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Abstract In this work, we revisit the global denois-

ing framework recently introduced by Talebi & Milan-

far. We analyze the asymptotic behavior of its mean-

squared error restoration performance in the oracle case

when the image size tends to infinity. We introduce pre-

cise conditions both on the image and the global filter

to ensure and quantify this convergence. We also make

a clear distinction between two different levels of ora-

cle that are used in that framework. By reformulating

global denoising with the classical formalism of diago-

nal estimation, we conclude that the second-level oracle

can be avoided by using Donoho and Johnstone’s theo-

rem, whereas the first-level oracle is mostly required in

the sequel. We also discuss open issues concerning the

most challenging aspect, namely the extension of these

results to the case where neither oracle is required.
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1 Introduction

Image denoising usually amounts to estimate an image

u from the observation

ũ = u + ε, (1)

where ε is an additive noise. Classically, ε is assumed

to be the realization of a random vector following a

Gaussian distribution N (0, σ2IN ). This noise model is

widely used since the Anscombe transform permits to

transform the more realistic Poisson noise in a nearly

Gaussian noise with fixed variance.

The story of image denoising, and more generally

of image restoration, is probably as old as the story of

image processing. If classical image denoising methods

have always gathered various mathematical tools, such
as neighborhood filters [27], variational models [22],

non linear Partial Differential Equations [12] or trans-

form domain estimation [16], the last true revolution

came with the introduction of patch-based methods in

2004 [2,5]. At the time, trendy restoration approaches

(total variation or wavelet thresholding) were not able

to provide a satisfying trade off between texture preser-

vation, flat areas restoration, detail reconstruction, and

apparition of oscillating artifacts. By exploiting the self-

similarity in images, patch-based approaches permitted

to significantly improve the performance of image de-

noising algorithms in this regard.

Leading methods nowadays are all patch-based [7,

14,28,21]. These extremely popular approaches have

been adopted in a huge range of applications. Their un-

derlying assumption being that similar patches can be

seen as independent realizations of the same distribu-

tion, the performance of a denoising algorithm should

increase when the number of realization increases. The-

oretically, this should lead to a form of asymptotic opti-
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mality when the image size tends toward infinity. Con-

sistency results, under stationnarity hypotheses, have

been shown for instance for the DUDE algorithm [19,

26] and for the Non Local Means [5]. Now, despite their

non-local nature, most of these algorithms limit the

search area for similar patches to a medium-sized neigh-

borhood around each pixel. Doing otherwise would con-

front them to a dilemma [10]. A larger search size means

potentially more similar patches, reducing the variance

of the denoising estimator. However increasing the search

area in natural images also tends to increase the risk to

consider dissimilar patches as similar, thus increasing

the bias of the denoising estimator. Most authors found

the best compromise in relatively small search areas. As

a consequence, increasing the image size does not neces-

sarily improve denoising performance. This observation

was supported by extensive experimentation in [15],

who showed that even if an infinite database of natural

image examples was available, non-local denoising per-

formance would attain an asymptotic performance that

does not tend to infinite signal to noise ratio. Non-local

methods seemed to be doomed to fundamental limits

that could not be overcome.

In 2012, Talebi and Milanfar [24,23] proposed a truly

global denoising approach where each pixel is used to

denoise every other pixel. They claimed in a subsequent

paper [25] that this approach is asymptotically optimal,

in the sense that “the mean-squared error monotoni-

cally decays with increasing image size”, regardless of

image content, at least in an oracle scenario. In this con-

text, this paper raises again the question: can denoising

methods be fixed in such a way that they attain infinite

PSNR when given an infinite number of examples (or

an image of infinite size) ? They opened the debate by

showing that given an oracle, such an asymptotic per-

formance seems to be possible. However two questions

are still left open:

1. What conditions has to satisfy an infinite image for

the asymptotic result to hold?

2. Do these conclusions extend to the non-oracle case?

This article tries to give a precise answer to the first

question, and some elements of response to the second

one. To do so, we revisit the theory of diagonal estima-

tion (refered to as Wiener filtering in Talebi’s paper)

that was first developed for wavelet bases. Considering

images as vectors of RN , a diagonal estimator û = W ũ

is a non linear estimator of u that is diagonal in a given

orthonormal basis V = {Vi}i=1,...,N , which means that

it can be written

û = W ũ = V ΛV T ũ =

N∑
k=1

λk(ũ) · 〈ũ, Vk〉 · Vk, (2)

where Λ is a diagonal matrix whose kth coefficient λk(ũ)

depends on the observation ũ (otherwise, the result-

ing estimator would be linear). The diagonal estimation

framework is widely used in image processing: the ba-

sis V is often chosen as a Fourier or a wavelet basis [9,

8,16], or can for instance be built up as an orthonor-

mal dictionnary from the image itself [20]. The success

of diagonal estimation stems partly from the fact that

if the image u is sparse in the orthonormal basis V ,

these “diagonal estimators are nearly optimal among

all non linear estimators”, as stated in [16]. The global

denoising formalism introduced by Talebi and Milan-

far [24,23] can be reinterpreted in this context. Indeed,

the idea of global denoising boils down to build V as

an orthonormal basis that diagonalizes a given denois-

ing filter (such as NLmeans [5]) computed on ũ. In the

context of diagonal estimation, we will derive a novel

asymptotic study of global denoising. Basically, we in-

troduce precise conditions both on the image and the

global filter to ensure that the mean-squared error

MSE(û|u)
def
=

1

N
E(‖û− u‖2), (3)

for global image denoising decays toward zero for in-

creasing image size. We will see that classical results

of the diagonal estimation theory also permit to envi-

sion possible answers to the question of the extension

of global denoising to the non oracle case.

The paper is organized as follows. In Section 2 we

provide a short reminder on the theory of diagonal esti-

mation in an orthonormal basis. The first contribution

of this paper is to revisit this framework to present the

global denoising formalism and to put it into perspec-

tive relatively to classical diagonal estimation results.

The second and main contribution is the novel asymp-

totic study of global denoising presented in Section 3.

Finally, in Section 4, we also discuss and show exper-

iments on several open issues, including the extension

of these results to the non-oracle case.

2 Global filtering revisited

2.1 Diagonal estimation : a short reminder

We recall here the basic properties of a diagonal esti-

mator in terms of quadratic risk minimization, before

revisiting the theory of global denoising in this context.

2.1.1 Quadratic risk

Assume that W is deterministic, i.e. that the coeffi-

cients λk are independent of the random noise ε and

only rely on the unknown image u. In this case, the
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mean quadratic risk or mean squared error (MSE) of

the diagonal estimator given by Equation (2) can be

easily derived. Let us denote by b the projection of the

unknown image u in the orthogonal basis V , that is

b = V Tu. The MSE between u and û can be written

as a function of the eigenvalues (λk) and the projection

b, as a sum of a variance and bias terms.

Proposition 1 Let û = V ΛV T ũ, with V ΛV T a deter-

ministic filter. Then,

MSE(û|u) =
1

N

N∑
j=1

(
(1− λj)2b2j + σ2λ2j

)
. (4)

Proof (Proof of Proposition 1)

N ·MSE(û|u)
def
= E(‖û− u‖2)

= E(‖V ΛT ũ− V ΛV Tu‖2)︸ ︷︷ ︸
variance term

+ E(‖V ΛV Tu− u‖2)︸ ︷︷ ︸
bias term

= E(‖V ΛV T ε‖2) + E(‖(Λ− IN )V Tu‖2)

= (

N∑
i=1

λ2i )σ
2 +

N∑
i=1

(λi − 1)2 E[(V Tu)2i ].

ut

Observe that the last equality holds only because

the filter W = V ΛV T does not depend on the noise ε.

