at a given rate α > 0

|bj | 6
C

jα
.

For a fixed image size, this hypothesis seems quite reasonable
for different existing filters, as illustrated by Figure 3. When
working with Fourier or space-frequency decompositions, the
value of α was shown to be related to the regularity of the
image [4], and values of α between 0.5 and 1 were shown
to be in agreement to actual image data [36]. Such models

Figure 3. Decay rate of the coefficients bj for the image on the left, in a
loglog scale graph. In blue: coefficients in a DCT basis. In red: coefficients
in the eigenbasis of the oracle NLM filter.

have also been correctly used in asymptotic studies where the
image resolution tends to infinity, but here we are interested
in the asymptotic behaviour when image size grows to infinity
at constant resolution. In this particular kind of asymptotic
study, we cannot expect the rate α and the constant C to
remain constant when the image size grows towards infinity.
Put another way, there is no reason that we can bound the bj
coefficients independently of the image size N . To illustrate
this claim, we show in Figure 4 the behavior of the largest 1

bNj (in magnitude) computed with a DCT basis for images
of increasing size N . This largest coefficient clearly increases
with N . In the following Section, we propose a model for
an image whose size grows to infinity and a more complete
parametric model for the decay of the coefficients bNj .

Figure 4. Behaviour of maxj(|bNj |) with increasing size N for three different
images in loglog scale. Here bN is the image u projected in the DCT basis.

B. Proposed models
a) Infinite image model.: Consider an image of infinite

size
U : Z2 → {m, . . . ,M}

1 From now on, we will write bNj instead of bj to remember that the
behavior of these coefficients strongly depend on the image size N .
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taking values in a discrete set of gray levels {m, . . . ,M} ⊆ N.
For typical 8 bit images m = 0 and M = 255.

From this image we construct an infinite sequence of images
of growing size N

uN
def
=
(
Uϕ(1), . . . , Uϕ(N)

)
by truncating the infinite image to size N , for all N ∈ N.
The function ϕ : N+ → Z2 sweeps the plane in spiral starting
from the origin.

Since the image gray level values are bounded, the L2-norm
of uN satisfies the following inequality

m
√
N 6 ‖uN‖2 6M

√
N,

which means that the energy of the growing image increases
at most like O(

√
N). This information on the L2-norm of

uN is important because it constrains the behavior of bN as
‖bN‖2 = ‖uN‖2.

Because generally the lowest value m is zero, the energy
of the image may not grow as fast as

√
N . However we show

that this case only occurs with images becoming sparse with
increasing size. Indeed, let us assume that ‖uN‖2 = o(

√
N).

Because U is taking values in a discrete finite set, by setting
c = min {Ui 6= 0, i ∈ N} we have

c
#{uNi 6= 0}

N
6
‖uN‖22
N

−→
N→∞

0.

This shows that the ratio of non-zero pixels collapses when
the image size goes to infinity.

This leads us to define the non sparse infinite image model
as follows.

Hypothesis 1 (Non sparse infinite image model). Let U be an
infinite image and denote uN its truncation of size N . Then
U is said to be non sparse if there exists m,M > 0 such that

m
√
N 6 ‖uN‖2 6M

√
N. (10)

b) Domination decay model.: Now consider a sequence
of orthogonal bases V N (the eigenbases of symmetric filtering
operators WN ). Recall that we denote by bN = V NuN

the projection of the image of size N on the corresponding
eigenbasis. We need a realistic model on the asymptotic
behaviour of bNj when N, j go to infinity. In this part we
design an upper bound for |bNj | which is both

• simple and easy to manipulate to prove convergence
results

• adapted to the data, in the sense it has the same shape as
the |bNj |

In order to model it we use experimental results we obtained
using the DCT basis for V . That is to say bN being the discrete
cosine transform of u. From Figure 3 we notice that for a
fixed N , the coefficients bj are decaying at some rate 1

jα with
α > 0. This is coherent with the model proposed in [28] on
the decay rate of the bj , namely

|bj | 6
C

jα
,

with α > 0. To reintroduce the parameter N into this model,
we should consider that the constants C and α are depending
on N , so we start with a model of the form

|bNj | 6
CN
jαN

,

and we discuss how to simplify it based on information given
by numerical experiments.

