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We investigate a weighted Multilevel Richardson-Romberg extrapolation for the ergodic approximation of invariant distributions of diffusions adapted from the one introduced in [LP13] for regular Monte Carlo simulation. In a first result, we prove under weak confluence assumptions on the diffusion, that for any integer R ≥ 2, the procedure allows us to attain a rate n R 2R+1 whereas the original algorithm convergence is at a weak rate n 1/3 . Furthermore, this is achieved without any explosion of the asymptotic variance. In a second part, under stronger confluence assumptions and with the help of some second order expansions of the asymptotic error, we go deeper in the study by optimizing the choice of the parameters involved by the method. In particular, for a given ε > 0, we exhibit some semi-explicit parameters for which the number of iterations of the Euler scheme required to attain a Mean-Squared Error lower than ε 2 is about ε -2 log(ε -1 ).

Finally, we numerically this Multilevel Langevin estimator on several examples including the simple one-dimensional Ornstein-Uhlenbeck process but also on a high dimensional diffusion motivated by a statistical problem. These examples confirm the theoretical efficiency of the method.

Introduction

Let (X t ) t∈[0,T ] be the unique strong solution to the stochastic differential equation (SDE) dX t = b(X t )dt + σ(X t )dW t starting at X 0 where W is a standard R q -valued standard Brownian motion, independent of X 0 , both defined on a probability space (Ω, A, P), where b : R d → R d and σ : R d → M(d, q, R) are locally Lipschitz continuous functions with at most linear growth. The process (X t ) t≥0 is a Markov process and we denote by P µ its distribution starting from X 0 ∼ µ. Let L denote its infinitesimal generator, defined on twice differentiable functions g : R d → R by Lg = (b|∇g) + 1 2 Tr σ * D 2 g σ .

As soon as there exists a continuously twice differentiable Lyapunov function V : R d → R + such that sup then there exists an invariant probability measure ν for the diffusion in the sense that X is a stationary process under P ν , so that X t ∼ ν for every t ∈ R + . Under appropriate (hypo-)ellipticity assumptions on σ or global confluence assumptions (on this topic, see e.g. [START_REF] Lemaire | Invariant measure of duplicated diffusions and application to Richardson-Romberg extrapolation[END_REF]), this invariant measure ν is unique, hence ergodic. In particular, P ν (dω)-a.s. ν t (ω, dξ) =

1 t t 0 δ Xs(ω) ds (R d ) =⇒ ν
where

(R d )
=⇒ denotes weak convergence of distributions on R d (see e.g. [START_REF] Billingsley | Ergodic theory and information[END_REF] or [START_REF] Krengel | Ergodic theorems[END_REF] for background). We will assume that this uniqueness holds throughout the paper. Under additional assumptions, one shows that the diffusion is stable in the sense that ∀ x ∈ R d , P x (dω)-a.s. ν t (ω, dξ)

(R d ) =⇒ ν.
This P x -a.s. convergence is ruled by Bhattacharya's CLT (see [START_REF] Bhattacharya | On the functional central limit theorem and the law of the iterated logarithm for Markov processes[END_REF] for detailed assumptions), namely, if f : R d → R is such that the Poisson equation f -ν(f ) = -Lg admits a solution, then

√ t ν t (ω, f ) -ν(f ) (R d ) =⇒ N 0, σ 2 (f ) (1.2)
with σ 2 (f ) = R d |σ * ∇g| 2 dν where σ * denotes the transpose matrix of σ. In a series of papers (see e.g. [LP02, LP03, Lem07, PP09, PP14, Pan08]), the above properties have been exploited in order to compute by ergodic simulation integrals f dν = E ν f (X t ) or, more generally, E ν F (X t ) t∈[0,T ] where F is a (path-dependent) functional defined on the space C([0, T ], R d ) (see also [START_REF] Talay | Second order discretization schemes of stochastic differential systems for the computation of the invariant law[END_REF] or [START_REF] Piccioni | An iterative Monte Carlo scheme for generating Lie group-valued random variables[END_REF] for other references on the topic or more recently [START_REF] García Trillos | A decreasing step method for strongly oscillating stochastic models[END_REF]).

The starting idea is to mimic (1.2). First we replace the diffusion X by a discretization scheme with decreasing step. To be more precise, we consider, for a given non-increasing sequence of steps γ n > 0, n ≥ 1, the associated Euler scheme with decreasing step defined by Xn+1 = Xn + γ n+1 b( Xn ) + σ( Xn ) W Γn -W Γn-1 , n ≥ 0, X0 = X 0 ,

(1.3)

where Γ n = γ 1 + . . . + γ n , n ≥ 1. Then we introduce (for technical matter to be explained further on) a weight sequence (η n ) n≥1 and the related η-weighted empirical (or occupation) measures of the above Euler scheme, namely

ν η,γ n (ω, dx) = 1 H n n k=1 η k δ Xk-1 (ω) .
The computation of ν η,γ n (f ) can be performed recursively, once noted that that

ν η,γ n (f ) = η n H n f ( Xn ) + 1 - η n H n ν η,γ n-1 (f ), ν η,γ 0 (f ) = 0. (1.4)
It is clear that, in order to let the scheme explore the whole state space R d and to let the empirical measures take into account new values as n grows, we must require the pair (η n , γ n ) n≥1 satisfies

H n := η 1 + • • • + η n → +∞ and Γ n := γ 1 + • • • + γ n → +∞ as n → +∞.
(1.5)

When η = γ, the γ-empirical measure ν γ,γ is the natural counterpart of ν t and one expects that, under natural mean-reverting assumptions similar to (1.1) (or slightly more stringent), P x (dω)-a.s.

ν η,γ n (ω, dx) (R d )
=⇒ ν taking advantage of the fact that the step γ n ↓ 0. The major difference with the above continuous time pointwise Birkhoff's ergodic theorem is that, provided b, σ can be computed easily, these random measures taken against a function f (computable as well) can in turn be simulated. This opens the way to simulation based ergodic methods to compute ν(f ). Note that, though we will not go deeper in that direction, when ν = h.λ d is absolutely continuous such a method appears as a probabilistic numerical scheme for the resolution of the stationary Fokker-Planck equation L * h = 0 by providing the values of as many integrals f hλ d as required.

Let us first recall one simple convergence result for the a.s. weak convergence of the weighted empirical measures (ν η,γ n ) n≥1 (see Theorem V.2 borrowed and slightly adapted from [START_REF] Lemaire | Estimation récursive de la mesure invariante d'un processus de diffusion[END_REF]). 2 Then (SDE) admits at least one invariant distribution ν and for every x ∈ R d and p > 0, sup n E x V p ( Xn ) < +∞.

Assume ν is the unique invariant measure of (SDE). If the pair (η n , γ n ) n≥1 satisfies (1.5)

n≥2 1 H n η n γ n - η n-1 γ n-1 + < +∞ and n≥1 η n H n √ γ n 2 < +∞ (1.6)
then, P x (dω)-a.s. ν η,γ n (ω, dx)

(R d )
=⇒ ν. Moreover, P x -a.s., for every ν-a.s. continuous functions R d → R with V -polynomial growth, ν η,n (ω, f ) → ν(f ) as n → +∞.

(1.7)

REMARK 1.1. £ By V -polynomial growth we mean that f = O(V p ) at infinity for some p > 0.

£ The condition (S) is stronger than (1.1). It implies that there exists α ∈ (0, +∞) and β ∈ R such that LV ≤ β -α V . In fact the conclusions of the above proposition are also true for the continuous time occupation measure ν t (ω) = 1 t t 0 δ Xs(ω) ds of the diffusion itself. £ The above result remains true under weaker Lyapunov assumptions of the following type: LV ≤ β -α V a with a ∈ (0, 1]. For the sake of simplicity, we choose in this paper to state the results under (S) only but all what follows can be extended to the weaker setting owing to additional technicalities (involving the control of the moments of the diffusion or of the Euler scheme (1.3)). £ In the above proposition, the condition lim |x|→+∞ V (x) |x| ρ = +∞ can be relaxed into lim |x|→+∞ V (x) = +∞. For the sequel, the interest of this slightly reinforced assumption is to ensure that every function f with polynomial growth has a V -polynomial growth.

DEFINITION 1.1. A pair (η n , γ n ) n≥1 (with decreasing γ n ) satisfying (1.5) and (1.6) is called an averaging system.

Examples. If γ n = γ 1 n -a and η n = η 1 n -c , then the pair (η n , γ n ) n≥1 is averaging as soon as 0 < a < 1 and 0 < c < 1. In practice, we will extensively use that, furthermore, the pairs of the form (γ n , γ n ) n≥1 are averaging for ∈ {1, . . . , 1 a -1} so that a < 1. The rate of convergence of ν η,γ n (f ) toward ν(f ) has also been elucidated and reads as follows (when d = 1 and η n = γ n for the sake of simplicity, keeping in mind that even in that setting, various averaging systems are involved):

Set Γ (2) n = n k=1 γ 2 k , n ≥ 1. Assume the Poisson Equation f -ν(f ) = -Lg has a smooth enough solution and that Γ (2) n √ Γ n → β, then Γ n ν γ,γ n (f ) -ν(f ) (R) -→ N βν(Ψ 2 ); σ 2 1 (f ) if β ∈ [0, +∞), (1.8) Γ n Γ (2) n ν γ,γ n (f ) -ν(f ) a.s. -→ ν(Ψ 2 ) if β = +∞ (1.9) with σ 2 1 (f ) = ν(|σ * ∇g| 2 = -2ν(g.Lg) and Ψ 2 (x) := 1 2 D 2 g(x)b(x) ⊗2 + 1 24 E[D (4) g(x)(σ(x)U ) ⊗4 ], U ∼ N (0, I q ).
When γ n = n -a the unbiased CLT ( β = 0) holds for a ∈ 1 3 , 1 , the biased CLT for a = 1 3 and the biased convergence in probability for a ∈ (0, 1 3 ). On can interpret this result as follows: if (γ n ) decreases to 0 fast enough ( β = 0), the empirical measures ν γ,γ n behaves like the empirical measures ν t of the diffusion. When (γ n ) goes to 0 too slowly, there is a discretization effect which slows down the convergence of the empirical measure at rate Γn Γ

(2) n . The convergence then holds a.s. (or at least in probability) which confirms that what slows down the convergence is a bias term whose rate of decay is lower than 1/ √ Γ n . The top rate of convergence is obtained with a biased CLT .

We will see in Theorem 2.1 further on that, in fact, there are many of these bias terms which go to 0 slower than the CLT rate for slowly decreasing steps. So killing these terms is a major issue to speed up such ergodic simulations (or Langevin Monte Carlo method) compared to the regular Monte Carlo method.

The Multilevel paradigm has been introduced by M. Giles in the late 2000's (2008, see [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF]). Ever since, it has been extensively adapted to various types of simulations (nested Monte Carlo, see [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF], stochastic approximation [START_REF] Frikha | Multi-level stochastic approximation algorithms[END_REF]) and dynamics (Lévy driven diffusion, random maps, etc) as a bias killer. The principle is the following: assume that a quantity of interest to be computed does have a representation as an expectation, say E Y 0 , but that the random variable Y 0 cannot be simulated at a reasonable computational cost. Then one usually approximates Y 0 by a family (Y h ) h>0 of random vectors that can be simulated with a low complexity, relying on discretization schemes of the underlying dynamics. The typical situation is the Y 0 = f (X T ) or F (X t ) t∈0,T ] ) where (X t ) is a Brownian diffusion as above and

Y h = f ( Xn T ) or F ( Xn t ) t∈0,T ]
) where ( Xt ) t∈[0,T ] is a discretization scheme, say an Euler or a Milstein scheme with step h = T n ∈ H = T m , m ∈ N * . A multilevel estimator with depth L ∈ N * of EY 0 is designed by implementing a non-homogeneous Multilevel Monte Carlo (MLMC) estimator of size N ∈ N * of the form

1 N 1 N1 k=1 Y (1),k h + L =2 1 N N k=1 Y ( ),k h M -1 -Y ( ),k h M -2
where h ∈ H is a fixed coarse step, (Y ( ),k h ) h∈H ) =1,...,L,k≥0 are independent copies of (Y h ) h∈H , M ≥ 2, is a fixed integer and N 1 , . . . , N R is an appropriate (optimized) allocation policy of the simulated paths across the levels such that

N 1 + • • • + N R = N (in practice, at a given level , only Y ( ) h M -1 and Y ( ) h M -2
have to be simulated). The level = 1 is the coarse level whereas the levels ≥ 2 are the refined levels. Within a refined given level , Y

( ),k h M -2 denotes the coarse scheme and Y ( ),k h M -1
the refined scheme. For some fixed k and , the random variables are "consistent" in the sense that they have been simulated from the same underlying Brownian motion W ( ) . A quantitative translation of this consistency is that

Y h converges in (squared) quadratic norm to Y 0 at a h β rate, namely Y h -Y 0 2 2 ≤ V 1 |h| β , h ∈ H.
The parameter β depends on f or F in a diffusion framework. If f or F are locally Lipschitz continuous with polynomial growth (with respect to the sup norm as for F ), β = 1. This parameter β and the constant V 1 are key parameters to optimize the allocations of the paths to the various levels (see [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF][START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF]).