2.1.2 Oracle quadratic risk minimization

Minimization of the MSE w.r.t. the {λi}’s For a fixed

orthonormal basis V , the previous MSE is a convex

function of the eigenvalues λi, and reaches its global

minimum for

λ?i =
b2i

σ2 + b2i
. (5)

The corresponding minimal value of the MSE is

MSE? := MSE(λ?) =
σ2

N

N∑
j=1

λ?j =
σ2

N

N∑
j=1

b2i
σ2 + b2i

. (6)

This formula shares similarities with Wiener filters, with

the difference that the coordinates {bi} are not expected

values but actually depends on the oracle image u,

which is assumed to be deterministic. This oracle MSE

cannot be attained in practice but only represents a

lower bound for the quadratic risk of diagonal estima-

tors in the basis V . However, it can be shown that some

well chosen thresholding estimators have a risk which

is not too far from the oracle one [16].

Minimization w.r.t. the {bi}’s The previous oracle di-

agonal estimation is done in a given basis V , which

could for instance be chosen as a Discrete Cosine Trans-

form basis or a Wavelet basis. Obviously, the final esti-

mation strongly depends on this choice, and one might

wonder in practice how to optimize the selection of the

basis V for a given image u. The quantity MSE? from

equation (6) depends only on b = V Tu, the projection

of the oracle image u on the basis V . The following

Proposition describes the form of the b minimizing (6).

The matrix V T being orthonormal, the minimization is

constrained by ‖b‖2 = ‖u‖2.

Proposition 2 Minimizing b 7→ MSE?(b) under the

constraint ‖b‖2 = ‖u‖2 provides the following 2N global

minimums

b? = ±‖u‖2ei

where ei is the i-th vector of RN basis.

Proof (Proof of Proposition 2) Let define the function

Ψ by

Ψ(b, µ) =
σ2

N

N∑
j=1

b2i
σ2 + b2i

− µ

 N∑
i=j

b2j − ‖u‖22

 ,

where µ is a Lagrange multiplier.

The derivation with respect to the bi yields

∂biψ(b, µ) =
2σ4

N

bi
(σ2 + b2i )

2
− 2µbi, (7)

and the derivation w.r.t. µ

∂µψ(b, µ) = ‖u‖22 −
N∑
j=1

b2j . (8)

Setting (8) to zero implies the existence of i0 such that

bi0 6= 0 (otherwise ‖u‖22 would be zero). Then, setting

(7) to zero yields for i0

µ =
σ4

N

1

(σ2 + b2i0)2
,

and for each i 6= i0

bi
σ4

N

[
(σ2 + b2i0)2 − (σ2 + b2i )

2

(σ2 + b2i0)2(σ2 + b2i )
2

]
= 0, (9)

which implies bi = 0 or b2i = b2i0 . Using (8) again gives

the following generic form for the critical points of Ψ

bi =

±
√
‖u‖22
#I

if i ∈ I

0 otherwise,
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where I ∈ P ({1, . . . , N}) \ ∅ is the support of b.

Let b be a critical point and I its support, we have

MSE ?(b) =
σ2

N

‖u‖22
σ2 +

‖u‖22
#I

>
σ2

N

‖u‖22
σ2 + ‖u‖22

where the equality occurs if and only if #I = 1. Thus,

among all critical points, the minimal ones are the b? =

±‖u‖2ei.
Finally, they are also global minima for Ψ as we have

for all b

MSE ?(b) >
σ2

N

∑
b2j

σ2 + ‖u‖22
=
σ2

N

‖u‖22
σ2 + ‖u‖22

= MSE ?(b?).

ut

The previous Proposition means that an optimal ba-

sis V? should be such that V T? u = ‖u‖2ei, for a given i

in {1, . . . , N}. It follows that V? should be composed of

the vector u
‖u‖2 and simply completed in an orthonor-

mal basis. The resulting oracle filter would be

(W?)ij = ui
uj

σ2 + ‖u‖22
. (10)

Again, even if this filter is not reachable since it de-

pends on the unknown oracle u, this results strongly

support the intuitive idea that ideal bases should pro-

vide a sparse representation of u. In practice, diagonal

estimation should be applied in a well-adapted basis for

each image, typically a basis V that provides a fast de-

crease of the {bj}. The principle of global filtering [24],

described in Section 2, is to rely on classical non linear

filters from the denoising literature to choose V .

2.1.3 Non-oracle case

The oracle u and its projection b = V Tu being un-

available, we need a way to approximate the previous

estimation from the knowledge of b̃ = V T ũ. A classi-

cal solution is to consider (hard or soft) thresholding

estimators in a given orthonormal basis V , in order to

discard irrelevant components. As illustrated by Fig-

ure 1, the result of hard thresholding is far from being

as satisfying as the oracle estimation (5), at least on a

Discrete Cosine Basis. However, for a specific value of

the threshold T , the mean squared error obtained with

a hard or soft thresholding can still be controlled by the

one of the oracle attenuation (5).

Theorem 1 (Donoho-Johnstone [16,9])

Let T = σ
√

2 logN . The MSE provided by the thresh-

olded eigenvalues λth (with hard or soft thresholding)

satisfies for N ≥ 4

MSE(λth) 6 (2 lnN + 1)

(
σ2

N
+ 2 MSE(λ?)

)
.

(a)

(b)

MSE = 225 MSE = 225

(c)

MSE = 167 MSE = 90

(d)

MSE = 56 MSE = 34

Fig. 1 (a) Original images u, (b) Noisy images ũ with σ =
15, (c) Images ũ denoised by hard-thresholding in a DCT
basis with a threshold T = σ

√
2 lnN , (d) Images ũ denoised

by diagonal estimation with the oracle λ∗i in a DCT basis.

Proofs of this theorem can be found in [9] or [16]. It

helps to predict what kind of images can be well de-

noised by hard thresholding in a given basis. For a

DCT basis for instance, we can expect a lower oracle

MSE(λ?) for smoother images, and the same property

should hold for thresholding. This is illustrated by Fig-

ure 1, which shows two noisy images and their respec-

tive denoised versions by oracle attenuation and hard

thresholding. At the same noise level, the second image

has a better oracle result (d) than the first one, and

this is also true for the hard thresholding result (c). We
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can also conclude that a basis V nearly optimal for the

oracle should also be a good choice for the thresholding

estimation. Observe that the threshold T = σ
√

2 lnN

is not really optimal in practice. A good way to fix T

for soft thresholding is to resort to the SURE estimator

of the MSE [16].

2.2 Global filtering in this context

Global denoising [24,23] draws on the concept of diago-

nal estimation in order to improve current denoising fil-

ters. As described in the previous section, a well chosen

basis should provide a sparse representation of u and

a general basis obviously cannot fit well for all natural

images. Global denoising builds V as an orthonormal

basis that diagonalizes a classical non linear denoising

filter (such as NLmeans [5]), computed on ũ. The un-

derlying assumption is that if the chosen denoising filter

is well adapted to the image, the coefficients bj will de-

crease relatively quickly and the diagonal estimate will

be all the more efficient.