We start with the worst scenario, when the image u is
composed of white noise. In this case, because the DCT is
an isometry, b is also white noise, and the decay rate of
the |bj | is very close to zero (see Figure 6). With increasing
N , this decay rate should decrease towards zero. For a given
natural image, presenting auto-similarity properties, we expect
this decay rate to be faster than the white noise case. More
precisely, if α = minN (αN ), we can assume that α 6= 0 and
conservatively choose this slowest convergence rate to avoid
the dependence of α on the image size N .

Still, we need to define how the “constant” CN grows with
the image size N . Figure 4 shows that the maximum of

(
|bNj |

)
j

is increasing linearly with N in loglog scale. That leads us to
consider Nγ as a model for CN . Finally, we consider the
following decay model for bN :

Hypothesis 2 (Domination decay model). Let U be an infinite
image and denote by uN its truncation of size N . Let V =
(V N )N be a family of orthogonal bases of increasing size.
Then the pair (U,V) is said to fit the domination decay model
with parameters C, α and γ > 0 if for all N, j ∈ N

|bNj | 6 C
Nγ

jα
. (11)

where bN = V NuN is the projection of uN on the basis V N .

In the next section, we study the convergence of the upper-
bound of the MSE under this hypothesis.

C. Conditions of convergence

In Section II we showed that the optimal diagonal estimator
on a given basis V N could be bounded in terms of the `1-norm
of the coefficients bN in that basis. In the following, we show
that under Hypotheses 1 and 2, this `1 norm can in turn be
upper-bounded by a decreasing function of N ,

MSE(λ?) 6
σ2

N
‖b‖1 6 C ′

1

Nr
, (9)

thus ensuring convergence of the optimal MSE at a rate r that
depends on the parameters α and γ of the decay model. When
this rate is positive then we can use this second upper bound
to prove the asymptotic optimality of diagonal estimation on
that basis.

Theorem 2 (Asymptotic optimality). Consider

• an infinite natural image U that satisfies Hypothesis 1
(i.e. non-sparsity) and

• a sequence of orthogonal bases V such that the pair
(U,V) satisfies Hypothesis 2 (i.e. (C,α, γ) decay rate
of the image projection on that basis).
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Figure 5. Illustration of the domain of compatibility and the domain of
convergence provided by the two lemmas 1 and 2. The intersection in red
represent the set of parameters that provides the result in Theorem 2.

If the decay rate is fast enough, i.e. if

1

2
6 γ < 1 and α > γ,

then the denoising provided by oracle optimization of diagonal
estimation on that basis is asymptotically optimal meaning
that the MSE tends to 0 when the image size N goes to infinity.

The proof of this result is the combination of the two
following Lemmas. The first one shows that the hypothesis on
image energy (10) constrains the parameters α and γ of the
domination criterion and the second one further restricts the
values of these parameters to ensure convergence of the upper-
bound of the MSE. Figure 5 illustrates the results provided
by Lemma 1 and lemma 2 on the parameters α and γ.
The resulting parameters for Theorem 2 are given by the
intersection of the two domains.

Lemma 1 (Compatibility with image model). Assume that U
satifies Hypothesis 1. If the projection of U on V satisfies the
decay model of Hypothesis 2 with parameters (C,α, γ), then
either

γ >
1

2
and α ≥ 1

2
or

γ > α and α <
1

2
.

This lemma emphasizes the fact that we actually cannot
bound the |bNj | independently of N as long as we have images
that are not loosing energy with increasing size. The only way
to obtain γ = 0 (a bound independent of N ) is to impose
α = 0 which leads to the pathological case b ∝ (1, . . . , 1).

Proof of Lemma 1. Because ‖bN‖2 = ‖uN‖2, the model (10)
on the image energy gives

m2N 6 ‖bN‖22 6M2N.

Applying the decay criterion |bNj | 6 C
Nγ

jα
in the previous

equation yields

m2N 6 C2N2γ
N∑
j=1

1

j2α
.