Among other results, M. Giles proved that if α = 1 and β = 1 -which is the standard situation in a diffusion discretized by its Euler scheme -when Y 0 = f (X T ), Y h = f ( Xn T ) (Euler scheme with step h = T n ), f , b, σ smooth enough (or σ uniformly elliptic if f is simply Borel and bounded), the resulting complexity of the optimized Multilevel Monte Carlo estimator to attain a prescribed Mean Squared Error ε 2 behaves like O log(1/ε)/ε 2 as ε → 0. When β > 1 (fast strong approximation like with the Milstein scheme), this rates attains O ε -2 i.e. the rate of a (virtual) unbiased simulation. The case β < 1 provides even better improvements compared to a crude Monte Carlo simulation.

In a recent paper (see [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF]) a weighted version of the above multilevel estimator has been devised to take advantage of a higher order expansion of the weak error (bias expansion) up to an order R ∈ N * , namely

E Y h = R r=1 c r h αr + O h α(R+1) ,
still under the above quadratic convergence rate assumption. Then, the so-called Multilevel Richardson-Romberg estimator (ML2R in short) is still based on the simulation of independent copies of (Y h ) h∈H and reads

W (R) 1 N 1 N1 k=1 Y (1),k h + R r=2 W (R) r N r Nr k=1 Y (r),k h M r-1 -Y (r),k h M r-2
where the R-tuple (W (R) r ) 1≤r≤R of weights has a closed form entirely determined by α, and M and not on (Y h ) h≥0 (that means on the specific form of f , b, σ in a diffusion framework). For this weighted estimator, the complexity is reduced mutatis mutandis to O log(1/ε)/ε 2 in the setting β = 1. When β < 1 this estimator dramatically outperforms the above "regular" multilevel method since it only differs from a (virtual) unbiased simulation by a factor exp

-1-β α √ log(2) log(1/ε)/2 (when M = 2) instead of ε 1-β α
with MLMC. The underlying idea for this weighted Multilevel method is to combine the multilevel paradigm with a multistep Richardson-Romberg extrapolation introduced in [Pag07], hence its name. We refer to [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF] for more precise results and proofs.

The aim of this paper is to transpose the weighted multilevel paradigm to the Langevin Monte Carlo simulation with decreasing step described above, with the issue that, in contrast with regular Monte Carlo simulation, canceling the bias terms directly impacts the rate of convergence of the method by enlarging the range of step parameters for which a CLT holds at rate √ Γ n to coarser steps (so that Γ n goes faster to infinity where the stationary regime takes places). So we will adapt the ML2R estimator to the occupation measure ν γ n = ν γ,γ n introduced before. Like in the regular Monte Carlo setting, we introduce, for a function f , a weighted estimator involving ν n (f ) and some correcting terms denoted by µ (r,M ) n (f ), r = 1, . . . , R based on some pairs of coupled refined schemes (see (2.12) for details). Since the ergodic estimation of the invariant measure is based on only one path, the idea here is to replace the allocation policy of realizations N 1 , . . . , N R of the ML2R method by a sizing policy q 1 , . . . q R of the length of the coarse path (involved in ν n (f )) and those of the correcting sequences µ (r,M ) n (f ).

In order to asymptotically kill the successive terms of the bias induced by the estimator, we will need some asymptotic expansions of the ν n and µ (r,M ) n such as (2.13) and (2.14) below. These expansions, which require the invertibility of the infinitesimal generator (or equivalently the existence of solutions to the Poisson equation) can be viewed as the counterpart of the classical weak error/bias expansion E[f (X T )] -E[f ( XT )] in finite horizon. Concerning the strong convergence rate property which leads to the control of the variance of the corrective terms in the standard Multilevel method, its counterpart in our ergodic setting is the following mean confluence result which says that 1

Γ (2) n n k=1 γ k |X Γ k -Xk | 2 -→ 0 a.s. as n → +∞.
It says that the (γ 2 , γ)-empirical measure of the couple (X, X) concentrates on the diagonal of

R d at rate o Γn Γ (2) n
. Such a property holds e.g. when the diffusion itself is exponentially confluent (typically a mean-reverting Ornstein-Uhlenbeck process) under an exponential confluence property which holds under (S).

Throughout the proofs, we will work in one dimension for notational convenience. The extension to the multidimensional case would only generate technicalities.

Outline. The paper is organized as follows. We begin by introducing precisely the weighted empirical sequence built for the estimation of the invariant measure, called ML2Rgodic and denoted by ν R,W n . Then, our main results are divided in three parts. In Theorem 2.1, we obtain some CLTs for ν R,W n : we show that the ML2Rgodic-Algorithm with R -1 levels of corrections and an appropriate sequence (γ n ) has an optimal rate of order n R 2R+1 with an asymptotic variance which is the same as the one of the original procedure. Then, in view of the optimization of the choices of the parameters, we exhibit in Theorem 2.2 some first and second order asymptotic expansions of the Mean-Squared Error. Based on this result, we proceed to the optimization in Theorem 2.3 and provide some choices of the parameters involved by the algorithm which lead to a complexity of order ε -2 log( 1 ε ) (instead of ε -3 for the original procedure). The main tools for the establishment of Theorems 2.1 and 2.2 appear in Sections 3 and 4. Then, the proofs of Theorems 2.1, 2.2 and 2.3 are achieved in Section 5. Finally, we end this paper by some numerical computations in Section 6.

2 The Multilevel-Romberg Ergodic (ML2Rgodic) procedure

Design of the ML2Rgodic Langevin estimator

We aim at adapting the multilevel paradigm to devise an ergodic estimator for the approximation of the invariant distribution. For a given integer R ≥ 2, the idea is to modify the original procedure with the aim to kill the R first terms of the expansion of the discretization error without impacting too much the simulation cost of simulation.

Let γ = (γ n ) n≥1 be a sequence of steps, and M and R be two integers such that R ≥ 2 and M ≥ 2. First we consider an Euler scheme X(1) = X with decreasing step γ associated to a standard Brownian motion W (0) = W . We associate to this scheme R -1 independent coupled schemes ( X(r) , Ȳ (r,M ) ), r = 2, . . . , R, independent of X(0) where • X(r) is an Euler scheme with decreasing step γ (r,M ) = γ M r-2 (so that γ (2,M ) = γ) associated to a Brownian motion W (r) .

• Ȳ (r,M ) is a refined Euler scheme with decreasing step γ (r,M ) associated to the same Brownian motion W (r) where

∀ m ∈ {1, . . . , M }, γ (r,M ) M (n-1)+m = γ (r,M ) n M = γ n M r-2 , n ≥ 1.
(2.10) Set, for every integers ≥ 1 and r ≥ 2,

Γ ( ,r) n = n k=1 (γ (r,M ) k ) = M -(r-2) n k=1 γ k = M -(r-2) Γ ( ) n (2.11)
where Γ

( ) n = Γ ( ,2) n = n k=1 γ k . Note that Γ ( ) n = Γ ( ,2) n 
. Then, we define for every r = 2, . . . , R the sequence of difference of the empirical measures of the two schemes by

µ (r,M ) n (dx) = 1 Γ (1,r) n n k=1 M -1 m=0 γ (r) M (k-1)+m δ Ȳ (r) M (k-1)+m -γ (r) k δ X(r) k-1 , n ≥ 1, = 1 Γ (1,r) n n k=1 γ n M r-2 1 M M -1 m=0 δ Ȳ (r) M (k-1)+m -δ X(r) k-1
, n ≥ 1.

(2.12)

The expected weak limit of µ (r,M ) n (f ) is 0 as a difference of occupation measures of two Euler schemes with decreasing step. Thus, this empirical measure plays the role of a correcting term. Now, let q 1 , . . . , q R denote some positive real numbers, called re-sizers from now on, satisfying ∀r ∈ {1, . . . , R}, 0 < q r < 1, q 1 + . . . + q R = 1, and, for a given integer n ≥ 1, set n r = q r n , r = 1, . . . , R.

Let f : R d → R be a smooth function, coboundary for the infinitesimal generator L (existence of solutions to the Poisson equation f -ν(f ) = L(g)). Under some appropriate assumptions (including weak confluence) we can prove in a sense made precise later on (see Propositions 3.2(b) and 3.3(b)) that the sequences (ν n1 (f )) n≥1 and (µ (r,M ) nr (f )) n≥1 satisfy the following asymptotic generic type-expansions:

ν n1 (f ) = ν(f ) + R+1 =2 Γ ( ) n1 Γ n1 ν(Ψ ) + M n Γ n + o 1 Γ n1 ∧ Γ (R+1) n1 Γ n1 (2.13) µ (r,M ) nr (f ) = R+1 =2 M (r-2)(1-) (M 1--1) Γ ( ) nr Γ nr ν(Ψ ) + o 1 Γ nr ∧ Γ (R+1) nr Γ nr , (2.14) 
where (M n ) n≥1 is a martingale and (Ψ ) ≥1 is a sequence of functions made precise further on. At this stage, the reader can remark that there is no martingale term in the main part of the second expansion. This point, which is strongly linked with the weak confluence assumption (C w ) introduced below, can be understood as follows: the martingale term induced by µ (r,M ) n is asymptotically negligible against the one of ν n1 (f ). In a rough sense, this means that if we build an appropriate combination of ν n1 (f ) and µ (r,M ) nr (f ), r = 1, . . . , R, we will be able to kill the bias error without growing the asymptotic variance. But a numerical computation holds in a finite (non-asymptotic) setting so that this heuristic needs to be refined in practice. One of the objectives of the paper is thus to go deeper in the study of the expansion in order to be able to propose an efficient and potentially optimized method of approximation of the invariant distribution.

The ML2Rgodic-algorithm: As mentioned before, the first step toward our ML2Rgodic estimator is to design an appropriate combination of the formerly defined empirical measures in order to "kill" the bias. Furthermore, we require that this combination does not depend upon the size n of the estimator. We thus define a sequence of empirical measures denoted by ( ν

(R,W ) n ) n≥1 by: ν (R,W) n = W 1 ν n1 + R r=2 W r µ (r,M ) nr , n ≥ 1, (2.15) 
where W = (W r ) R r=1 is a sequence of real numbers. For the sake of simplicity, we do not mention the dependency of ν (R,W) n in M and γ. Also, let us remark that the weights W r clearly depend on R and will sometimes be denoted W (R) r in order to recall this dependence when necessary. Let us now specify W. First, by (2.13) and (2.14), one remarks that it is necessary to assume that W 1 = 1 in order to ensure the convergence towards ν.

Let us now consider the construction of W 2 , . . . , W R . To this end, we consider from now on step sequences with polynomial decay

γ k = γ 1 k -a with γ 1 > 0, a ∈ (0, 1).
(2.16)

Then by plugging the expansions of the bias resulting from (2.13) and (2.14) in the definition (2.15)

of the ML2Rgodic estimator we derive that

E ν (R,W) n = W 1 Eν n1 (f ) + R r=2 W r E µ (r,M ) nr (f ) = W 1 ν(f ) + R+1 =2 W 1 Γ ( ) n1 Γ n1 + R r=2 W r M (r-2)(1-) M 1--1 Γ ( ) nr Γ nr ν(Ψ ) + o Γ (R+1) n Γ n ≈ W 1 ν(f ) + R+1 =2 Γ ( ) n Γ n ν(Ψ ) W 1 q -a( -1) 1 + R r=2 W r M (r-2)(1-) M 1--1 q -a( -1) r + o Γ (R+1) n Γ n
where the notation ≈ is used to keep in mind that one implicitly assumes that

Γ ( ) nr Γn r -q -a( -1) r Γ ( ) n Γn
is negligible (see further on the proof of Theorems 2.1 and 2.2). Then as soon as the weights (W r ) 1≤r≤R are solutions to the linear system

W 1 = 1, W 1 q -a( -1) 1 + (M 1--1) R r=2 W r M -(r-2)( -1) q -a( -1) r = 0, = 2, . . . , R, (2.17)
the bias is "killed" up to order R and reads

E ν (R,W) n ≈ 1 -a 1 -a(R + 1) γ R 1 ν(Ψ R+1 ) W R+1 n -aR + o Γ (R+1) n Γ n
where we set, more generally,

W R+i = W 1 q -a(R+i) 1 + (M -R-i+1 -1) R r=2 W r M -(r-2)(R+i-1) q -a(R+i) r , i ≥ 0.
(2.18)

The main difference at this stage with the regular weighted Multilevel estimator is that these weights depend on the re-sizers q r which will make a complete optimization of these allocation parameters out of reach.

In the following lemma the linear system (2.17) is solved. In short, it shows that the weights are uniquely defined provided the re-sizers q r satisfy qr M r/a = qs M s/a , s = r. Note that these weights depend on the exponent a (and the (q r )) but not on γ 1 .

Another important point is that, by contrast with the regular weighted Multilevel Monte Carlo setting, this system in its general form is not a regular Vandermonde system though it shows some similarities. In fact it can be related to a sequence of (R -1) × (R -1)-Vandermonde systems with closed solutions. A notable exception to this situation occurs in the very special of uniform re-sizers q r = 1 R , r = 1, . . . , R where we retrieve exactly the weights of the regular Monte Carlo M L2R introduced in [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF]. For a given depth R > 1, the closed form of (W i ) R i=2 (keeping in mind that W 1 = 1) is given by the following lemma.