2.2.1 Principle of global denoising

Assuming the same image formation model (1), numer-

ous classic denoising filters, such as Gaussian or bilat-

eral filters as well as NL-means [5] type filters, can be

written under the form

û = W ũ, (11)

where W = D−1K, with K the positive definite kernel

from the filter and D a diagonal matrix with entries

Dii =
∑
j Kij , i ∈ {1, . . . , N} 1. Starting from a given

denoising filter W , the idea of global denoising, made

popular by Milanfar in [18], [17], is to modify this filter

W , in order to decrease the mean square error between

û and u. For instance, if we assume that W can be

diagonalized in an orthonormal basis V (this can be

ensured by symmetrizing it, as described in the next

section), the oracle attenuation (5) of the eigenvalues

can be applied to improve the filter.

2.2.2 Symmetrizing the filter W

To ensure the fact that W can be diagonalized in an or-

thonormal basis, the authors of [24] propose to replace

1 For instance, for NL-means we would have Ki,j =

e
−
‖Pi−Pj‖

2

2h2 , with Pi and Pj the patches centered at i and
j and h a parameter

this filter by a symmetric doubly stochastic version W s

of W which minimizes the cross-entropy∑
i,j

W s
ij log

W s
ij

Wij
. (12)

In practice, this minimization problem can be solved

numerically with the Sinkhorn algorithm, which con-

sists in iteratively normalizing the rows and the columns

ofW until convergence. Starting from a positive definite

kernel K, it can be shown that the resulting filter W s is

positive definite, symmetric and doubly stochastic, and

that its eigenvalues are very close to those of W [18]. In

practice, the denoising results obtained with this sym-

metrized filter appear to be equivalent or slightly better

than the ones obtained with W [18,6]. In the following,

we always consider the filter W in its symmetric and

doubly stochastic version.

2.2.3 Deterministic filter

The mean-squared error formulation (4) is valid only if

the filter W = V ΛV T is deterministic. This assump-

tion is sensible when V is fixed, as a DCT or wavelet

basis for instance. However when the filter W comes

from the noisy image ũ, this hypothesis does not hold.

To illustrate this fact, we compare, for different choices

of the filter W , the theoretical MSEtheo computed by

formula (4) with the experimental mean-squared error

MSEeval =
1

N

N∑
j=1

|uj −W ũj |2.

Figure 2 shows the relative error

|MSEeval−MSEtheo |
MSEtheo

(13)

for the following filters W , computed on three different

images:

1. a Non-Local Means filter [5] computed on the orig-

inal image u (called Oracle-NLM or O-NLM);

2. a Non-Local Means filter computed on the noisy im-

age ũ (called NLM);

3. a Non-Local Means filter computed on a version of

ũ already denoised by NL means (called pre-filtered

NLM or P-NLM);

The first filter is independent from the noise present in

ũ, so the relative error is very small. On the contrary,

the NL-means filter computed directly on the noisy im-

age strongly depends on the noise realization, and the

relative error between the theoretical and experimental

MSE remains above 10% for all three images. Finally,

observe that if the NLM is computed on a version of
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ũ that has already been denoised in a first step (by a

NLM kernel or another denoising procedure), the re-

sulting W seems to be partly decoupled from the noise,

at least enough for the theoretical MSEtheo to be a good

predictor of MSEeval.

(a) (b) (c)

images (a) (b) (c)

O-NLM 6.6 % (± 3.0) 0.3 % (± 1.9) 0.4 % (± 0.9)
NLM 34.2 % (± 3.0) 24.6 % (± 1.9) 11.2 % (± 0.9)
P-NLM 6.8 % (± 1.7) 2.7 % (± 0.3) 1.0 % (± 0.3)

Fig. 2 Relative error (13) between the theoretical MSE pro-
vided by formula (4) and the experimental MSE, for three
images and three different filters W (NL-Means computed on
the u, NL-Means computed on the ũ, NL-Means computed
on a prefiltered version of ũ. The mean and standard devia-
tion have been computed on 5 different realisations of noise
with σ = 15 for each image.

2.2.4 Two oracle levels

In the previous section we used the noiseless image u as

an oracle to compute the weights of the O-NLM filter

W . Note that this use of the oracle is different from

the one introduced in equation (5) (section 2.1.2) to

compute the optimal eigenvalues λ?j . In general it will

be clear from the context which level of oracle we refer

to. In ambiguous cases we shall refer to the first one as

W -oracle and to the second one as λ-oracle.

2.2.5 Discussion

By producing a basis V that is well-adapted to the im-

age we want to denoise, global image denoising usually

produces better results than a diagonal estimation on

a DCT or wavelet basis. However, global denoising still

suffers from two major issues:

– first, the λ-oracle u is needed in order to optimize

the eigenvalues;

– second, memory cost and computation time are un-

tractable because of the eigendecomposition of the

filter W of size N ×N .

In order to bypass the first issue, we saw in section 2.1.3

that hard or soft thresholding could provide MSE re-

sults controlled by the optimal MSE∗. Another possi-

bility would be to try multiple sets of eigenvalues and

keep the ones minimizing a SURE estimator of the

MSE. This is the solution proposed by the GLIDE algo-

rithm [23]. The second issue can be solved by comput-

ing only a small percentage of eigenvectors. In GLIDE,

Talebi and Milanfar make use of the Nyström exten-

sion in order to approximate the filter W and its first

eigenvalues.

3 Asymptotic study

In this part, we study the asymptotic behavior of the

MSE given by formula (4) when the image size in-

creases. In [25], the authors claim that global denoising

is asymptotically optimal, in the sense that the MSE

in (3) tends to zero. Before going further, let us men-

tion that this decay of the global MSE may occur while

some local areas of the image remain poorly denoised

even when the image size tends to infinity, as it is shown

on Figure 3. In order to explore the precise conditions of

this convergence, we define in Section 3.2 a reasonable

model for an image whose size grows to infinity. We

also assume a parametric model for the decay of the

coefficients bj , and we derive in Section 3.3 different

conditions of convergence for the MSE and its corre-

sponding decay rate. Finally, in Section 4.2, we discuss

and illustrate these different results and the realism of

these models for different choices of images and filters

W .

In the following, we always consider that the filter

W is independent from the noise ε.

3.1 Upper bound on the optimal MSE

We have seen in Section 2.1 that the oracle risk for

diagonal estimation was given by

MSE? =
σ2

N

N∑
j=1

b2j
σ2 + b2j

,

with b = V Tu the projection of the oracle image u in

the eigenbasis V . Now, this MSE can be upper bounded

by the l1-norm of b divided by N :

MSE? =
σ2

N

N∑
j=1

b2j
σ2 + b2j

6
σ2

N

N∑
j=1

b2j
2σ|bj |

=
σ

2N
‖b‖1. (14)
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N times

(a) 

(b) 

(c) 

(d) 

cl
ea

n 

no
isy

de
no

ise
d

Fig. 3 Example of denoising with a global MSE decaying
to zero when image size grows to infinity, while a local

MSE increases. (b) is an image constructed by repeating N
times a pattern of a constant image with a vertical line. (a)
presents the behavior of the MSE between the denoised image
obtained by optimal diagonal estimation in a DCT basis and
the clean image. The MSE is shown in log10 scale, when the
pattern is repeated N times with N increasing. (c) presents
a zoom on the structured part of the image and the result
of the denoising for N = Nmax. The denoised image presents
important ringing artifacts. Finally, (d) shows the behavior
of the local MSE on the part presented in (c) when N grows.
This shows that even with a global MSE converging to zero,
the restoration can remain locally bad and even get worse
when the image size increases.