The behavior when N goes to infinity of the sum in the right
term differs depending on α:
• if α < 1

2 the sum diverges and there exists a constant C ′

such that
N∑
j=1

1

j2α
∼

N→∞
C ′N1−2α

• if α = 1
2 the sum diverges and there exists a constant C ′

such that
N∑
j=1

1

j2α
∼

N→∞
C ′ lnN

• if α > 1
2 the sum converges to a constant C ′ ∈ R

The first case leads to m2 = O
(
N2γ−2α) and so α 6 γ.

The second and the third cases lead to m2 = O
(
N2γ−1 lnN

)
and m2 = O

(
N2γ−1) respectively and so γ >

1

2

Lemma 2 (condition of convergence). Considering the model
(11) we have convergence to zero of the bound (9) only if

α > 1 and γ < 1
or

α < 1 and α > γ

This lemma shows that the convergence can actually occur
with all α > 0 as long as γ is not too large. We also notice
that the model proposed in [28] in C

jα satisfies the convergence
hypothesis. However, we saw with the previous lemma that
this model is not compatible with Hypothesis 1 since it would
require the energy of the infinite image to be concentrated on
a finite support.

Proof of Lemma 2. We have |bNj | 6 C
Nγ

jα
so

σ2

N
‖b‖1 6

Cσ2

N

N∑
j=1

Nγ

jα
= CσNγ−1

N∑
j=1

1

jα
.

The behavior when N goes to infinity of the sum in the
right term differs depending on α:
• if α < 1 the sum diverge and there exists a constant C ′

such that
N∑
j=1

1

jα
∼

N→∞
C ′N1−α.

• if α = 1 the sum diverges and there exists a constant C ′

such that
N∑
j=1

1

jα
∼

N→∞
C ′ lnN.

• if α > 1 the sum converges to a constant C ′ ∈ R.
The first case leads to

σ2

N
‖b‖1 = O

(
Nγ−α) .
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The second and the third cases lead to
σ2

N
‖b‖1 = O

(
Nγ−1 lnN

)
,

and
σ2

N
‖b‖1 = O

(
Nγ−1) .

The proof of Lemma 2 also provides a decay rate that we
summarize in the following corollary.

Corollary 1 (Decay rate). Under conditions of convergence in
Theorem 2, that is 1

2 6 γ < 1 and α > γ the MSE of optimal
diagonal oracle estimation satisfies

MSE(λ?) =
N→∞

O
(

1

Nr

)
with r ∈]0, 12 ] defined by
• r = α− γ when γ < α < 1
• r = 1− γ when α > 1

The particular case α = 1 yields convergence in O
(

logN
N1−γ

)
.

This result shows that the decay is always slower than 1√
N

and it can be really slow when r is close to zero. Thus, even
though we can have an asymptotic optimal filtering, the decay
rate can be so small that we cannot actually see it even if we
work with huge images. Moreover, this asymptotic study is
performed on the oracle diagonal filter. This result is by itself
essentially theoretical. However, in combination with Donoho-
Johnstone Theorem 1, we can further use this result to prove
the asymptotic optimality of non-oracle filtering.

Corollary 2 (Decay rate of thresholding). Assume that the
convergence conditions of Theorem 2 are satisfied. From the
Donoho-Jonhstone Theorem 1, the MSE obtained by thresh-
olding the coefficients bNj satisfies

MSE(λT ) =
N→∞

O
(

logN

Nr

)
with r ∈]0, 12 ] defined as in Corollary 1. The particular case

α = 1 yields convergence in O
(

(logN)2

N1−γ

)
.

D. Experiments

In the previous section we introduced a decay model for the
bNj coefficients of natural image sequences decomposed on the
orthonormal basis given by a symmetric filtering algorithm.

We gave precise conditions on the (γ, α) parameters of
this decay model. These conditions may be used to determine
whether optimal diagonal estimation on this basis can yield
asymptotically optimal denoising performance when applied
to a certain family of image sequences.

In practice, answering this question requires us to estimate
these coefficients from a particular filter/basis based on a
truncated image sequence.