LEMMA 2.1. (a) General re-sizers: If q := (q 1 , . . . , q R ) ∈ S R := (x 1 , . . . , x R ) ∈ (0, +∞) R , R i=1 x i = 1 and satisfies qr M r/a = qs M s/a , s = r, then the above system (2.17) has a unique solution given by

W (R) r = M r-2 q r q 1 a k≥0 1 M k R s=2,s =r 1 -M s-2-k (q s /q 1 ) a 1 -M s-r (q s /q r ) a , r = 2, . . . , R. (2.19)
Moreover, the coefficients W (R) R+i , i = 1, 2, as defined in (2.18) read

W (R) R+1 = (1 -M -R ) q aR 1 k≥0 1 M kR R-2 r=0 1 -M k-r q 1 q r+2 a .
(2.20)

and

W (R) R+2 = (1 -M -(R+1) ) q a(R+1) 1 k≥0 1 M k(R+1) 1 + R-2 r=0 M k-r q 1 q r+2 a R-2 r=0 1 -M k-r q 1 q r+2 a . (2.21) (b) Uniform re-sizers: If q r = 1 R , r = 1, .
. . , R, the following simpler closed form holds for the weights

W (R) r : W (R) r = w (R) r + • • • + w (R) R , r = 1, . . . , R (2.22) with w (R) r = R s=1,s =r M -(s-1) M -(s-1) -M -(r-1) = R s=1,s =r 1 1 -M s-r , r = 1, . . . , R.
(2.23)

These weights (W R r ) r=1,...,R , R ≥ 1, are bounded i.e. sup r=1,...,R,R≥1 |W (R) r | < +∞. Furthermore W (R) R+1 = (-1) R-1 R aR M -R(R-1) 2 and W (R) R+2 = (-1) R R a(R+1) M -R(R-1) 2 1 -M R 1 -M -1 . (2.24)
The proof is postponed to Appendix A.

Examples. • R = 2: W (2) 1 = 1, W (2) 2 = M M -1 q2 q1 a • R = 3: (W (3) 2 , W (3) 
3

) = M M -1   q 2 q 1 a 1 -M 2 M +1 q3 q1 a 1 -M q3 q2 a , q 3 q 1 a 1 -M 2 M +1 q2 q1 a 1 -M -1 q2 q3 a   .
When there is no ambiguity the superscript (R) will be dropped in the notations

W (R) , w (R) r
and W (R) R+1 . In the sequel, ν (R,W) n will be always defined with W satisfying (2.17) or (2.19).

Assumptions. We introduce below the assumptions for the first theorem. As recalled in the introduction, the study of the rate of convergence brings into play the Poisson equation related to the SDE. In this paper where we are going deeper in the expansion of the error, we will need to use it successively. For the sake of simplicity, we thus assume the following (strong) assumption:

(P) : For every C ∞ function f , there exists a unique (up to an additive constant) C ∞ -function g, such that f -ν(f ) = -Lg. Furthermore, if f is a function with polynomial growth, then g also is.

For instance, it can be shown that, when σ is bounded and uniformly elliptic (in the sense that (σσ * (x)x|x) ≥ λ 0 |x| 2 for some λ 0 > 0), when Assumption (S) is in force and f , b and σ are smooth have polynomial growth as well as their derivatives, then (P) holds true. Actually, we first recall that under the ellipticity and Lyapunov assumptions, the semi-group converges exponentially fast towards ν (in total variation) so that g(x) = ∞ 0 P s f (x) -ν(f )ds is well-defined and it is classical background that g is the unique (up to a constant) solution to the Poisson equation f -ν(f ) = -Lg (see e.g. [START_REF] Pardoux | On the Poisson equation and diffusion approximation[END_REF]). Then, by [GT83, Theorem 6.17], under uniform ellipticity, g is in fact C ∞ as soon as f , b and σ are. The polynomial growth of g and ∇g has been proved in [PV01, Theorem 1]. The property is obtained through the a priori estimate, see Equation (9.40) in [START_REF] Gilbarg | Elliptic partial differential equations of second order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF], which in fact also holds for D 2 g. Then, we can establish by induction that all the partial derivatives of g have a polynomial growth. Assume it is true up to order k. First note that u = ∂ i1,...,i k-1 g is a solution to Lu = -f g where f g is a function which depends on f , b and σ and their first order partial derivatives and some derivatives of g up to order k. Hence, f g has polynomial growth and the a priori error bound (9.40) in [START_REF] Gilbarg | Elliptic partial differential equations of second order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF] for the second order partial derivatives of u yields the polynomial growth of the partial derivatives ∂ i1,...,i k+1 g.

The second additional assumption has been introduced in [PP14] and deeply studied [START_REF] Lemaire | Invariant measure of duplicated diffusions and application to Richardson-Romberg extrapolation[END_REF]: it requires the diffusion to be weakly confluent, i.e. that two paths of the diffusion, with different initial values, but driven by the same Brownian motion, asymptotically cluster in a weak (or statistical) sense as follows: let (X t , Y t ) t≥0 be the duplicated diffusion (or two-point motion) associated with the diffusion (SDE) by

dX t = b(X t )dt + σ(X t )dW t dY t = b(Y t )dt + σ(Y t )dW t , (2.25)
where X 0 , Y 0 are two starting values independent of W . If ν is an invariant distribution for (SDE), ν ∆ := ν • (x → (x, x)) -1 is trivially invariant for the couple (X, Y ). The diffusion (SDE) is said weakly confluent if ν ∆ is the only invariant distribution for (X, Y ) (which implies implicitly that ν itself is the unique invariant distribution of (SDE)). In the sequel, this assumption is referred to as (C w ): (SDE) is weakly confluent.

REMARK 2.2. £ Under slight additional assumptions on the stability of (SDE), it can be shown (see [START_REF] Lemaire | Invariant measure of duplicated diffusions and application to Richardson-Romberg extrapolation[END_REF]) that, if (C w ) holds, the diffusion is statistically confluent in the sense that

1 t t 0 δ (Xs,Ys) ds (R 2d )
=⇒ ν ∆ a.s. as t → +∞.

£ For the empirical measure ν

(R,W) n
, the role of (C w ) is to ensure that the empirical measures µ r,L n , built with some differences of schemes X(r) n and Ȳ (r) n have a negligible asymptotic variance (with respect to that of ν n ). This property will be made precise in Section 4.

We are now in position to state the first main theorem.

THEOREM 2.1 (CLT). Assume (S), (P) and (C w ). Let (R, M ) ∈ (N * \ {1}) 2 and let (W r ) 1≤r≤R denote the R-tuple of weights defined by (2.19). Let q = (q r ) 1≤r≤R ∈ S R be an R-tuple of re-sizers

satisfying qr M r = qs M s , s = r. Let γ n = γ 1 n -a , n ∈ N * , a ∈ (0, 1/R), be a discretization step sequence. Let f : R d → R be a C ∞ -function and denote by g the solution to f -ν(f ) = -Lg. Let W = (W r ) r=1,...,R be defined by (2.19). (a) If a ∈ 1 2R+1 , 1 R , then n 1-a 2 ν (R,W) n (f ) - R f dν (R) =⇒ N 0; σ 2 f (a, q, R) as n → +∞ with σ 2 f (a, q, R) = 1 -a γ 1 σ 2 1 (f ) q 1-a 1 with σ 2 1 (f ) = ν(|σ * ∇g| 2 ). (2.26) (b) If a = 1 2R+1
, the CLT holds at an optimal rate towards a biased Gaussian distribution, namely

n R 2R+1 ν (R,W) n (f ) - R d f dν (R) =⇒ N m f (q, R); σ 2 f (q, R) as n → +∞ with σ 2 f (q, R) := σ 2 f ( 1 2R+1 , q, R) and m f (q, R) := 2γ R 1 W R+1 c R+1
where W R+1 is given by (2.18) and c R+1 = ν(Ψ R+1 ), Ψ R+1 being a C ∞ -function with polynomial growth (whose explicit expression in the one-dimensional case is given by

(3.38)). (c) If a ∈ 0, 1 2R+1 , then n aR ν (R,W) n (f ) - R f dν P -→ m f (a, q, R) as n → +∞ with m f (a, q, R) := 1 -a 1 -a(R + 1) γ R 1 W R+1 c R+1 .
(2.27) REMARK 2.3. Note that the definitions of m f (a, q, R) and m f (q, R) in the above claims (b) and (c) are consistent since m f (q, R) = m f (a, q, R) when a = 1 2R+1 .

From an asymptotic point of view, the above result says in particular that when R grows, the optimal rate of convergence tends to n 1 2 without increasing the (asymptotic) variance. However, from a non-asymptotic point of view, one has certainly to go deeper in the result to try to optimize the choice of the parameters. This implies to take into account the effect of the choice of q, M and R on the residual bias term, the variance and on the computational cost. This is the purpose of the next paragraph. L 2 -expansions of the error. The aim of this part is to study the quadratic error to prepare the optimization of the parameter of the multilevel estimator (a, q, R, n) algorithm subject to a prescribed quadratic error ε > 0. To this end, we will not only provide a re-formulation of Theorem 2.1 in quadratic norm, we will also go deeper in the study of the asymptotic error. In particular, in the previous result, the variance induced by the correcting terms µ R,M n does not appear and we would like to quantify it. We will also need to control the residual error terms not only in n but also with respect to the depth R, since this parameter is intended to go to +∞ in the optimization phase. This will lead us to carry out the expansion to the order R + 2 and not R or R + 1 like in the above theorem and to introduce a second and more constraining confluence assumption denoted by (C s ):

(C s ) : There exists α > 0 and a positive matrix S such that for every x, y ∈ R d , . Furthermore to get closer to practical aspects, we only consider the optimal case a = ā = 1/(2R + 1) which clearly provides the highest possible rate of convergence for a given complexity. Finally we will focus on the uniform re-sizing vector q r = 1 R , r = 1, . . . , R. They turn out to be most likely rate optimal and, as emphasized in Remark B.11, in that case the first term of the bias of the ML2Rgodic estimator does vanish whereas for other choices of vectors q a residual bias (at rate O(n -1-ā )) still remains. Though theoretically negligible, it turns out to have a strong numerical impact on simulations. THEOREM 2.2 (Mean Squared Error for a = ā = 1 2R+1 ). (a) Suppose that the assumptions of the previous theorem hold and let a = 1 2R+1 . Then,

(b(x) -b(y)|x -y) S + 1 2 σ(x) -σ(y) 2 S ≤ -α x -
ν (R,W) n (f ) -ν(f ) 2 2 = n -2R 2R+1 σ 2 f (q, R) + m 2 f (q, R) + o(1) as n → +∞. (b) If, furthermore, (C s ) holds ν (R,W) n (f )-ν(f ) 2 2 = n -2R 2R+1 σ 2 f (q, R) + m 2 f (q, R) + 1 n σ 2 f (q, R) + m f (q, R) + o(1) as n → +∞
where, on the one hand

σ 2 f (q, R) = 1 q 1 σ 2 2,1 (f ) + 1 - 1 M Ψ(R, M )σ 2 2,2 (f ) (2.28) with Ψ(R, M ) = 4R 2 4R 2 -1 R r=2 (W (R) r ) 2 (2.29)
and σ 2 2,1 (f ) and σ 2 2,2 (f ) are some variance terms explicitly defined further on by (4.42) and (4.45) in Propositions 4.4 and 4.5 respectively. On the other hand m f (q, R) is given by

m f (q, R) = 8R R -1 c R+1 c R+2 γ 2R+1 1 W (R) R+1 W (R) R+2 .
(c) If furthermore the re-sizers are uniform, namely q r = qr = 1 R , r = 1, . . . , R, then the weights W (R) r are given by (2.23) and W (R) R+1 and W (R) R+2 by (2.24) so that

m f (q, R) = - 4R R -1 c R+1 c R+2 γ 2R+1 1 R M -R(R-1) 1 -M -R 1 -M -1 .
(2.30)

Optimization procedure

It remains to optimize the parameters to minimize the complexity of the estimator for a given prescribed mean square error (M SE). In view of the above Theorem 2.1, it is clear that the parameter a should be settled at

a = ā = 1 2R + 1 .
We start from Theorem 2.2(b) with a = ā = 1 2R + 1 and q r = qr := 1 R , r = 1, . . . , R.

Then the weights W r , r = 1 . . . , R and W R+1 are given by (2.23) and (2.24) (those coming out in standard multilevel Monte Carlo e.g. in the case of the approximation of a diffusion by its Euler scheme).