The authors of [25] suggest that this upper bound

might converge towards 0 when N grows to infinity. In

order to prove this convergence, they assume that the

sorted coefficients |bj | drop off at a given rate α > 0

|bj | 6
C

jα
.

We shall see below and in section 3.2 that this models

requires C to depend on N to make sense. Neverthe-

less for a fixed image size, this hypothesis seems quite

reasonable for different existing filters, as illustrated by

Figure 4. When working with Fourier or space-frequency

decompositions, the value of α was shown to be related

to the regularity of the image [16], and values of α be-

Fig. 4 Decay rate of the coefficients bj for the image syn-

thetic from Figure 7, in a loglog scale graph. In blue: coeffi-
cients in a DCT basis. In red: coefficients in a wavelet basis.
In yellow: coefficients in the eigenbasis of the oracle NLM
filter.

tween 0.5 and 1 were shown to be in agreement to ac-

tual image data [11]. Such models have also been used

in asymptotic studies where the image resolution tends

to infinity, but here we are interested in the asymptotic

behavior when image size grows to infinity at constant

resolution. In this particular kind of asymptotic study,

we cannot expect the rate α and the constant C to

remain constant when the image size grows towards in-

finity. Put another way, there is no reason that we can

bound the bj coefficients independently of the image

size N . To demonstrate this claim, we propose a model

for an image whose size grows to infinity. Under this

model we will show that the coefficients bNj actually

depend on N. Then we propose a more complete para-

metric model for the coefficients decay2

3.2 Proposed models

Infinite image model Consider an image of infinite size

U : Z2 → {l, . . . , L},

taking values in a discrete set of gray levels {l, . . . , L} ⊆
N. For typical 8 bit images l = 0 and L = 255.

From this image we construct an infinite sequence

of images of growing size N

uN
def
=
(
Uϕ(1), . . . , Uϕ(N)

)
,

2 From now on, we will write bNj instead of bj to remember
that the behavior of these coefficients strongly depend on the
image size N .
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by truncating the infinite image to sizeN , for allN ∈ N.

The function ϕ : N+ → Z2 sweeps the plane in spiral

starting from the origin.

Since the image gray level values are bounded, the

L2-norm of uN satisfies the following inequality

l
√
N 6 ‖uN‖2 6 L

√
N, (15)

which means that the energy of the growing image in-

creases at most like O(
√
N). This information on the

L2-norm of uN is important because it constrains the

behavior of bN as ‖bN‖2 = ‖uN‖2.

Because generally the lowest value l is zero, the en-

ergy of the image may not grow as fast as
√
N . However

we show that if ‖uN‖2 = o(
√
N), the image is becoming

sparse with increasing size: because U is taking values

in a discrete finite set, by setting c = min {Ui 6= 0, i ∈ N}
we have

c2
#{uNi 6= 0}

N
6
‖uN‖22
N

−→
N→∞

0. (16)

This shows that the ratio of non-zero pixels collapses

when the image size goes to infinity. This case will not

be considered in the following. Indeed if we consider an

infinite image U such that ‖uN‖2 = o(
√
N) then, the

upper-bound (14) tends to zero when N goes to infinity:

‖bN‖1 6
√
N‖bN‖2 =

√
N‖uN‖2 = o(N),

which implies the convergence. We provide in Section 4

an experiment with an image padded with zeros illus-

trating this case.

This leads us to define the widespread infinite image

model as follows.

Hypothesis 1 (Widespread infinite image model)

Let U be an infinite image and denote uN its trunca-

tion of size N . Then U is said to be non sparse if there

exists m > 0 and M > 0 such that

m
√
N 6 ‖uN‖2 6M

√
N. (17)

Domination decay model Now consider a sequence of

orthogonal bases V N (the eigenbases of symmetric fil-

tering operators WN ). Recall that we denote by bN =

V NuN the projection of the image of size N on the cor-

responding eigenbasis. We need a realistic model on the

asymptotic behaviour of bNj when N, j go to infinity. In

this part we design an upper bound for |bNj | which is

both

– simple and easy to manipulate to prove convergence

results;

– adapted to the data, in the sense it has the same

shape as the |bNj |.

Fig. 5 Behaviour of maxj(|bNj |) with increasing size N for

three different images from Figure 7 in loglog scale. Here bN

is the image u projected in the DCT basis.

In order to design it we start with the model from

[23] namely

|bj | 6
C

jα
,

with α > 0. If we consider such a model for all N with

an image verifying Hypothesis 1 then we have

m2N 6 ‖u‖22 = ‖b‖22 6 C2
N∑
j=1

1

j2α
.

This implies the divergence of the sum in the right term,

which is thus equivalent to N1−2α when N goes to in-

finity. This yields m2 = O(N−2α) and so α 6 0 which

is a contradiction. As a consequence, the constant C

should depend on N . In the following, we consider the

model

|bNj | 6
CN
jα

,

and we discuss how to simplify it based on information

given by numerical experiments. We need to define how

the “constant” CN grows with the image size N . Fig-

ure 5 shows that maxj
(
|bNj |

)
is increasing linearly with

N in loglog scale. That leads us to consider Nγ as a

model for CN . Finally, we consider the following decay

model for bN :

Hypothesis 2 (Domination decay model) Let U be

an infinite image and denote by uN its truncation of

size N . Let V = (V N )N be a family of orthogonal bases

of increasing size. Then the pair (U,V) is said to fit
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the domination decay model with parameters C, α and

γ > 0 if for all N, j ∈ N

|bNj | 6 C
Nγ

jα
. (18)

where bN = V NuN is the projection of uN on the basis

V N .

A case where hypotheses 1 and 2 are trivially sat-

isfied is the case of constant images with a DCT filter.

Indeed, the corresponding b is the optimal one from

Proposition 2. In the next section, we study the con-

vergence of the upper-bound of the MSE under these

hypotheses.

3.3 Conditions of convergence

In Section 2.1 we showed that the optimal diagonal es-

timator on a given basis V N could be bounded in terms

of the `1-norm of the coefficients bN in that basis. In the

following, we show that under Hypotheses 1 and 2, this

`1 norm can in turn be upper-bounded by a decreasing

function of N ,

MSE(λ?) 6
σ

2N
‖b‖1 6 C ′

1

Nr
, (19)

thus ensuring convergence of the optimal MSE at a rate

r that depends on the parameters α and γ of the decay

model. When this rate is positive then we can use this

second upper bound to prove the asymptotic optimality

of diagonal estimation on that basis.

Theorem 2 (Asymptotic optimality) Consider

– an infinite image U that satisfies Hypothesis 1 ( i.e.

non-sparsity) and

– a sequence of orthogonal bases V such that the pair

(U,V) satisfies Hypothesis 2 ( i.e. (C,α, γ) decay

rate of the image projection on that basis).

If the decay rate is fast enough, i.e. if

1

2
6 γ < 1 and α > γ,

then the denoising provided by oracle optimization of

diagonal estimation on that basis is asymptotically op-

timal meaning that the MSE tends to 0 when the image

size N goes to infinity.

The proof of this result is the combination of the

two following Lemmas. The first one shows that the

hypothesis on image energy (17) constrains the param-

eters α and γ of the domination criterion and the sec-

ond one further restricts the values of these parameters

to ensure convergence of the upper-bound of the MSE.

Fig. 6 Illustration of the domain of compatibility and the
domain of convergence provided by the two lemmas 1 and 2.
The intersection in red represent the set of parameters that
provides the result in Theorem 2.