The next Section IV-D1 explains how these model param-
eters are estimated from real data. Then in Section IV-D2
we analyze the asymptotic performance of several denoising
algorithms based on the estimated parameters.

1) Estimating model parameters (C, γ, α) : Theorem 2
gave us a sufficient condition for asymptotic optimality of a
filter on an image sequence. This condition is based on the
assumption that the |bNj | coefficients follow a particular model
namely:

|bNj | ≈ C
Nγ

jα
. (12)

Observing different curves j 7→ |bNj | for various images and
sizes N in loglog scale (see the first column of Figure 8 for an
example), we notice that the model (12) holds except for the
first few largest coefficients and for a significant proportion
of the smallest coefficients. This behaviour can be expected,
since we sorted the coefficients. It appears even when the |bNj |
coefficients are only white noise (as illustrated in Figure 6).
Thus we exclude the values of j < d = 5 and j > Np (for
p = 0.6) from the bilinear regression that allows to fit the
values of C, α and γ to the |bNj | coefficients.

Figure 6. Decay of the coefficients |bj | for white noise in the DCT basis
(red) in loglog scale. The slope of the bound is αm ≈ 0.05 (blue).

Put another way we find α, γ and C that minimize

‖ log(|bNj |)− (γ log(N)− α log(j) + log(C)) ‖,

with N from Nmin to Nmax and j from d to bNpc.
2) Experimental results & concluding remarks: Table I

shows the estimated model parameters for the 4 test images
in Figure 7 and for 4 orthonormal bases, namely:
DCT: The DCT basis which diagonalizes convolution filters;
Wavelet: The orthogonal Haar basis, implemented via the

discrete wavelet transform;
Oracle NLM: The orthogonal basis which diagonalizes the

oracle (symmetrized) non-local means filter, i.e. with
patch distances computed on the oracle clean image;

Prefiltered NLM: The orthogonal basis which diagonalizes
the (symmetrized) second iteration of a non-local means

bricks simpson bridge tank

Figure 7. The four images used for the experiments. The image size is 160×
160 and for experiments we took sub-images of increasing size 64 × 64,
96× 96, 128× 128 and 160× 160 from left-top corner.
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Table I
FITTED PARAMETERS α AND γ FOR THE DIFFERENT IMAGES OF FIGURE 7

IN DIFFERENT BASES. THE PARAMETER r IS THE DECAY RATE OF
COROLLARY 1.

image basis fitted α fitted γ r

bricks

DCT 0.699 0.606 0.094
Wavelet 0.587 0.632 -
O-NLM 0.756 0.500 0.256
P-NLM 0.624 0.500 0.124

simpson

DCT 0.777 1.040 -
Wavelet 0.811 1.020 -
O-NLM 0.825 0.788 0.037
P-NLM 0.568 0.663 -

bridge

DCT 0.640 0.583 0.057
Wavelet 0.713 0.656 0.057
O-NLM 0.759 0.500 0.259
P-NLM 0.651 0.501 0.150

tank

DCT 0.599 0.578 0.021
Wavelet 0.609 0.593 0.016
O-NLM 0.725 0.500 0.225
P-NLM 0.544 0.500 0.044

filter, i.e. with patch distances computed on the NLM-
filtered noisy image, as explained in Section III-C.

In all cases the oracle NLM basis satisfies the conditions
of Theorem 2 and provides the fastest asymptotic convergence
rate (near r = 0.25 except for the cartoon-like simpson image).
On the other hand the DCT and wavelet bases sometimes do
not satisfy the conditions of Theorem 2, and when they do, the
asymptotic convergence rate is extremely slow (always smaller
than r = 0.1).

This means that if the oracle NLM basis was known for
an arbitrarily large noisy image, then we could use hard
thresholding as in Corollary 2 to obtain a denoised image
with arbitrarily small MSE. Of course the same conclusion was
known (since Donoho-Johnstone) for the non-adaptive wavelet
and dct bases, but convergence does not hold for all natural
images, and when it does it may be too slow for the procedure
to be practical. For oracle NLM asymptotic convergence seems
to be faster with respect to image size but we are confronted
to two difficulties:

1) the oracle is in principle unknown; and
2) diagonalizing an NLM filter is extremely expensive com-

putationally (O(N3) with respect to the number N of
pixels).