We denote by = (R, γ 1 , n, M ) ∈ Π = N * × (0, +∞) × N * × N * the remaining set of free simulation parameters that we wish to optimize. With this specification for a and the allocation vector q, the M SE( ) reads

ν R,W n -ν(f ) 2 2 = 1 n 2R 2R+1 σ 2 f ā, q, R) + m 2 f (ā, q, R) + 1 n σ 2 f (ā, q, R) + m f (q, R) + o(1) (2.31)
as n goes to ∞ where, owing to (2.27), (2.30), (2.26) and (2.28),

m f (ā, q, R) = 2γ R 1 (-1) R-1 R R 2R+1 M -R(R-1) 2 c R+1 , m f (q, R) = - 8R R -1 c R+1 c R+2 γ 2R+1 1 R M -R(R-1) 1 -M R 1 -M -1 , σ 2 f (ā, q, R) = = 2R 2R + 1 R 2R 2R+1 σ 2 1 (f )γ -1 1 , σ 2 f (ā, q, R) = = R σ 2,1 (f ) 2 + 1 - 1 M Ψ(R, M )σ 2 2,2 (f ) .
On the other hand, the complexity K( , n, M ) of the multilevel Langevin estimator devised in (2.15) reads

K( , n, M ) = n q 1 + (M + 1)(q 2 + • • • + q R ) κ 0 = n 1 + M (1 -q 1 ) κ 0 = n 1 + M 1 - 1 R κ 0
where κ 0 denotes the unitary computational cost of one iteration of an Euler scheme.

To calibrate the above parameter , we want to minimize the complexity subject to a prescribed RM SE ε > 0, that is solving the constrained optimization problem:

inf M SE( )≤ε 2 K( ).
To state the main result of this section, whose proof is postponed to Section 5, we need to introduce a function related to the weights W (R) r and on the depth of the simulation. We know from Lemma 2.1(c) that sup 1≤r≤R,R≥2 |W

(R) r | < +∞. Consequently, M being fixed, Ψ(R, M ) = O(R)
as R → +∞ (where Ψ is defined by (2.29)). This leads us to define

Ψ(M ) = sup R≥1 Ψ(R, M ) R .
(2.32)

We refer to Table 2 for some numerical values of Ψ and Ψ.

THEOREM 2.3. Under the assumptions of Theorem 2.2 and if, furthermore, lim

R→+∞ 1 R c R+1 c R = 0 and |c R | 1 R → c ∈ (0, +∞), then inf M SE( )≤ε 2 , ∈Π K( ) K(f, M ).ε -2 log 1 ε as ε → 0,
where

K(f, M ) = 2κ 0 (M + 1) log M (M -1)Ψ(M ) c θ 1 (f ) + 1 c σ 2 1 (f ) (2.33) with θ 1 (f ) = σ 2 1 (f ) σ 2 2,2 (f ) . (b)
The above bound can be achieved by the (sub-)optimal * given by q

* = 1 R , R * = R(ε, M ) = x(ε, M ) where x(ε, M ) is the unique solution to the equation log(M ) 2 x(x -1) + x log x + log(ε) = 0 and γ * (ε, M ) = 2R 2R + 1 1 2R+1 (8R) -1 2R+1 |c R+1 | -2 2R+1 σ 2 1 (f ) 1 2R+1 M R(R-1) 2R+1 .
Furthermore, as ε → 0,

x(ε, M ) = 2 log 1 ε log M - log (2) 1 ε 2 log M + 1 2 + log(log M ) -log 2 2 log M + O   log (2) 1/ε log 1/ε   as ε → 0
and the (minimal) number of iterations n(ε, M ) necessary to attain an MSE lower than ε 2 satisfies

n(ε, M ) 2 log M (M -1)Ψ(M ) c θ 1 (f ) + 1 σ 2 1 (f )ε -2 log 1 ε as ε → 0. (2.34)
REMARK 2.4. Though difficult to check in practice, note that the assumptions on the sequence (c r ) r≥1 are satisfied as soon as

lim R→+∞ c R+1 c R = c ∈ (0, +∞).
REMARK 2.5. Note that the choice of R(ε, M ) does not depend on the parameters. In Table 1, we give the values of x(ε, M ) for several choices of M and ε. As expected, one can check that R(ε, M ) increases very slowly when ε decreases. REMARK 2.6. A remarkable point to be noted is that we retrieve the same asymptotic rate as that obtained with the original ML2R Monte Carlo simulation at finite horizon, that is for the computation of expectations E f (X T ) where X = (X t ) t∈[0,T ] is a standard diffusion discretized by its Euler scheme.

ε = 10 -1 ε = 10 -2 ε = 10 -3 ε = 10 -4 M = 2 2.
Practical aspects are investigated in the practitioners' corner (see Section 6.1) especially how to calibrate the parameters which are involved in the definition of * .

Expansion of the error

For the sake of simplicity, the proofs are detailed in dimension 1. In the following subsections, we begin by decomposing the quantity ν γ,η n (f ) -ν(f ) for a given smooth coboundary function f (i.e. such that the Poisson equation f -ν(f ) = -Lg has a smooth enough solution) and for a general weight sequence (η n ). Then, in the next subsections, we successively propose some expansions of the error, ν γ n (f ) -ν(f ) for the original sequence (ν γ n (f )) n≥1 (implemented on the coarse level) and for the sequences of correcting empirical measures (µ (r,M ) n (f )) for r = 2, . . . , R defined in (2.12) and corresponding to the successive refined levels of our estimator.

Note that by expansion, we mean an expansion of the bias of our estimators (level by level then globally) until we reach an order at which we reach a martingale term involved in the weak rate of convergence.

Higher order expansion of ν

γ n (f ) -ν(f ) (coarse level)
For every integer n ≥ 1, for every sequence (v n ) n≥1 , we set ∆v n = v n -v n-1 . We will also use the following notations:

U n = γ -1 2 n (W Γn -Γ n-1 ) d = N 0; I q and ρ m = E[U m 1 ], m ∈ N. LEMMA 3.2. Let L ∈ N. Assume that f -ν(f ) = -Lg where g is a C 2L+3 -function. Then, for every integer n ≥ 1, ∆g( Xn ) = -γ n (f ( Xn-1 )-ν(f ))+ L+1 =2 γ n ϕ (f )( Xn-1 ) + 3 i=1 ∆M (i,g) n +∆R (1,g) n,L +∆R (2,g) n,L +∆R (3,g) n,L (3.35) where ϕ (f )(x) = (m1,m2),m1+ m 2 2 = g (m1+m2) (x) ρ m2 m 1 ! m 2 ! b m1 (x)σ m2 (x) ∆M (1,g) n = √ γ n (g σ)( Xn-1 )U n , ∆M (2,g) n = 1 2 γ n g ( Xn-1 )σ 2 ( Xn-1 ) U 2 n -1 , ∆M (3,g) n = γ 3 2 n 1 2 g ( Xn-1 )b( Xn-1 )σ( Xn-1 )U n + 1 6 g (3) ( Xn-1 )σ 3 ( Xn-1 )U 3 n , ∆R (1,g) n,L = 2L+1 =2 γ + 1 2 n (m1,m2),m1+ m 2 2 = + 1 2 g (m1+m2) ( Xn-1 ) 1 m 1 ! m 2 ! b m1 ( Xn-1 )σ m2 ( Xn-1 )U m2 n + 2L+1 =2 γ n (m1,m2),m1+ m 2 2 = g (m1+m2) ( Xn-1 ) 1 m 1 ! m 2 ! b m1 ( Xn-1 )σ m2 ( Xn-1 )[U m2 n -ρ m2 ], ∆R (2,g) n,L = 2L+2 =L+2 γ n (m1,m2),m1+ m 2 2 = g (m1+m2) ( Xn-1 ) ρ m2 m 1 ! m 2 ! b m1 ( Xn-1 )σ m2 ( Xn-1 ) ∆R (3,g) n,L = g (2L+3) (ξ n )(γ n b( Xn-1 ) + √ γ n σ( Xn-1 )U n ) 2L+3 , ξ n ∈ [ Xn-1 , Xn ].
As a consequence,

ν η,γ n (f ) -ν(f ) = - 1 H n n k=1 η k γ k ∆g( Xk ) + L+1 =2 n k=1 η k γ -1 k H n ν ηγ -1 ,γ n (ϕ (f )) + 1 H n n k=1 η k γ k 3 i=1 ∆M (i,g) k + ∆R (1,g) k,L + ∆R (2,g) k,L + ∆R (3,g) k,L . 
(3.36)

Proof. By the Taylor formula with order 2L + 2, we have for every x and y in R d ,

g(x + y) -g(x) = 2L+2 =1 1 k! g (k) (x)y k + g (2L+3) (ξ)y 2L+3 where ξ ∈ [x, x + y]. Then, if y = γb(x) + √ γσ(x)u with u ∈ R d , 1 k! y k = m1+m2=k 1 m 1 !m 2 ! γ m1+ m 2 2 b m1 (x)σ m2 (x)u m2 .
The decomposition of ∆g(x) easily follows by separating odd and even m 2 and by remarking that

g (x)y + 1 2 g (x)y 2 = -γLg(x) + √ γσ(x)u + 1 2 γσ 2 (x)(u 2 -1) + 1 2 g (x) γ 2 b 2 (x) + 2γ 3 2 σ(x)u . Since ν η,γ n (f ) -ν(f ) = 1 H n n k=1 η k γ k γ k (f ( Xk-1 ) -ν(f ) ,
the second part of the lemma is a direct consequence.

For notational convenience, we will denote by Qf in what follows the solution of the Poisson equation f -ν(f ) = -L Qf satisfying ν(Qf ) = 0. (Under Assumption (P), Qf is well-defined). DEFINITION 3.2. (a) Under Assumption (P), one may define a mapping ϕ

[1] (.) from C ∞ (R, R) into itself defined for every f ∈ C ∞ (R, R) by ϕ [1] (f )(.) = (m1,m2),m1+ m 2 2 = ρ m2 m 1 ! m 2 ! b m1 (.)σ m2 (.)(Qf ) (m1+m2) (.) (3.37)
where h (k) denotes the k th derivative of a function h. Then, for every ∈ N, one sets ϕ

[m] = ϕ [m-1] • ϕ [1]
. To alleviate notations, we will often write ϕ m (f ) instead of ϕ (3.38)

For example, note that

Ψ 2 = ϕ 2 , Ψ 3 = ϕ 3 + ϕ [2] 2 and Ψ 4 = ϕ 4 + ϕ 3 • ϕ 2 + ϕ 2 • ϕ 3 + ϕ [3] 2 .
We have the following expansions of the error, depending on the averaging properties of the step sequence γ.

PROPOSITION 3.2 (Bias error expansion for the coarse level). Assume (S), (P) (and uniqueness of the invariant distribution ν). Let R ∈ N, R ≥ 2 and let f ∈ C ∞ (R, R) with polynomial growth and g = Qf .

(a) If (γ n , γ n ) n≥1 is averaging for every ∈ {1, . . . , R},

ν γ n (ω, f ) -ν(f ) - R =2 Γ ( ) n Γ n ν Ψ (f ) = M (1,g) n Γ n + o L 2 √ Γ n ∨ Γ (R) n Γ n . (b) If, furthermore, the pair (γ R+1 n , γ n ) n≥1 is averaging, ν γ n (ω, f ) -ν(f ) - R =2 Γ ( ) n Γ n ν(Ψ (f )) = M (1,g) n Γ n + Γ (R+1) n Γ n ν Ψ R+1 (f ) + o L 2 √ Γ n ∨ Γ (R+1) n Γ n .
(c) The following sharper expansion also holds when

(γ R+2 n , γ n ) n≥1 is averaging ν γ n (ω, f ) -ν(f ) - R =2 Γ ( ) n Γ n ν(Ψ (f )) = M (1,g) n + N n Γ n + Γ (R+1) n Γ n ν Ψ R+1 (f ) + Γ (R+2) n Γ n ν Ψ R+2 (f ) + o L 2   Γ (3) n ∨ Γ (R+2) n Γ n   ,
where N 0 = 0 and

∆N n = ∆M 2,g k + ∆M 3,g k + γ Γ n Γ (R+2) n Γ n n→+∞ ∼ 2R 2R + 1 2 1 n .
As concerns the contribution of the martingale correction ∆N n , we refer to Proposition 4.4 for details. Finally, remark that all the negligible terms are given with the L 2 -norm. For Theorem 2.1, "o P " is enough.

Proof. (a) and (b): Let R ≥ 2 be an integer. Let us consider the decomposition given by (3.35) in Lemma 3.2. When (γ n ) n≥1 = η = (γ n ) n≥1 , L = R and g = Qf , we get

ν γ n (f ) -ν(f ) - R =1 Γ ( ) n Γ n ν(ϕ (f )) = g( X0 ) -g( Xn ) Γ n + R =2 Γ ( ) n Γ n ν γ ,γ n (ϕ (f )) -ν(ϕ (f )) (3.39) + Γ (R+1) n Γ n ν γ R+1 ,γ n (ϕ R+1 (f )) + M 1,g n Γ n + 1 Γ n n k=1 3 i=2 ∆M (i,g) k + ∆R (1,g) k,R + ∆R (2,g) k,R + ∆R (3,g) k,R
.