Figure 6 illustrates the results provided by Lemma 1

and lemma 2 on the parameters α and γ. The resulting

parameters for Theorem 2 are given by the intersection

of the two domains.

Lemma 1 (Compatibility with image model) As-

sume that U satifies Hypothesis 1. If the projection of

U on V satisfies the decay model of Hypothesis 2 with

parameters (C,α, γ), then either

γ >
1

2
and α ≥ 1

2
or

γ > α and α <
1

2
.

This lemma emphasizes the fact that we actually

cannot bound the |bNj | independently of N as long as

we have images that are not loosing energy with in-

creasing size. The only way to obtain γ = 0 (a bound

independent of N) is to impose α = 0 which leads to

the pathological case b ∝ (1, . . . , 1).

Proof (Proof of Lemma 1) Because ‖bN‖2 = ‖uN‖2,

the model (17) on the image energy gives

m2N 6 ‖bN‖22 6M2N.

Applying the decay criterion |bNj | 6 C
Nγ

jα
in the previ-

ous equation yields

m2N 6 C2N2γ
N∑
j=1

1

j2α
.

The behavior when N goes to infinity of the sum in the

right term differs depending on α:
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– if α < 1
2 the sum diverges and there exists a constant

C ′ such that

N∑
j=1

1

j2α
∼

N→∞
C ′N1−2α

– if α = 1
2 the sum diverges and there exists a constant

C ′ such that

N∑
j=1

1

j2α
∼

N→∞
C ′ lnN

– if α > 1
2 the sum converges to a constant C ′ ∈ R

The first case leads to m2 = O
(
N2γ−2α) and so

α 6 γ. The second and the third cases lead to m2 =

O
(
N2γ−1 lnN

)
and m2 = O

(
N2γ−1) respectively and

so γ >
1

2
. ut

Lemma 2 (condition of convergence) Considering

the model (18) we have convergence to zero of the bound

(14) only if

α > 1 and γ < 1

or

α < 1 and α > γ.

This lemma shows that the convergence can actually

occur with all α > 0 as long as γ is not too large. We

also notice that the model proposed in [23] in C
jα satis-

fies the convergence hypothesis. However, we saw with

that this model is not compatible with Hypothesis 1.

Proof (Proof of Lemma 2) We have |bNj | 6 C
Nγ

jα
so

σ

2N
‖b‖1 6

Cσ

2N

N∑
j=1

Nγ

jα
=
Cσ

2
Nγ−1

N∑
j=1

1

jα
.

The behavior when N goes to infinity of the sum in

the right term differs depending on α:

– if α < 1 the sum diverge and there exists a constant

C ′ such that

N∑
j=1

1

jα
∼

N→∞
C ′N1−α.

– if α = 1 the sum diverges and there exists a constant

C ′ such that

N∑
j=1

1

jα
∼

N→∞
C ′ lnN.

– if α > 1 the sum converges to a constant C ′ ∈ R.

The first case leads to

σ2

N
‖b‖1 = O

(
Nγ−α) ,

and convergence occurs only if α > γ. The second and

the third cases lead respectively to

σ2

N
‖b‖1 = O

(
Nγ−1 lnN

)
,

and

σ2

N
‖b‖1 = O

(
Nγ−1) ,

and convergence occurs only if γ < 1. ut

The proof of Lemma 2 also provides a decay rate

that we summarize in the following corollary.

Corollary 1 (Decay rate) Under conditions of con-

vergence in Theorem 2, that is 1
2 6 γ < 1 and α > γ

the MSE of optimal diagonal oracle estimation satisfies

MSE(λ?) =
N→∞

O
(

1

Nr

)
with r ∈]0, 12 ] defined by

– r = α− γ when γ < α < 1

– r = 1− γ when α > 1

The particular case α = 1 yields convergence in O
(

logN
N1−γ

)
.

This result shows that the decay is always slower

than 1√
N

and it can be really slow when r is close to

zero. Thus, even though we can have an asymptotic
optimal filtering, the decay rate can be so small that

we cannot actually see it even if we work with huge

images. Moreover, this asymptotic study is performed

on the oracle diagonal filter. This result is by itself

essentially theoretical. However, in combination with

Donoho-Johnstone Theorem 1, we might further use

this result to prove, under specific conditions on the

infinite image, the asymptotic optimality of non-oracle

filtering.

Corollary 2 (Decay rate of thresholding) Assume

that the convergence conditions of Theorem 2 are satis-

fied. From the Donoho-Jonhstone Theorem 1, the MSE

obtained by thresholding the coefficients bNj satisfies

MSE(λth) =
N→∞

O
(

logN

Nr

)
with r ∈]0, 12 ] defined as in Corollary 1. The particular

case α = 1 yields convergence in O
(

(logN)2

N1−γ

)
.
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Proof (Proof of Corollary 2) Let consider the case α 6=
1. By Donoho-Jonhstone Theorem we have

MSE(λth) 6 (2 logN + 1)

(
σ2

N
+ 2 MSE(λ?)

)
.

Then by Corollary 1 there exists a constant C such that

MSE(λ?) 6
C

Nr
,

with r ∈]0, 12 ]. It follows that

MSE(λth) 6 2C
logN

Nr
+ (2 logN + 1)

σ2

N
+

2C

Nr
.

The two last terms in the previous inequality are o
(

logN
N

)
when N goes to infinity that yield the announced re-

sult. A similar proof can be done for the case α = 1. ut

3.4 Special cases

In the following two paragraphs we discuss some simple

particular cases in which the asymptotic behaviour of

global denoising can be directly deduced.

In more realistic cases we need to experimentally fit

our image model to natural images for different bases

in order to predict what would happen when the im-

age size tends to infinity. This experimental study is

deferred to section 4.

3.4.1 Optimal basis with optimal eigenvalues

When an oracle is used both to choose the optimal ba-

sis V and the optimal eigenvalues λ of the filter W =

V ΛV T , we showed in Proposition 2 that the optimal

MSE decays like σ2/N , so we have r = 1, a much faster

convergence than in the more realistic cases based on

an image model. In this case only b1 is non zero for all

values of N , so computing α and γ does not make any

sense.

3.4.2 Gaussian textures on DCT basis

Another case of interest is the case when the image u

is a Gaussian texture, meaning that

u = h ∗m

is generated by convolving a known kernel h with a

white noise image m where mi ∼ N (0, τ2) iid.

In this case when choosing V as a Fourier or DCT

basis, a straightforward calculation (see appendix A)

shows that the MSE upper bound in equation (14) for

global filtering with optimal λj in that basis becomes

MSE∗bound =
σ2

2N
‖b‖1

=
1

N2

σ

2

∑
k

|ĥN (k)||m̂N (k)| =: AN .

Thus asymptotically we have a strictly positive MSE

bound

MSE∗bound = AN −−−−→
N→∞

A∞ =
στ‖ĥ‖1√

2π
> 0

for Gaussian textures when using the Fourier or DCT

basis. Our experiments (see Section 4.3) confirm this

finding. Indeed, when choosing a Fourier or DCT basis

V = F , then MSE∗N remains constant when N →∞, in

this case r ≈ 0. Nevertheless, when choosing an adap-

tive basis V from the diagonalization of the non-local

means filtering operator, then MSE∗N does experimen-

tally tend to 0 for Gaussian textures. This shows that

the NLM basis may better exploit the self-similarity in

Gaussian textures.