In order to address the first difficulty we included in our
tests the asymptotic performance of the prefiltered NLM.
Directly computing the NLM filter on the noisy image is not
acceptable as explained in Section III-C. However applying it
to a NLM filtered version of the image helps both (a) satisfy
the requirement of independence of the filter and noise, and
(b) make the filter closer to the oracle one. As shown in
Table I, the asymptotic convergence rate we estimated for the
prefiltered NLM basis is much better than that of the dct or
wavelet bases, but still lags behind that of the oracle NLM
basis.

However all these model estimates should be taken with a
grain of salt, for several reasons:

• The cubic computational cost of exactly computing the
eigenbasis of the NLM filters obliged us to limit our
evaluation to relatively small image sizes.

• Model (12) can not always be perfectly fit by all images
and bases, particularly not by the prefiltered NLM basis
as shown in the first column of Figure 8 and in Figure 10.

• Model (12) only gives a coarse upper bound for the actual
MSE∗. The second column in Figure 8 shows that even
though this upper bound is relatively coarse, the actual
MSE∗ does follow the same kind of decay with N
as the upper bound. Nevertheless, when comparing the
actual MSE∗ of all four bases (Figure 9) we observe that
the real performance of the prefiltered NLM is actually
comparable to that of DCT or wavelet bases; even though
the convergence rate r estimated on this model (0.15 for
prefiltered NLM vs 0.06 for DCT and 0.26 for oracle
NLM) seemed to indicate that the prefiltered NLM was
much superior to DCT and rather close to the oracle NLM
performance.

Clearly more experiments on larger images are required to
confirm or infirm the conclusions of this initial experimental
study. Doing so will require the use of more sophisticated and
numerically efficient ways to compute the eigenbasis of the
NLM filter on medium to large-size images. This could be
achieved by means of randomized numerical linear algebra
[37], but such techniques do assume a low rank structure of
the filtering matrix, so they cannot be used to estimate the full
spectrum of eigenvalues of W . Rather they should be used in
conjunction with incremental schemes like in [38]. This shall
be the subject of further research.

V. CONCLUSION

In this paper, we analyzed the following question:
Can an image denoising algorithm attain asymptoti-
cally zero estimation error when the image size tends
to infinity?

This question was recently raised in [28], [27] in the context
of oracle-optimized non-local filtering schemes. That work
suggests a positive answer but their reasoning is based on con-
ditions on the infinite image that we show incompatible with
reasonable assumptions. We refine these conditions to better
account for natural images, and provide a more general theory
of optimal asymptotic denoising performance. In particular our
theory explores how to avoid the use of an oracle, it does not
restrict itself to global image denoising, and establishes links
to the older diagonal estimation theory, as well as with the
optimality results of Donoho and Johnstone [31].

Our generalized theory provides less optimistic conclusions
than those in [28] but still leaves the door open for asymptot-
ically zero denoising error. Our experimental study on small
images seems to indicate that the oracle non-local means filter
can be optimized to attain asymptotically zero error, and that a
non-oracle version of that filter may have a similar behaviour,
even though at a much slower convergence rate and on a
more restricted number of examples. Clearly, more extensive
experimentation on a wider variety of larger-sized images is
required to determine whether these conclusions may have any
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Figure 8. Left column: the decay of the |bNj | (red) and the result of the model fitting (blue) for the bridge image for the different bases (from top to bottom)
DCT, Wavelet, O-NLM and P-NLM. Right column: the decay of the theoretical MSE? (orange), the upper bound of the theoretical MSE (blue) and the decay
provided by the fitting curve (yellow).
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Figure 9. Comparison of the theoretical MSE? from the right column of
the figure 8 on the image bridge for the different bases.

Figure 10. Comparison of the decay of the |bNj | for the different bases on
image bridge.

practical interest. However, performing such an experimental
evaluation requires huge amounts of computation, and can
only be addressed if faster and more incremental matrix
decomposition algorithms are developed.
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