By Lemma 3.3(i) applied with (η n ) = (γ n ), g( X0 ) -g( Xn ) Γ n 2 ≤ C Γ n
As well, by Lemma 3.3(ii)applied for different choices of (θ n ), h and (Z n ) n≥1 , we have

1 Γ n n k=1 ∆M (2,g) k + ∆M (3,g) k + ∆R (1,g) k,R 2 ≤ C Γ (2) n Γ n .
Finally, Lemma 3.3(iii) and (iv) are adapted to manage ∆R

(2,g) k,R and ∆R

(3,g) k,R respectively. This yields 1 Γ n n k=1 ∆R (2,g) k,R + ∆R (3,g) k,R 2 ≤ C Γ (R+2) n Γ n + Γ (R+ 3 2 ) n Γ n ≤ C Γ (R+ 3 2 ) n Γ n .
The above terms are thus negligible in expansions (a) and (b). As concerns ν γ R+1 ,γ n (ϕ R+1 (f )), one can deduce from the polynomial growth of ϕ R+1 (f ) and from (3.41) that there exists C > 0 such that ∀n ≥ 1,

ν γ R+1 ,γ n (ϕ R+1 (f )) 2 ≤ C.
This means that this term is negligible in the expansion (a). In (b), (γ R+1 n , γ n ) is averaging so that by Proposition 1.1,

ν γ R+1 ,γ n (ϕ R+1 (f )) n→+∞ -----→ ν(ϕ R+1 (f )) a.s.
But using again (3.41), one checks that there is a δ > 0 such that ( ν γ R+1 ,γ n (ϕ R+1 (f )) 2+δ ) n is a bounded sequence. Thus, an uniform integrability argument yields that

ν γ R+1 ,γ n (ϕ R+1 (f )) n→+∞ -----→ ν(ϕ R+1 (f )) in L 2 .
But for any , ϕ is the component corresponding to k = 1 in the definition (3.38) of Ψ . In (b), ν(ϕ R+1 (f )) will thus contribute to ν(Ψ R+1 ). As well, the terms ν(ϕ ), = 2, . . . , R exhibited in this first expansion will certainly contribute to ν(Ψ ), = 2, . . . , R. Now, we focus on the second bias term of the right-hand side of (3.39). More precisely, for each ∈ {2, . . . , R}, we have to repeat the previous procedure: we apply the expansion (3.35) of Lemma 3.2 with η = (γ n ) n≥1 , L = R -+ 1, f = ϕ and g = Qϕ (defined above). After several transformations, this yields

Γ ( ) n Γ n ν γ ,γ n (f ) -ν(f ) - R-+1 m=2 Γ ( +m-1) n Γ n ν(ϕ [1] m • ϕ [1] (f )) = - 1 Γ n n k=1 γ -1 k ∆Qϕ ( Xk ) + R-+1 m=2 Γ ( +m-1) n Γ n ν γ +m-1 ,γ n -ν (ϕ m • ϕ (f )) (3.40) + Γ (R+1) n Γ n ν γ R+1 ,γ n (ϕ R-+2 • ϕ (f )) + 1 Γ n n k=1 γ -1 k 3 i=1 ∆M (i,g ) k + ∆R (i,g ) k,R-+1 .
Applying again Lemma 3.3 allows us to control the L 2 -norm of the negligible terms:

1 Γ n n k=1 γ -1 k ∆Qϕ ( Xk ) 2 ≤ Cγ -1 1 Γ n and 1 Γ n n k=1 γ -1 k 3 i=1 ∆M (i,g ) k + ∆R (i,g ) k,R-+1 2 ≤ C Γ (2 -1) n ∨ Γ (R+ 3 2 + -1) n Γ n .
Again, the penultimate term of the previous decomposition is negligible for expansion (a) and satisfies the following convergence property when (γ R+1 , γ) is averaging:

Γ n Γ (R+1) n Γ (R+1) n Γ n ν γ,γ L+1 n ϕ [1] R-+2 • ϕ [1] (f ) n→+∞ -----→ ν ϕ [1] L-+2 • ϕ [1] (f ) a.s. and in L 2 .
This brings a second "contribution" to ν(Ψ R+1 ). Finally, it remains to consider for every ∈ {2, . . . , R} each term of (3.40). Setting = m 1 , m = m 2 , the sequel of the proof consists in repeating the procedure until k := inf{i : m 1 +. . . m i = R + i}. The result follows.

(c) The proof is based on the same principle but is slightly more involved since we aim at keeping all the terms which are going to play a role in the second order expansion of Theorem 2.2(b). This implies to start the previous proof with L = R + 1 (and in the second step with L = R -+ 2). Furthermore, the main other difference comes from the martingale component. As a complement of M

(1,g) n

, one also keeps whole the martingale terms whose L 2 -norm is not negligible with respect to

Γ (3) n
Γn . In short, this corresponds to the martingale increments with a factor γ k or γ LEMMA 3.3. Assume (S). Let h be a smooth function with polynomial growth. We know from Proposition 1.1 that, for every p ∈ (0, +∞),

C h,p = sup n≥1 h(X n ) p < +∞.
(3.41)

Then, (i) If (η n /γ n ) n≥1 is a non-increasing sequence of real numbers, n k=1 η k γ k ∆h( Xk ) 2 ≤ C h,2 η 1 γ 1 .
(ii) If (Z k ) k≥1 is a sequence of i.i.d centered random variables with finite variance, then for any deterministic sequence

(θ k ) k≥0 , n k=1 θ k h( Xk-1 )Z k 2 ≤ C h,2 Z 1 2 n k=1 θ 2 k .
(iii) For any sequence (θ k ) k≥1 of real numbers,

n k=1 θ k h( Xk-1 ) 2 ≤ C h,2 n k=1 |θ k |
(iv) For any sequence (θ k ) k≥1 of real numbers and any r > 0, there exists a real constant

C = C r,b,σ,h,γ such that n k=1 θ k sup u∈[0,1] |h( Xk-1 + u∆ Xk )||∆ Xk | r 2 ≤ C n k=1 |θ k |γ r 2 k .
Proof. Using that (η n /γ n ) n≥1 is a non-increasing sequence, we have

n k=1 η k γ k ∆h( Xk ) = η 1 γ 1 |h( X0 )| + n-1 k=1 η k γ k - η k+1 γ k+1 |h( Xk )| + η n γ n |h( Xn )| so that n k=1 η k γ k ∆h( Xk ) 2 ≤ C h,2 η 1 γ 1 + n-1 k=1 η k γ k - η k+1 γ k+1 + η n γ n = C h,2 η 1 γ 1 .
This concludes the proof of (i). Items (ii) and (iii) are straightforward consequences of the fact that sup n≥1 E[|h(X n )| 2 ] < +∞. For (iv), the polynomial growth of h implies that there exists p > 0 and a constant C > 0 such that for any x, y ∈ R d , sup

u∈[0,1] |h(x + uy)| ≤ C(1 + |x| p + |y| p ).
Using that b and σ are sub-linear functions and Minkowski's Inequality

sup u∈[0,1] |h( Xk-1 + u∆ Xk )||∆ Xk | r 2 ≤ C 1 + |X k-1 | p 4 + |∆X k | p 4 |∆X k | r 4 ≤ Cγ r 2 k
The last statement follows using again Minkowski's Inequality.

One can check that for every n ≥ 1,

µ M,γ n (ω, f ) = ν γ2,M nM ( Ȳ , f ) -ν(f ) -(ν γ n (f ) -ν(f )) .
For (a) and (b), it remains now to apply Proposition 3.2(a) and (b) to both terms in the right-hand side of the above equation (with step γ2,M for ν γ2,M nM ( Ȳ , f )). The result follows by concatenating martingale components and by noting that for any integer ≥ 2,

nM k=1 (γ 2,M k ) nM k=1 γ2,M k = M 1-Γ ( ) n Γ n .
For the proof of (c), the only difference with Proposition 3.2(c) is that one only keeps the martingale increment M

(2,g) n of the corrective term N n . More precisely, the terms of N n appearing with a factor γ 3 2 n are here viewed as negligible terms. Using Lemma 3.3(ii), one easily check that these martingale corrections are bounded in L 2 by Γ

(3)

n /Γ n (which is o( Γ (2) n /Γ n )).
REMARK 3.8. The fact that we keep less martingale terms in Expansion (c) can be understood as follows: in section (4.5), we will show that the apparently dominating martingale component M n (σg ) is in fact negligible at the first order of the expansion under confluence assumptions. This implies that the covariance terms induced by the product of this martingale and the martingale corrections appearing with a factor γ 3 2 k in N n (see Proposition 3.2) will be also negligible at a second order.

Rate of convergence for the dominating martingales

In the continuity of Propositions 3.2 and 3.3, we now propose to elucidate the weak or L 2 rate of convergence of the dominating martingales , that is the martingales coming out in the above error expansions established in the former section.

The dominating martingale term involved in ν

γ n (f ) -ν(f )
We begin by stating some asymptotic results for the first and second order martingales (M

(1,g) n

) n≥1 and (N n ) n≥1 which appear in the expansions of Proposition 3.2. The associated statements describe the asymptotic martingale contributions of the first (dominating) term of the ML2Rgodic procedure. With the view to Theorem 2.1, the first statement concerns the convergence in distribution of the dominating martingale (M (1,g) n ) n≥1 whereas the second and third ones are crucial steps in the proof of Theorem 2.2 (a) and (b) respectively. PROPOSITION 4.4. Assume (S) and (P). Let g = Qf .Then, (a)

1 √ Γ n M (1,g) n (R) =⇒ N 0; R (σg ) 2 dν . (b) E (M (1,g) n ) 2 Γ n = R (σg ) 2 dν + o(1) as n → +∞. (c) If (γ n , γ 2 n ) is averaging, E (M (1,g) n + N n ) 2 Γ n = R (σg ) 2 dν + Γ (2) n Γ n σ 2 2,1 (f ) + o(1) as n → +∞,
where

σ 2 2,1 (f ) = R ϕ 2 ((σg ) 2 ) + 1 2 (σ 2 g ) 2 + (σg ) g (3) σ 3 + 2(σg 2 ) dν, (4.42)
where

g 2 = Qϕ 2 (f ), i.e. the solution to ϕ 2 (f ) -ν(ϕ 2 (f )) = -Lg 2 . REMARK 4.9. If γ n = γ 1 n -1 2R+1 , 1 Γ n n→+∞ ∼ 2R (2R + 1)γ 1 n -2R 2R+1 and Γ (2) n Γ n n→+∞ ∼ 2R (2R + 1)n .
One thus retrieves the orders of the expansions established in Theorem 2.2.

Proof. (a) Using Proposition 1.1,

M (1,g) n Γ n = ν γ n (σg ) 2 n→+∞ -----→ ν (σg ) 2 a.s. (4.43)
Furthermore, by Cauchy-Schwarz inequality and (3.41), we have for every ε > 0,

n k=1 E (∆M (1,g) k ) 2 1 (∆M (1,g) k ) 2 >ε ≤ 1 ε 2 n k=1 E (∆M (1,g) k ) 4 ≤ C Γ (2) n Γ 2 n n→+∞ -----→ 0.
This second convergence implies that the so-called Lindeberg condition is fulfilled. Then, (a) is a consequence of the CLT for martingale arrays (see [HH80, Corollary 3.1]).

(b) By Jensen inequality, for a given function f ,

E (ν γ n (f )) 2 ≤ E ν γ n (f 2 )
and it follows again from Proposition 1.1 and from the fact that σg has (at most) polynomial growth that sup

n E (ν γ n ((σg ) 2 )) 2 ≤ sup n E 1 + | Xn | r < +∞. (4.44)
owing to (S) and (3.41). As a consequence, ν γ n ((σg ) 2 ) n≥1 is a uniformly integrable sequence so that the convergence of (ν γ n ((σg ) 2 )) toward ν((σg ) 2 ) also holds in L 1 . The second statement then follows from (4.43).

(c) First, using that E[U n (U 2 n -1)] = 0 and that E[U 4 n ] = 1, one can check that

1 Γ n E (M (1,g) n + N n ) 2 = E ν γ,γ n ((σg ) 2 ) + Γ (2) n Γ n E ν γ 2 ,γ n (F ) ,
where

F (x) = 1 2 (σ 2 g ) 2 + (σg )(g (3) σ 3 + 2(σg 2 )) (x).
On the one hand, since (γ 2 n , γ n ) n≥1 is averaging, we deduce from Proposition 1.1 that

ν γ 2 ,γ n (F ) n→+∞ -----→ ν(F ) a.s.
But using uniform integrability arguments similar to (4.44), the convergence also holds in L 1 . On the other hand, let us focus on E[ν γ,γ n ((σg ) 2 )]. We set h = (σg ) 2 . Using Proposition 3.2(a) (and the fact that Ψ 2 = ϕ 2 ) with R = 2, we have

ν γ n (h) -ν(h) = M (1,Qh) n Γ n + Γ (2) n Γ n ν ϕ 2 (h) + o L 2 √ Γ n ∨ Γ (2) n Γ n .
By (4.43), we deduce that

E (M (1,g) n + N n ) 2 Γ n = R (σg ) 2 dν + Γ (2) n Γ n ν(ϕ 2 (h) + F ) + o(1) .
The last statement follows.