3.4.3 Oracle vs. non oracle filters

Hypothesis 2 on the domination decay model assumes

that the family of orthogonal bases V is well adpated to

the infinite image U. This happens in particular when

the chosen filters are oracle filters, which means that
they are computed in the image itself. Consider for in-

stance the case of a very simple oracle filter which con-

sists in denoising ũ by averaging at pixel i all values ũj
such that |ui−uj | ≤ ε for a given threshold ε > 0. If the

infinite image U is bounded, for instance with values in

[0, 1[, we can show that the value MSE(ûN |uN ) con-

verges to a limit smaller than ε2 when the image size

increases. This result being satisfied for every ε > 0,

the MSE of this oracle filter is naturally asymptotically

optimal. A proof of this example is given in appendix B.

The case of non oracle filters is of course far more

ambiguous. Consider for instance the case of a dead

leaves infinite image model studied in [15]. The previous

argument shows that a well chosen oracle filter would

denoise this image perfectly. However, because of the

independence between the leaves, it is clearly not pos-

sible to achieve a null asymptotic MSE for a non oracle

filter, since for a given leaf, the values observed outside

of the leaf are useless to denoise the pixels inside the

leaf.
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lena

simpson

bricks

sparse

mixed

synthetic

man

Fig. 7 The images used for the experiments. The sub-images
sizes are (a) 128×128, (b) 128×192, (c) 128×256, (d) 128×
320, (e) 128×384, (f) 128×448, (g) 128×512. Images credits:
lena and man are standard images used in image processing,
simpson is from Julie Delon, brick, sparse and mixed are
Brodatz textures [4] and synthetic is a random generated
gaussian texture.

4 Experiments

In the previous section we introduced a decay model for

the bNj coefficients of natural image sequences decom-

posed on the orthonormal basis given by a symmetric

filtering algorithm.

We gave precise conditions on the (γ, α) parame-

ters of this decay model. These conditions may be used

to determine whether optimal diagonal estimation on

this basis can yield asymptotically optimal denoising

performance when applied to a certain family of image

sequences.

In practice, answering this question requires to es-

timate these coefficients from a particular filter/basis

based on a truncated image sequence. The next Sec-

tion 4.1 explains how these model parameters are esti-

mated from real data. Then in Section 4.2 we analyze

the asymptotic performance of several denoising algo-

rithms based on the estimated parameters. Finally, in

Section 4.3 we provide a discussion about some spe-

cific cases that are of particular interest to illustrate

our analysis.

4.1 Estimating model parameters (C, γ, α)

Theorem 2 gave us a sufficient condition for asymp-

totic optimality of a filter on an image sequence. This

condition is based on the assumption that the |bNj | co-

efficients follow a particular model, namely:

|bNj | ≈ C
Nγ

jα
. (20)

Observing different curves j 7→ |bNj | for various im-

ages, sizes N and orthonormal bases in loglog scale (see

the first column of Figure 11 for an example), we notice

that the model (20) holds except for the first few largest

coefficients and for a significant proportion of the small-

est coefficients. This behaviour can be expected, since

we sorted the coefficients. It appears even when the

|bNj | coefficients are only white noise (as illustrated in

Figure 8). Thus we exclude the values of j < d = 5

and j > Np (for p = 0.6) from the bilinear regression

that allows to fit the values of C, α and γ to the |bNj |
coefficients.

Put another way we find α, γ and C that minimize

‖ log(|bNj |)− (γ log(N)− α log(j) + log(C)) ‖2,

with N from Nmin to Nmax and j from d to bNpc.
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Fig. 8 Decay of the coefficients |bj | for white noise in the
DCT basis (red) in loglog scale. The slope of the bound is
αm ≈ 0.05 (blue).

Table 1 Fitted parameters α and γ for the different images
of figure 7 in the three bases DCT, DWT and O-NLM. The
parameter r is the decay rate of corollary 1.

image basis fitted α fitted γ r

lena
DCT 0.827 0.767 0.060
DWT 0.858 0.752 0.10
O-NLM 0.806 0.570 0.236

simpson
DCT 0.941 0.741 0.201
DWT 1.106 0.753 0.247
O-NLM 1.025 0.572 0.428

bricks
DCT 0.796 0.755 0.041
DWT 0.913 0.877 0.035
O-NLM 0.902 0.688 0.213

sparse
DCT 0.842 0.375 0.467
DWT 0.909 0 0.909
O-NLM 1.099 0.021 0.979

synthetic
DCT 0.708 0.727 -
DWT 0.554 0.570 -
O-NLM 0.646 0.540 0.106

man
DCT 0.720 0.520 0.200
DWT 0.802 0.578 0.224
O-NLM 0.759 0.366 0.393

4.2 Experimental results

Table 1 shows the estimated model parameters for the

test images from Figure 7 and for three orthonormal

bases, namely:

DCT: The DCT basis which diagonalizes convolution

filters;

Wavelet: The orthogonal Haar basis, implemented via

the discrete wavelet transform;

Oracle NLM: The orthogonal basis which diagonalizes

the oracle (symmetrized) non-local means filter, i.e.

with patch distances computed on the oracle clean

image.

In all cases the oracle NLM basis seems to satisfy

the conditions of Theorem 2 and to provide the fastest

asymptotic convergence rate. On the other hand, on

these experiments, the DCT and wavelet bases some-

times seem to not satisfy the conditions of Theorem 2,

and when they do, the asymptotic convergence rate is

extremely slow (always smaller than r = 0.1) except

for sparse images that do not verify Hypothesis 1 and

trivially converge in many common bases.

This means that if the oracle NLM basis was known

for an arbitrarily large noisy image, then we could use

hard thresholding as in Corollary 2 to obtain a denoised

image with arbitrarily small MSE. Of course the same

conclusion was known (since Donoho-Johnstone) for the

non-adaptive wavelet and DCT bases, but convergence

does not hold for all natural images, and when it does it

may be too slow for the procedure to be practical. For

oracle NLM asymptotic convergence seems to be faster

with respect to image size but we are confronted to two

difficulties:

1. the W -oracle is in principle unknown; and

2. diagonalizing an NLM filter is extremely expensive

computationally (O(N3) with respect to the number

N of pixels).

In order to address the first difficulty we included

in our tests the asymptotic performance of the pre-

filtered NLM. Directly computing the NLM filter on

the noisy image is not acceptable as explained in Sec-

tion 2.2.3. However, applying it to a pre-filtered ver-

sion of the image helps both (a) to satisfy the require-

ment of independence of the filter and noise, and (b)

to make the filter closer to the oracle one. We show in

Table 2 the asymptotic convergence rate we estimated

for the pre-filtered NLM basis and for the image lena.

For these experiments we used the denoising algorithm

NL-Bayes [14] to obtain the pre-filtered image. More-

over, we tuned the parameters of NL-Bayes in order to

slightly over-denoise the image. This trick allows to en-

sure that the filter is almost independent of the noise

realization (at the expense of the potential loss of some

subtle image structures). The experiment shows that

for the P-NLM basis not only do we achieve asymptotic

convergence, but the convergence rate is surprisingly

close to the convergence rate for the oracle NLM basis.

However, as it can be seen in Figure 11 the actual MSE

and the bound are always larger for Prefiltered NLM

than for Oracle NLM.

Unfortunately this asymptotic behaviour in the non-

oracle case cannot be generalized to all natural images.

Indeed under certain texture models a lower bound has

been established for all possible image denoising algo-

rithms as recalled in section 4.3.3.