4.2

The dominating martingale in the error expansion of (µ M,γ n (f )) n≥1

In this section, we focus on the behavior of the martingale terms involved by the refined levels of the ML2Rgodic procedure. Thus, this corresponds to the variance induced by this procedure. On a finite horizon, Euler schemes are pathwise close (in an L 2 -sense for instance) and this property implies one of the important features of multilevel procedures: reducing the bias without increasing significantly the variance. As mentioned before, on a long run scale, such a property is not true in general. More precisely, without additional assumptions, the martingale (M n ) n≥1 defined in Proposition 3.3 is a priori not negligible compared to the one induced by the first term of the ML2Rgodic procedure. However, this turns out to be true in presence of an asymptotic confluence assumption. This is the first statement of the next proposition. In the second one, we go deeper in the analysis of the martingale contribution of (µ M,γ n (f )) n≥1 under a stronger confluence assumption. The second property will contribute only to Theorem 2.2(b).

PROPOSITION 4.5. Assume (S) and (P). Let h 1 and h 2 be locally Lipschitz functions with polynomial growth. (b) Assume (C s ) holds and that (γ n , γ 2 n ) n is averaging. Assume that h 1 is C 2 and that h 1 and its derivatives have polynomial growth. Then, the martingales (M n (h 1 )) and (N n (h 2 )) are orthogonal and 1

Γ (2) n E (M n (h 1 ) + N n (h 2 )) 2 n→+∞ -----→ 1 - 1 M 1 2 R (h 1 σ) 2 dν + 2 h 2 2 dν .
In particular, when h 1 = σg and h 2 = 1 2 σ 2 g (with g = Qf ), this variance is denoted by σ 2 2,2 (f ) which subsequently reads

σ 2 2,2 (f ) = 1 2 R (h 1 σ) 2 dν + 2 h 2 2 dν = σ 2 (σg ) 2 + σσ g g + 1 2 (σ g ) 2 dν. (4.45) 
Proof. (a) Set ϕ = h 1 . First, using that X and Ȳ are built with the same Wiener increments,

M(ϕ) n = n k=1 γ k M M -1 m=0 ϕ( Xk-1 ) -ϕ( ȲM(k-1)+m ) 2 so that M(ϕ) n Γ n = M M -1 m=0 νγ,m n ( φ2 ) 
where νγ,m n (f ) = 1 Γn n k=1 γ k f ( Xk-1 , ȲM(k-1)+m ) and φ(x, y) = ϕ(x) -ϕ(y). With similar arguments as for the proof of Proposition 1.1, for every m ∈ {0, . . . , M -1}, (ν γ,m n ) n converges a.s. to the unique invariant distribution of the duplicated diffusion ν ∆ (since Assumption (C w ) holds). By uniform integrability arguments, one can check that the convergence holds along continuous functions with polynomial growth so that νγ,m n ( φ2 ) n→+∞ -----→ (ϕ(x) -ϕ(y))

2 ν ∆ (dx, dy) = 0 a.s.

Again with uniform integrability arguments (using that sup n E[| Xn | r ] < +∞ for every positive r),

one can check that E[ν γ,m n ( φ2 )] n→+∞ -----→ 0. It follows that E M(ϕ) n Γn n→+∞ -----→ 0.
(b) The proof of this statement is the purpose of the end of the section. First, remark that the orthogonality of M(h 1 ) and N (h 2 ) follows from independency of the increments of the Brownian motion and from the fact that for every

s < t, E[(W t -W s )((W t -W s ) 2 -(t -s))] = 0.
Then, it remains to study these two martingales separately. In Lemma 4.4, we go deeper in the study of the long run behavior of the martingale M(h 1 ) under Assumption (C s ) and in Lemma 4.5, we investigate the one of the martingale N (h 2 ).

4.2.1

Long run behavior of M(ϕ) under strong confluence.

LEMMA 4.4. Under the assumptions of Proposition 4.5(b),

1 Γ (2) n E M n (h 1 ) 2 n→+∞ -----→ 1 2 1 - 1 M R (h 1 σ) 2 dν.
Proof. We temporarily write ϕ instead of h 1 .

Step 1: We decompose M(ϕ) as the sum of terms involving the limiting diffusion process X:

M(ϕ) = M (1) - M -1 m=0 M (2,m) + m-1 m=1 M (3,m)
where

M (1) n = n k=1 ϕ( Xk-1 ) -ϕ(X Γ k-1 ) ∆W Γ k , M (2,m) n = n k=1 ϕ( ȲM(k-1)+m ) -ϕ(X Γ k-1+ m M ) (W Γ k-1+ m+1 M -W Γ k-1+ m M ), M (3,m) n = n k=1 ϕ(X Γ k-1+ m M ) -ϕ(X Γ k-1 ) (W Γ k-1+ m+1 M -W Γ k-1+ m M
).

We first deal with M (1) whose predictable bracket given by

M (1) n ≤ n k=1 γ k ϕ( Xk-1 ) -ϕ(X Γ k-1 ) 2 ≤ [ϕ] Lip n k=1 γ k Xk-1 -X Γ k-1 2 .
Let A (2) be the infinitesimal generator of the duplicated diffusion (X x t , X x t ) t≥0 and let us denote by b : R d × R d → R d × R d and σ : R d × R d → M 2d,2q the associated drift and diffusion coefficients. If we temporarily set S(x, y) = (x -y) 2 , then

A (2) S(x, y) = (b(x) -b(y))(x -y) + 1 2 σ(x) -σ(y ) 2 .
and (C s ) reads, A (2) S ≤ -α S or equivalently 0 ≤ S ≤ -1 α A (2) S. Now, by mimicking the proof of (1.9) (where the result has been established for functions of the Euler scheme alone), we get that, as soon as

√ Γn Γ (2) n → 0, for every smooth function f : R d × R d → R 1 Γ (2) n n k=1 γ k A (2) f (X Γ k-1 , Xk-1 ) a.s. -→ m(f ) = ν ∆ 1 2 D 2 f (.). b(.) ⊗2 + 1 24 E D (4) f (.)(σ(.)U ) ⊗4
where U ∼ N (0, I q ) and ν ∆ is the image of ν on the diagonal of R 2 (which is the unique invariant distribution of the duplicated diffusion). Straightforward computations show that m(S) = 0 since

∇S(x, y) = 2 x -y y -x , D (2) 
S(x, y) = 2 1 -1 -1 1 and D ( ) S ≡ 0, ≥ 3. Thus, taking advantage of the strong confluence, we derive that lim

n 1 Γ (2) n n k=1 γ k X Γ k-1 -Xk-1 2 ≤ - 1 α m(S) = 0 a.s.
Uniform integrability arguments imply that the above convergence also holds in L 1 . Thus,

E M (1) n Γ 
(2) n -→ 0 as n → +∞.

The same method of proof shows a similar result for M (2,m) , m = 0, . . . , M -1 (by considering the scheme ( ȲMk+m ) k≥0 and the filtration

G m k = F W Γ k-1+ m M ). It follows that E M (2,m) n Γ (2) n -→ 0 as n → +∞.
Step 2: Now we deal with M (3,m) , m = 1, . . . , M -1. First we compute the predictable bracket

M (3,m) n = 1 M n k=1 γ k ϕ(X Γ k-1+ m M ) -ϕ(X Γ k-1 ) 2 .
Then, we decompose

ϕ(X Γ k-1+ m M )-ϕ(X Γ k-1 ) = ϕ (X Γ k-1 )(X Γ k-1+ m M -X Γ k-1 ) (a) k + ϕ (Ξ k-1 ) -ϕ (X Γ k-1 ) (X Γ k-1+ m M -X Γ k-1 ) (b) k , Ξ k-1 ∈ (X Γ k-1 , X Γ k-1+ m M
).

Let us deal first with (b) k . The function ϕ being with polynomial growth, there exists some positive C and p such that for every x and y in R d ,

|ϕ (x + y) -ϕ (x)| ≤ C(1 + |x| p + |y| p )|y|. Thus, 1 Γ (2) n n k=1 γ k (b) 2 k ≤ C Γ (2) n n k=1 γ k (X Γ k-1+ m M -X Γ k-1 ) 4 (1 + |X Γ k-1 )| 2p )(1 + |U k | 2p ).
Using that sup t E[|X x t | r ] < +∞, one easily checks that for every r ≥ 2, For (a) k we write

sup k E[|X Γ k-1+ m M -X Γ k-1 | r ] ≤ Cγ
(a) k = (ϕ σ) X Γ k-1 W Γ k-1+ m M -W Γ k-1 + ( a) k where ( a) k = ϕ X Γ k-1 Γ k-1+ m M Γ k-1 b(X s )ds + Γ k-1+ m M Γ k-1 σ(X s ) -σ(X Γ k-1 ) dW s .
It is clear, owing to Doob's Inequality, that

E( a) 2 k ≤ ϕ 2 sup   γ 2 k sup t≥0 E|b(X t )| 2 + γ k [σ] 2 Lip E sup t∈[XΓ k-1 ,Γ k-1 2 ) |X s -X Γ k-1 | 2   ≤ C b,σ,ϕ γ 2 k .
Then 1

Γ (2) n n k=1 γ k ( a) 2 k L 1
-→ 0 as above.

The last term of interest is again a martingale increment. We note that

E (ϕ σ) 2 X Γ k-1 W Γ k-1+ m M -W Γ k-1 2 | F W Γ k-1 = mγ k M (ϕ σ)(X Γ k-1 ) 2 . The sequence (γ n , γ 2 n ) n≥1 being averaging, 1 Γ (2) n n k=1 γ 2 k (ϕ σ)(X Γ k-1 ) 2 a.s. -→ R (ϕ σ) 2 dν as n → +∞.
Uniform integrability arguments imply that 1

Γ (2) n n k=1 γ 2 k E[(ϕ σ)(X Γ k-1 ) 2 ]-→ R (ϕ σ) 2 dν and one deduces that E M (3,m) n Γ (2) n -→ m M 2 R (ϕ σ) 2 dν.
The result then follows from the orthogonality of the martingales M (3,m) , m = 1, . . . , M -1 (the fact that the martingales M 1 and M 2,m are negligible also implies by Schwarz's Inequality that so is their cross product).

Long run behavior of N (h 2 ).

We consider now the martingale

N n (h 2 ) = N 1 n - M -1 m=0 N 2,m
where

N 1 n = n k=1 h 2 ( Xk-1 ) (W Γ k -W Γ k-1 ) 2 -γ k N 2,m n = n k=1 h 2 ( ȲM(k-1)+m ) (W Γ k-1+ m+1 M -W Γ k-1+ m M ) 2 - γ k M .
LEMMA 4.5. Under Assumptions of Proposition 4.5(b),

1 Γ (2) n E N n (h 2 ) 2 n→+∞ -----→ 2 1 - 1 M R h 2 2 dν.
Proof. Like in the previous proof, we write ϕ instead of h 2 . We focus on the asymptotic behavior of N n . First, noting that for a random variable Z ∼ N 0; 1 , E (Z 2 -1) 2 = 2, we get since (γ n , γ 2 n ) n≥1 is averaging,

N 1 n Γ (2) n = 2 Γ (2) n n k=1 γ 2 k ϕ 2 ( Xk-1 ) -→ 2 R ϕ 2 dν a.s. as n → +∞. (4.46)
likewise one shows that for m = 0, . . . , M -1 that

N 2,m n Γ (2) n -→ 2 M 2 R ϕ 2 dν a.s. as n → +∞.
By uniform integrability arguments, the above convergence extends to the expectations. Second, we focus on the "slanted" brackets. Let us set ∆

m,k = (W Γ k+ m+1 M -W Γ k+ m M
) 2 -γ k /M . Using the chaining rule for conditional expectations, we note that, for every m = m ,

E k-1 ϕ( ȲM(k-1) + m)ϕ( ȲM(k-1)+m )∆ m,k-1 ∆ m ,k-1 = 0 so that N 2,m , N 2,m n ≡ 0. Now, let us compute N 1 , N 2,m
n where m ∈ {0, . . . , M -1} and (N 1 , N 2,m ) is viewed as a couple of (F k )-martingales. Writing the increment W Γ k -W Γ k-1 as follows:

W Γ k -W Γ k-1 = W Γ k -W Γ k-1+ m+1 M + W Γ k-1+ m+1 M -W Γ k-1+ m M + W Γ k-1+ m M -W Γ k-1
and using some standard properties of the increments of the Brownian Motion, one can check that

N 1 , N 2,m n = 2 M 2 n k=1 γ 2 k ϕ( Xk-1 )E ϕ( ȲM(k-1)+m )|F k-1 .
Using second order Taylor expansions of ϕ between ϕ( ȲM(k-1)+ -1 ) and ϕ( ȲM(k-1)+ ) for = 1, . . . , m, combined with the fact that sup j E[| Ȳj | r ] < +∞ for every r > 0, one derives

N 1 , N 2,m n = 2 M 2 n k=1 γ 2 k ϕ( Xk-1 )ϕ( ȲM(k-1) ) + O L 1 (γ k ) = Γ (2) n 2M 2 νγ,γ 2 n (ϕ ⊗ ϕ) + O L 1 (Γ (3) n )
where νγ,γ 2

n (f ) = 1 Γ (2) n n k=1 f ( Xk-1 , ȲM(k-1)
). Thus, the sequence (ν γ,γ 2 n

) n of empirical measures associated to the duplicated diffusion (2.25) has a unique invariant distribution ν ∆ . By an adaptation of the proof of Proposition 1.1, it can thus be proved that

νγ,γ 2 n (ϕ ⊗ ϕ) n→+∞ -----→ ν ∆ (ϕ ⊗ ϕ) = ϕ 2 dν.
Once again, by a uniform integrability argument (and using what precedes), one obtains 1

Γ (2) n E[ N 1 , N 2,m n ] n→+∞ -----→ 2 M 2 ϕ 2 dν.
As a conclusion of the previous convergences, one deduces that 1

Γ (2) n E N 1 - M -1 m=0 N 2,m n n→+∞ -----→ 2 + 2 M 2 (M -2M ) ϕ 2 dν = 2 1 - 1 M ϕ 2 dν.
5 Proofs of the main theorems (CLT and optimization)

Owing to the results established in the previous sections, we are now in position to prove the three main results: Theorems 2.1, 2.2 and 2.3. First keep in mind that in these theorems the step sequence reads γ n = γ 1 n -a for some γ 1 > 0 and a ∈ (0, 1).

Proof of Theorem 2.1.

We mainly detail the proof of Theorem 2.1(b) and we will only give some elements of the ones of (a) and (c) (which are based on the same principle) at the end of this section.

First, by (2.15), one reminds that ν (R,W) n is a linear combination of ν n1 and of µ (r,M ) nr

with n r = q r n , r = 2, . . . , R, . For ν n1 (f ) and µ

(2,M ) n2 (f ), we will make use of the expansions given in Propositions 3.2(b) and 3.3(b) respectively. For µ (r,M ) nr (f ), r = 3, . . . , R, as defined by (2.14), we apply Proposition 3.3(b) with step sequence (γ n /M r-2 ) n≥1 . More precisely, by (2.11),

(M 1--1) Γ ( ,r) nr Γ (1,r) nr = m r, Γ ( ) nr
Γ nr with m r, = (M 1--1)M -(r-2)( -1) , so that by Proposition 3.3(b), we have for every r ∈ {2, . . . , R},

µ (r,M ) nr (f ) - R =2 m r, Γ ( ) nr Γ nr ν(Ψ (f )) = c R+1 m r,R+1 Γ (R+1) nr Γ nr - M r-2 M (r) nr (σg ) Γ nr + o L 2 Γ nr ∨ Γ (R+1) nr Γ nr
LEMMA 5.6. Let A, B, R > 0. Then,

u * := argmin u>0 Au -1 + Bu 2R = A 2RB 1 2R+1
and

min u>0 Au -1 + Bu 2R = (2R + 1)B(u * ) 2R = A 2R 2R+1 B 1 2R+1 2R 1 2R+1 1 + 1 2R . Consequently, min γ1>0 σ 2 f (q, R) + m 2 f (q, R) = 2 1 R R(2R + 1) 1 2R M -R-1 2 σ 2 1 (f )|c R+1 | 1 R 2R 2R+1 attained at γ * 1 = γ * 1 (R, M ) given by γ * 1 = 2R 2R + 1 1 2R+1 (8R) -1 2R+1 |c R+1 | -2 2R+1 σ 1 (f ) 2 2R+1 M R(R-1)
2R+1 .

(5.49)

Step 2 (Optimization of the size of the coarse level): We introduce an auxiliary allocation parameter ρ ∈ (0, 1) to dispatch the target global M SE ε 2 so that the contribution of the first and the second term in the right hand side of (2.31) are ρε 2 and (1 -ρ)ε 2 respectively. The first of these two equalities reads

n -2R 2R+1 σ 2 f ( ) + m 2 f ( ) ≤ ρε 2 where the step parameter γ 1 = γ * 0 (R, M
) is given by (5.49). One straightforwardly derives that

n = n(ε, R, M, ρ) = ρ -(1+ 1 2R ) µ(R)R σ 2 1 (f )M -R-1 2 ε -2-1 R (5.50) where µ(R) = 2 1 R (2R + 1) 1 2R |c R+1 | 1 R -→ c as R → +∞.
Step 3 (Calibrating the depth R): To calibrate R = R(ε), we will now deal with the second term

σ 2 f + m f n
of the M SE expansion (2.31). Since we have no clue on the sign of the residual bias term m f (q, R, γ 1 ), we will replace it by its absolute value. Moreover, we can plug in its formula the above expression (5.49) of the optimal step size γ * 1 (R, M ) which yields

| m f (q, R, γ * 1 )| = 1 {c R+1 =0} |c R+2 | |c R+1 | R R -1 1 -M -R 1 -M -1 σ 2 1 (f ).
Consequently, using the function Ψ introduced in (2.32) and the obvious fact that 1 -M -R ≤ 1, this second term will be upper-bounded by (1 -ρ)ε 2 as soon as

R n(ε) η(f, R, M )σ 2 1 (f ) + σ 2 2,1 (f ) + Ψ(M )R 1 - 1 M σ 2 2,2 (f ) ≤ (1 -ρ)ε 2 . (5.51) where η(f, R, M ) = 1 {c R+1 =0} |c R+2 | |c R+1 | 1 (R-1)(1-M -1
) → 0 as R → +∞ owing to the assumption made on the sequence (c r ) r≥1 .

Given the expression obtained for n(ε, R, M, ρ), this inequality is satisfied in turn as soon as

σ 2 2,1 (f ) + Ψ(M )R 1 - 1 M σ 2 2,2 (f ) ≤ (1 -ρ)ρ -(1+ 1 2R ) µ(R) σ 2 1 (f )M -R-1 2 ε -1 R , or equivalently ε 1 R M R-1 2 R ≤ 1 -ρ ρ ρ -1 2R µ(R)θ 1 (f ) 1 -1 M Ψ(M ) + R -1 θ 2 (f ) + η(f, R, M ) , (5.52) 
where

θ 1 (f ) = σ 2 1 (f ) σ 2 2,2 (f ) and θ 2 (f ) = σ 2 2,1 (f ) σ 2
2,2 (f ) Note that under the assumptions made on the sequence (c r ) r≥1 , θ 3 (f ), In order to ensure the above condition, we begin by rewriting the left-hand side as follows:

ε 1 R M R-1 2 R = exp 1 R log M 2 R(R -1) + R log R + log ε (5.53)
and will apply the next lemma with δ = (log M )/2 and R = x(ε) :

LEMMA 5.7. Let δ ∈ (0, +∞). Then, for every ε ∈ (0, 1], there exists a unique x(ε) ∈ (1, +∞) solution to δx(x -1) + x log x + log(ε) = 0.

The function ε → x(ε) is increasing and satisfies

lim ε→0 x(ε) = +∞, x(ε) ≤ 1 2 + log 1 ε δ + 1 4 (5.54) and x(ε) = log 1 ε δ - log (2) 1 ε 4δ + 1 2 + log δ 4δ + O   log (2) 1/ε log 1/ε   as ε → 0 (5.55)
where log (2) x = log log x, x > 1.

Proof. The function h : (ε, x) → δx(x-1)+x log x+log ε defined on (0, 1)×[1, +∞) is continuous, increasing in both ε and x, h(ε, 1) = log ε ≤ 0 and lim x→+∞ h(ε, x) = +∞ which ensures the existence of a unique solution x(ε) ∈ [1, +∞) to the equation h(ε, x) = 0. The monotony of x(ε) follows from that of h. Its limit at infinity follows from the fact that lim ε→0 h(ε, x) = +∞ and the inequality in (5.54) is a consequence of the fact that δx(ε) 2 -δx(ε) -log 1 ε ≤ 0 as x(ε) ≥ 1. For the expansion, we first note that x(ε) satisfies the second order equation

δx(ε) 2 + bx(ε) -log 1 ε = 0 with b = log x(ε)/α where α = exp(δ) so that x(ε) = log 1 ε δ   1 + (log x(ε)/α ) 2 4δ log 1 ε - log x(ε)/α 2 δ log 1 ε   .
(5.56)

We derive from the inequality in Equation (5.54) that, for small enough ε,

0 ≤ log x(ε)/α log 1 ε = O   log (2) 1/ε log 1/ε   = o(1) as ε → 0.
Consequently, we derive from (5.56) that

x(ε) = log 1 ε δ   1 + O   log (2) 1/ε log 1/ε     (5.57) £ Resulting M SE:
From what precedes, we deduce that after n(ε, R(ε, M, ρ(ε)) iterations, the MSE is lower than ε -2 .

£ Size: it follows from Equation (5.50) in Step 1 combined with the left inequality in Equation (5.58) that

n(ε, R(ε), M, ρ(ε)) ∼ 1 + (M -1)Ψ(M ) c θ 1 (f ) σ 2 1 (f ) c R(ε) M R(ε)-1 2 ε 1 R(ε) -1 ε -2 1 + (M -1)Ψ(M ) c θ 1 (f ) σ 2 1 (f ) c R(ε) 2 ε -2 ∼ 2 log M c + (M -1)Ψ(M ) θ 1 (f ) σ 2 1 (f )ε -2 log 1 ε as ε → 0. £ Complexity: Set n(ε, M ) = n(ε, R(ε), M, ρ(ε)).
The asymptotic resulting complexity satisfies

K(n(ε, M ), M ) = n(ε, M ) 1 + (M + 1) R(ε) -1 κ 0 ∼ (M + 1)R(ε)n(ε, M )κ 0 as ε → 0 so that K(n(ε, M ), M ) 2κ 0 (M + 1) log M c + (M -1)Ψ(M ) θ 1 (f ) σ 2 1 (f )ε -2 log 1 ε as ε → 0.
£ Initialization of the step: it follows from (5.49), the assumption made on c R+1 and the convergence of R(ε) → +∞ that

γ * 1 (ε) ∼ c -1 M R(ε) 2 M -3 4 as ε → 0 where we used that R(R-1) 2R+1 = R 2 -3 4 + 3 4 1 2R+1
. Finally using the expression of x(ε), we get

γ * 1 (ε) ∼ c -1 M -3 4 + x(ε,M ) -x(ε,M ) 2 ∈(M -1 4 ,M -3 4 ] log M 2 1 4 exp log M log 1 ε 2 log 1 ε -1 4
as ε → 0. P 6 Numerical experiments

Practitioner's corner

In this section, we want to provide some helpful informations for some practical use of the optimized algorithm given in Theorem 2.3. Let ε > 0 denote the prescribed RMSE and let M be an integer greater than 2. In what follows we aim at computing ν(f ) for a given function f such that f -ν(f ) is supposed to be a smooth enough coboundary.

£ The weights W (R) r ) r=1,...,R . When the re-sizers are uniform they are computed by an instant closed form(2.23). Otherwise, they are given in full generality by the R-tuple of series (2.19) whose computation is also (almost) instantaneous. When R = 2, 3 one has again an instant closed form (see Examples below Lemma 2.1).

£ Computation of R(ε, M ). We recall that R(ε, M ) = x(ε, M ) where x(ε, M ) is the unique solution to log(M ) 2 x(x-1)+x log x+log(ε) = 0. For the computation of x(ε, M ), we use the classical (one-dimensional) zero search Newton algorithm. For standard values of R and M , the reader may use Table 1. Finally, note that, "though" R(ε

) ∼ 2 log 1/ε log M , one has lim ε→0 R(ε) - 2 log 1/ε log M = -∞.
£ Values for Ψ(M ) and choice of M . The quantity Ψ(M ) appears in the size parameter n(ε, M ) (and in the complexity parameter K(f, M ) given by (2.33)). Going back to the optimization procedure of the previous section, one remarks that for some fixed R and M , one can replace Ψ(M ) by Ψ(R,M ) R . This strategy leads to sharper bounds on the size parameter n(ε, M ) for a given RMSE ε. We refer to the first paragraph of Section 6.2 for further investigations on this topic (see (6.60) below and what precedes). Consequently, in Table 2, we give some values of Ψ(M ), but also of Ψ(R,M ) R , corresponding to some standard specifications encountered in practical simulations. This also allows to check how Ψ(R,M ) R varies for such low values of R compared to Ψ(M ). The conclusion is that Ψ(M ) is an acceptable proxy of £ Computation of n(ε, M ). The specification of the size of the coarse level n(ε, M ) and, which is less important, the a priori estimation of the global complexity, denoted K(f, ε, M ), both require to estimate, at least theoretically, the parameters c, θ 1 (f ) and σ 2 1 (f ). We will focus on their calibration in the next paragraph. To some extent, the estimation of θ 2 (f ) is less important and any way out of reach at a reasonable cost.

Ψ(R,M ) R . Ψ(R,M ) R R = 2 R = 3 R = 4 Ψ(M ) M = 2 2.
But even at this stage, it is inserting to analyze their impact on n(ε, M ) in order to optimize the choice of the root M . To this end, we assume for a moment that C = c θ 1 (f ) is known. Going back to the sharper upper-bound of at our disposal, namely (2.33), it suggests to minimize, for fixed C, the function Without going further, let us just note that 2Ψ(3) ≤ Ψ(2) so that g C (3) ≤ g C (2) for any C since 3/ log 2 > 4/ log 3 so that it seems that M = 3 is always a better choice than M = 2. But as emphasized in the next section 6.2 (first paragraph devoted to a "toy" Ornstein-Uhlenbeck setting), a sharper study of the complexity involving Ψ(R,M ) R leads to temper the answer.