However all these model estimates should be taken

with a grain of salt, for several reasons:
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Table 2 Fitted parameters α and γ for lena image in the
three bases DCT, O-NLM and P-NLM. The parameter r is
the decay rate of corollary 1.

image basis fitted α fitted γ r

lena
DCT 0.827 0.767 0.060
DWT 0.858 0.752 0.10
O-NLM 0.806 0.570 0.236

P-NLM 0.7822 0.54846 0.234

– The cubic computational cost of exactly computing

the eigenbasis of the NLM filters obliged us to limit

our evaluation to relatively small image sizes.

– Model (20) can not always be perfectly fit by all im-

ages and bases. The model seems to hold for “sta-

tionary” images or for images that contain a rela-

tively small number of stationary components. Oth-

erwise the task of fitting this model is particularly

difficult.

– Model (20) only gives a coarse upper bound for

the actual MSE∗. The second column in Figures 12

through 16 shows that even though this upper bound

is relatively coarse, the actual MSE∗ does follow the

same kind of decay withN as the upper bound. Nev-

ertheless, when comparing the actual MSE∗ of all

four bases (Figure 11) we observe that the real per-

formance of the prefiltered NLM is actually compa-

rable to that of DCT or wavelet bases; even though

the convergence rate r estimated on this model (0.234

for P-NLM vs 0.06 for DCT, 0.10 for DWT and

0.236 for O-NLM) seemed to indicate that the pre-

filtered NLM was much superior to DCT and rather

close to the oracle NLM performance.

Clearly more experiments on larger images are re-

quired to confirm or infirm the conclusions of this ini-

tial experimental study. Doing so will require the use

of more sophisticated and numerically efficient ways to

compute the eigenbasis of the NLM filter on medium

to large-size images. This could be achieved by means

of randomized numerical linear algebra [13], but such

techniques do assume a low rank structure of the fil-

tering matrix, so they cannot be used to estimate the

full spectrum of eigenvalues of W . Rather they should

be used in conjunction with incremental schemes like

in [3]. This shall be the subject of further research.

4.3 Discussion about specific cases

In the previous section, we mainly discuss about exper-

iments for images satisfying our main hypotheses. Now

let’s analyze what happens in two pathological cases:

O-NLM

Fig. 9 Top: Image mixed with two different textures. Bot-
tom: the corresponding MSE for diagonal estimation using O-
NLM basis when the size grows from (a) to (g) in log10 log10

scale.

4.3.1 Sparse Image

When the image is not widespread (like in the image

sparse in Figure 7), it shows trivial internal redun-

dancy that can be exploited by both the DWT and the

NLM bases. Hence the behavior of the MSE is domi-

nated by the black part of the image, and for this reason

we obtain a very fast decay of the MSE, hence almost

matching the theoretical rate r = 1 that is achieved

when we use not only optimal eigenvalues λ but also an

optimal basis V .

4.3.2 Texture change

In the previous section, we saw experiments for images

that do not change drastically with increasing size. But

we can wonder what happens when the image suddenly

changes with increasing size.

We show in Figure 9 an image composed of two tex-

tures and the corresponding curve presenting the be-

havior of the MSE for the O-NLM case. When we add

the second texture, the MSE increases, but when the

first texture reappears the MSE starts to decay again.

This behavior can explain the fact that there is no need

for a stationary hypothesis on the image to obtain con-

vergence. For a sufficiently good basis, able to capture

the self-similarity of images, such as NLM-O, we can

hope for an asymptotically optimal denoising. This re-

lies on the fact that when the scene size tends toward
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DCT

O-NLM

Fig. 10 Top: Image synthetic. Bottom: the corresponding
MSE for diagonal estimation using DCT basis and O-NLM
basis when the size grows from (a) to (g) in log10 log10 scale.

infinity, we can expect similar structures to reappear

again and again in the image.

4.3.3 Gaussian & dead-leaves texture models

To emphasize the importance of the basis we provide

a numerical experiment with a synthetic Gaussian tex-

ture in Figure 10. We proved in Section 3.4.2 that for

such a texture the convergence does not hold for a DCT

basis even if this texture presents a lot of self-similarity.

The numerical experiment confirms that result and pro-

vides experimental evidence for the asymptotic decay of

the MSE in the Oracle-NLM basis.

Unfortunately, this positive result for the O-NLM

case cannot possibly be extended to the non-oracle case.

Indeed Levin et al. [15] established a strictly positive

lower bound for any image denoising algorithm. This

result hols for infinite images that do not present long-

distance statistical dependencies. In that case the op-

timal denoiser for a given pixel x uses the values of

the noisy image in pixels y within a neighborhood of

x which does not exceed a certain maximal distance

D. For y beyond that neighborhood, u(x) and u(y) are

independent, so the values of ũ(y) provide no useful

information to estimate u(x).

This is the case for Gaussian textures generated by

a compactly supported kernel h, and for the dead-leaves

model [1]. For images of this kind, Levin’s positive lower

bound implies that asymptotically zero MSE is impos-

sible to achieve by any non-oracle denoising algorithm.

Our experimental result on the Gaussian texture sug-

gests asymptotic convergence of global denoising to-

wards zero MSE, only in the W -oracle case, as seen in

section 3.4.3 which explains this mechanism. But this

result does not extend to the case where global denois-

ing does not use an oracle to define the filter W .

5 Conclusion

In this paper, we analyzed the following question:

Can an image denoising algorithm attain asymp-

totically zero estimation error when the image

size tends to infinity?

This question was recently raised in [23,24] in the con-

text of oracle-optimized non-local filtering schemes. That

work suggests a positive answer but their reasoning is

based on conditions on the infinite image that we show

incompatible with reasonable assumptions. We refine

these conditions to better account for natural images,

and provide a more general theory of optimal asymp-

totic denoising performance. In particular our theory

explores how to partially avoid the use of an oracle, it

does not restrict itself to global image denoising, and

establishes links to the older diagonal estimation the-

ory, as well as with the optimality results of Donoho

and Johnstone [8].

More specifically, our work highlights the central

role played by the oracle in the work of [23], and makes

a clear distinction between two different ways in which

the oracle is used, namely: First a W -oracle is used to

construct the entries in the non-local filter W whose

diagonalization provides a basis V . Then a λ-oracle is

used to find optimal weights {λ∗j} for a given basis V .

The link we established with diagonal estimation theory

means that the λ-oracle can be avoided using Donoho

and Johnstone’s theorem, meaning that we can study

the convergence of a denoising algorithm that uses a λ-

oracle, in order to predict the asymptotic convergence



16 Antoine Houdard et al.
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Fig. 11 Left column: the decay of the |bNj | for each size and the result of the model fitting (dotted lines) for the image lena for

the different bases (from top to bottom) DCT, Wavelet, O-NLM and P-NLM. Right column: the decay of the MSE? (blue),
the upper bound from (14) (orange) and the fitted bound (yellow).
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(at a slower rate) of an algorithm that does not use such

a λ-oracle.

The W -oracle, however, is more difficult to avoid,

since we do not have a tool equivalent to Donoho and

Johnstone’s theorem in this setting. Hence non-oracle

convergence properties need to be directly tested on

a version of the algorithm that does not use the W -

oracle. And this is quite problematic because, without

an oracle, special care is required to ensure that the

filter W and the noise n are independent. And this in-

dependence is required for our asymptotic analysis of

the MSE to be valid. The quest for more general ways

to define non-local and non-oracle filters W , in a way

that their independence from image noise is ensured, is

still an open subject for future research.

As a whole our generalized analysis of the asymp-

totic behaviour of global image denoising provides less

optimistic conclusions than those in [23] but still leaves

the door open for asymptotically zero denoising error.

Our experimental study on small images seems to in-

dicate that the oracle non-local means filter can be op-

timized to attain asymptotically zero error, and that a

non-oracle version (i.e. without W -oracle) of that fil-

ter may have a similar behaviour, even though at a

much slower convergence rate and on a more restricted

number of examples. Clearly, more extensive experi-

mentation on a wider variety of larger-sized images is

required to determine whether these conclusions may

have any practical interest. However, performing such

an experimental evaluation requires huge amounts of

computation, and can only be addressed if faster and

more incremental matrix decomposition algorithms are

developed.

These conclusions and the prospect of asymptoti-

cally zero MSE may appear to be in contradiction with

the strictly positive lower bounds for image denoising

established by Levin et al. [15]. A careful inspection

reveals that there is no such contradiction, rather dif-

ferent models and complementary viewpoints that we

shall try to clarify below:

The positive lower bound of Levin et al. is valid for

certain statistical image models such as Gaussian and

dead-leaves textures For images of this kind, Levin’s

positive lower bound implies that asymptotically zero

MSE is impossible to achieve by any non-oracle denois-

ing algorithm. Our experimental result on the Gaussian

texture suggests asymptotic convergence of global de-

noising towards zero MSE, only in the W -oracle case.

But this result does not extend to the case where global

denoising does not use an oracle to define the filter W .

For more decidedly self-similar images like lena or

bricks our experiments indicate that even the P −
NLM filter that does not use a W -oracle is compat-

ible with asymptotically zero MSE. This shows that

for this image Levin’s assumption of absence of long-

distance dependencies does not hold, otherwise there

would be a contradiction.

The quest for a statistical model for natural images

that takes self-similarity into account in a realistic way

is still a very active area of research. Extending such

a model for image sizes tending to infinity poses yet

an additional challenge. Future research in that direc-

tion would hopefully allow to unify Levin’s and Talebi’s

views on asymptotic behaviour of image denoising.

A Global denoising for Gaussian textures on

Fourier basis

Proposition 3 Let u = h∗m be a Gaussian texture where mi ∼
N (0, τ2) iid, and the kernel h ∈ `1(Z2) has a smooth Fourier

transform ĥ ∈ L1([−π
2
, π
2

]2)∩C∞. Then when choosing V as a

Fourier or DCT basis, and λ as the optimal oracle eigenvalues

for that basis, then the MSE for global denoising is upper bounded
by

MSE ∗bound =
σ2

2N
‖b‖1 =

1

N2

σ

2

∑
k

|ĥN (k)||m̂N (k)| =: AN

Asymptotically we have a strictly positive MSE bound

MSE ∗bound = AN −−−−→
N→∞

A∞ =
στ‖ĥ‖1√

2π
> 0.

Proof Consider for simplicity images of square size N = n2

with n ∈ Z2.
Now consider mN the restriction of m to IN = [−N

2
, N

2

2
)∩

Z2.
In the truncated case the convolution is understood in the

periodic sense, so that we can write

ûN (k) = ĥN (k) · m̂N (k) ∀k ∈ IN

with ĥN (k) = ĥ(2πk
n

).
Now if we decompose uN in the Fourier basis V = F ∗

then

bNk = (FuN )k = ĥN (k) · m̂N (k)

So the upper bound given in equation (14) for the optimal
MSE is

MSE ∗N ≤
1

N2

σ‖bN‖1
2

=
1

N2

σ

2

∑
k∈IN

|ĥN (k)||m̂N (k)| =: AN

In the asymptotic case when N → ∞, a simple Riemann
sum argument based on the regularity of ĥ and on the known

value of
∫
dI
|m̂| = |dI|E(m̂N (k)) = τ

√
2
π
|dI| over a small in-

terval (mean absolute deviation of a gaussian), leads to the
conclusion that the upper bound tends to a strictly positive
constant

MSE ∗∞ ≤ lim
N→∞

AN =
στ‖ĥ‖1√

2π
= A∞ > 0.

ut



18 Antoine Houdard et al.

B An Oracle filter that provides asymptotically

zero MSE

Proposition 4 Consider an oracle filter which consists in de-
noising ũ by averaging at pixel i all values ũj such that |ui−uj | ≤
ε for a given threshold ε > 0 and an infinite image U bounded

with values in [0, 1[. Then the value MSE(ûN |uN ) converges to

a limit smaller than ε2.

Proof Indeed, let n = d1
ε
e, for 0 ≤ k < n let Ck = {i ∈

Ω; uNi ∈ [ k
n
, k+1
n

[}, and for every pixel i let Aεi = {j; |uNi −
uNj | ≤ ε}. It is clear that if i ∈ Ck, then Ck ⊂ Aεi . We can
write

MSE(ûN |uN ) =
1

N

n−1∑
k=0

∑
i∈Ck

E[|uNi − ûNi |
2]

=
1

N

n−1∑
k=0

∑
i∈Ck

E[|uNi −
1

#Aεi

∑
j∈Aεi

ũNj |2]

=
1

N

n−1∑
k=0

∑
i∈Ck

|uNi −
1

#Aεi

∑
j∈Aεi

uNj |2

+
n−1∑
k=0

∑
i∈Ck

σ2

#Aεi


≤ ε2 +

σ2

N

n−1∑
k=0

∑
i∈Ck

1

#Aεi

≤ ε2 +
σ2

N

n−1∑
k=0

∑
i∈Ck

1

#Ck
≤ ε2 +

nσ2

N
.

For a given value of ε, this term converges to ε2 when N →∞.
ut

C Additionnal experiments

Figures 12 through 16 show the detailed asymptotic conver-
gence results for the images in Figure 7 and Table 1.
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Fig. 12 Left column: the decay of the |bNj | for each size and the result of the model fitting (dotted lines) for the image simpson

for the different bases (from top to bottom) DCT, Wavelet, and O-NLM. Right column: the decay of the MSE? (blue), the
upper bound from (14) (orange) and the fitted bound (yellow).
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Fig. 13 Left column: the decay of the |bNj | for each size and the result of the model fitting (dotted lines) for the image bricks

for the different bases (from top to bottom) DCT, Wavelet, and O-NLM. Right column: the decay of the MSE? (blue), the
upper bound from (14) (orange) and the fitted bound (yellow).
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Fig. 14 Left column: the decay of the |bNj | for each size and the result of the model fitting (dotted lines) for the image sparse

for the different bases (from top to bottom) DCT, Wavelet, and O-NLM. Right column: the decay of the MSE? (blue), the
upper bound from (14) (orange) and the fitted bound (yellow).
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Fig. 15 Left column: the decay of the |bNj | for each size and the result of the model fitting (dotted lines) for the image synthetic

for the different bases (from top to bottom) DCT, Wavelet, and O-NLM. Right column: the decay of the MSE? (blue), the
upper bound from (14) (orange) and the fitted bound (yellow).
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Fig. 16 Left column: the decay of the |bNj | for each size and the result of the model fitting (dotted lines) for the image man

for the different bases (from top to bottom) DCT, Wavelet, and O-NLM. Right column: the decay of the MSE? (blue), the
upper bound from (14) (orange) and the fitted bound (yellow).
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