£ Calibration of the parameters This calibration can be performed as a pre-processing phase based on a preliminary short Monte Carlo simulation, having in mind that only rough estimates are needed.

-Estimation of σ 2 1 (f ) and θ 1 (f ). First, let us consider σ 2 1 (f ). Through an L 2 -version of (1.8), one deduces that for a family of independent random empirical measures (ν

( ) n ) L =1 , namely 1 Γ n L =1 E[(ν ( ) n (f ) -ν(L) n (f )) 2 )] n→+∞ -----→ σ 2 1 (f ) as L, n → +∞
where γ n = γ 1 n -a with a > 1/3 (say a = 1 2 in practice to get rid of the bias effect even for small values of n) and ν(L)

n (f )) = 1 L L =1 ν ( ) n (f ). As θ 1 (f ) = σ 2 1 (f ) σ 2
2,2 (f ) , it remains to provide an estimator of σ 2 2,2 (f ). To do so we take advantage of the fact that σ 2 2,2 (f ) is the (normalized) asymptotic variance of (µ M,γ n ) n≥1 . We thus may use the same strategy as above. More precisely, under Assumption (C s ), we deduce from Propositions 3.3 and 4.5 that 1 Double-well potential. We consider a second example in dimension 1

Γ (2) n L =1 E[(µ ( ) n (f ) -μ(L) n (f )) 2 )] n→+∞ -----→ σ 2 2,2 (f )
dX t = -V 1 (X t )dt + σdW t
where V 1 (x) = x 2 -log(1 + x 2 ) which is a non-convex potential (with two local minima in -1 and 1) so that Assumption (C s ) is not fulfilled. However, Assumption (C w ) is true (see [START_REF] Lemaire | Invariant measure of duplicated diffusions and application to Richardson-Romberg extrapolation[END_REF], Theorem 2.1). Let us also recall that the invariant distribution ν satisfies

ν(dx) = 1 Z V1 exp - V 1 (x) 2σ 2 λ(dx)
where

Z V1 = R exp - V 1 (x)
2σ 2 λ(dx). We test the algorithm in this setting with f (x) = x 2 and σ = 2. Figure 3 shows that ML2Rgodic is still efficient in this setting. The results are obtained using a rough estimation of σ 2 1 (f ) and θ 1 (f ) and the other parameters are fixed to 1. Once again, the evolution is compared with the crude algorithm with an optimized choice of γ * 1 and the evolution is drawn as a function of the complexity. Statistical example (Sparse Regression Learning). In [START_REF] Dalalyan | Sparse regression learning by aggregation and Langevin Monte-Carlo[END_REF], the authors consider the problem of Sparse Regression Learning by Aggregation. For the sake of simplicity, we only recall here the case of linear regression: let p denote the number of variables and N the number of observations and suppose we are given n couples of observations (X 1 , Y 1 ), . . . , (X N , Y N ) where the vector X i = (X1 i , . . . , X p i ) is the predictor and the scalar Y i is the response. Suppose that there exists θ 0 ∈ R p such that ∀i ∈ {1, . . . , n}, Y i = X i θ 0 + ξ i where (ξ i ) N i=1 denotes a sequence of i.i.d. random variables with distribution N (0, σ 2 ) for a given (generally unknown) σ > 0. Then, the classical question is: how to estimate θ 0 ? When p N , the classical methods (such as the least-square method) do not work and it is necessary to introduce some alternative procedures. The estimator of θ 0 proposed by Dalalyan and Tsybakov -called EWA (for Exponentially Weighted Aggregate) -is designed as follows:

θ = R p θ π V2 (dθ)
where π V2 is the Gibbs probability measure defined by

π V2 (dθ) = 1 Z V2 exp -V 2 (θ) λ(dθ)
and Z V2 is a normalizing coefficient and V 2 : R p → R is the potential defined for some given positive numbers α, β and τ by

∀θ ∈ R p , V 2 (θ) = |Y -Xθ| 2 β + p j=1
log(τ 2 + θ 2 j ) + ω(αθ j )

with ω(θ) = θ 2 ∨ (2|θ| -1).

As mentioned (and already numerically tested) in [START_REF] Dalalyan | Sparse regression learning by aggregation and Langevin Monte-Carlo[END_REF], θ is but the expectation related to the invariant distribution of the following SDE

dθ t = -∇V 2 (θ t )dt + √ 2dW t .
It can subsequently be estimated through a Langevin Monte-Carlo procedure. The difficulty in this context is the fact that p is potentially large so that the numerical computation needs some adaptations. More precisely, in order to avoid an explosion of the Euler scheme, we need to impose the step to be not to large for small values of n. We thus assume in what follows that :

γ n = min γ 1 n a , 1 p .
Below, we test our ML2Rgodic estimator on a compressed sensing example given [START_REF] Dalalyan | Sparse regression learning by aggregation and Langevin Monte-Carlo[END_REF] (see Example 1) with the parameters given in this paper. We fix ( 1 ) α = 0, β = 4σ 2 , τ = 4σ

Tr(X t X)

1 2
and the computations are achieved with p = 500, N = 100 and S = 15 where S denotes the sparsity parameter, i.e. the number S of non-zero components of θ 0 (of course we do not know which ones). Then, the matrices X and Y are generated from simulated data as follows: in this compressed sensing setting, the matrix X has independent Rademacher entries with parameter 1/2. The unknown θ 0 is defined simply by θ 0 (j) = 1 j≤S , for every j ∈ {1, . . . , p}. Finally, following again the parameters given in [START_REF] Dalalyan | Sparse regression learning by aggregation and Langevin Monte-Carlo[END_REF], we set σ 2 = S/9.

Denoting by θn the approximation of θ obtained after n iterations of the scheme, we depict in Figure 4 the evolution of n → θn -θ 0 2 . Note that θn -θ 0 2 converges to θ -θ 0 2 (which is not equal to 0). We compare it with the crude procedure (taken with a = 1/3 whereas for the ML2Rgodic procedure, a = 1/(2R + 1) as usual). We can remark that the correction on the bias involved by the weighted Multilevel Langevin procedure strongly improves the estimation of θ 0 . This remark is emphasized if we compare with the results of [START_REF] Dalalyan | Sparse regression learning by aggregation and Langevin Monte-Carlo[END_REF] based on an Euler scheme with constant step where the corresponding quantity is equal to 8.917 (in this case, the constant step is about (N p) -1 ). 

  x∈R d LV (x) < +∞ and lim |x|→+∞ LV (x) < 0, (1.1)

PROPOSITION 1. 1 .

 1 Assume b and σ satisfy the mean-reverting assumption (S): There exists a positive C 2 -function V : R d → R + and ρ ∈ (0, +∞) such that lim |x|→+∞ V (x) |x| ρ = +∞, |∇V | 2 ≤ CV and sup x∈R d D 2 V (x) < +∞ and there exist some real constants C b > 0, α > 0 and β ≥ 0 such that: (i) |b| 2 ≤ C b V, Tr(σσ * )(x) = o V (x) as |x| → +∞. (ii) (∇V |b) ≤ β -αV.

m

  (f ) in what follows. (b) Still under Assumption (P), we define the mappings Ψ , ∈ N * , Ψ = -1 k=1 (m1,...,m k )∈ 2, k , m 1 +...+m k = +k-1 ϕ m1 • . . . • ϕ m k .

k

  . This yields the two martingale increments ∆M (2,g) k and ∆M (3,g) k of the first expansion but also the dominating martingale increment of the second expansion above : γ k ∆M (1,g ) k . The result follows.

( a )

 a If (C w ) holds, then Mn(h1) √ Γn n≥1 converges to 0 in L 2 .

Figure 2 :

 2 Figure 2: Orstein-Uhlenbeck process: Evolution of the algorithm in terms of the estimation of the parameters, Exact Value : ν(f ) = 16.

Figure 3 :

 3 Figure 3: Double-well potential: Approximation of ν(f ) with f (x) = x 2 , σ = 2, Exact value : 3.1207.

Figure 4 :

 4 Figure 4: Sparse Regression Learning: n → θn -θ 0 2 for the Crude and ML2Rgodic (R = 3) procedures.

Table 1 :

 1 Values of x(ε, M )

		08	2.79	3.38	3.89
	M = 3	1.94	2.56	3.06	3.50
	M = 4	1.87	2.44	2.90	3.30

Table 2 :

 2 Values of Ψ(R, M ) and Ψ(M )

	133	2.591	2.674	2.674
	M = 3 1.200	1.278	1.245	1.278
	M = 4 0.948	1.021	1.024	1.024

2 k (σg 2 )( Xk-1 )U k , with g 2 = Q(ϕ 2 (f )), i.e. the solution to ϕ 2 (f ) -ν(ϕ 2 (f )) = -Lg 2 .REMARK 3.7. The first expansion is adapted to the proof of Theorem 2.1(a), the second one to Theorem 2.1(b) and (c) and Theorem 2.2(a). Statement (c) is written in view of Theorem 2.2(b) where one needs to handle the second order term of the asymptotic expansion of the M SE. Note that the bias term of order R + 2 in (c) will contribute to m f (q, R) in Theorem 2.2(b). At this stage, it can be justified by the following remark: when a = 1/(2R + 1), Γ (R+1) n

From a theoretical point of view, α should be a positive number such that α ≤ 1/(4pτ ).

Error expansion of the correcting levels

For a given sequence γ := (γ n ), let us denote by ( Xk ) k≥0 and ( Ȳk ) k≥0 the two Euler schemes of the diffusion (X t ) t≥0 driven by the same Brownian motion W and with the step sequences (γ n ) and (γ n /M ) respectively. We then define a sequence of empirical measures (µ M,γ n ) by

By the definition (2.12), one first notes that for r = 2, . . . , R, µ

(r,M ) n = µ M,γ (r) n built with the Euler schemes X(r) and Ȳ (r) (keep in mind that γ (r) k = γ k M r-2 ). As a consequence, expanding (µ M,γ n (f )) n≥1 will elucidate the behavior of the refined levels in the ML2Rgodic procedure. In the proposition below, we thus state a result similar to Proposition 3.2 but for the sequence (µ M,γ n (f )) n≥1 .

PROPOSITION 3.3 (Bias error expansion for the refined levels). Assume (S), (P) and uniqueness of the invariant distribution ν of the diffusion is unique. Let R ∈ N * , R ≥ 2 and let f ∈ C ∞ (R, R) with polynomial growth and let g = Qf .

(a) Assume that for every ∈ {1, . . . , R}, the pair (γ n , γ n ) n≥1 is averaging. Then,

where for a Borel function ϕ :

(b) If furthermore, the pair (γ R+1 n , γ n ) n≥1 is averaging, then the following sharper expansion also holds:

(c) The following sharper expansion also holds when (γ R+2 n , γ n ) n≥1 is averaging :

where, for a Borel function ϕ : R d → R,

Proof. With the notation introduced in (2.10). Set

where (M (r) nr ) n≥1 is defined similarly to M n but with the step sequence (γ n /M r-2 ) n≥1 In particular, ( Xn , ȲMn+m ) is now a couple of Euler schemes with step sequences (γ n /M r-2 ) n≥1 and (γ n /M r-1 ) n≥1 respectively.

It follows from the expansions of order R + 1 of each term of ν (R,W) n established in Propositions 3.2(b) and 3.3(b) respectively that

(5.47)

where Bias (1) (a, R, q, n) is defined in Lemma B.9(b) and

By Lemma B.9

(5.48)

As concerns the martingale components, one deduces from Propositions 4.4(a) and 4.5(a) that

Theorem 2.1(b) then follows by Slutsky Theorem and the following remarks:

For the proof of Theorem 2.1(c), the only difference comes from the fact that the martingale component becomes negligible since 1 -a > 2aR when a ∈ (0, (2R + 1) -1 ) so that ( ν

converges in probability towards m f (a, q, R). Finally, the proof of Theorem 2.1(a) follows the same lines but with the help of the expansions of Propositions 3.2(a) and 3.3(a).

Proof of Theorem 2.2.

(a) is an L 2 -version of Theorem 2.1(b) so that it relies on the same decomposition. More precisely, it is a direct consequence of (5.47) and (5.48) combined with Propositions 4.4(b) and 4.5(a).

Claim (b) is based on the (sharper) second expansions of Propositions 3.2(c) and 3.3(c) up to order R + 2. More precisely, using the same strategy as in (5.47), one obtains

n where W R+2 is defined by (2.18) (and explicitly given by (2.21)), Bias (3) is given by

and η

(1)

n ) denotes a remainder term induced by the coarse level (resp. by the levels r = 2, . . . , R). By Propositions 3.2(c) and 3.3(c), one obtains when a = 1/(2R + 1),

where S n is a centered random variable independent of M

(1,g) n1

and N n1 and such that

n , one is slightly more precise than in Proposition 3.3(c) by separating the martingale component and the bias component in the o L2 ). On the other hand, we obtain similarly to (5.48):

.

With the help of these properties (and from the independence of the strata), we deduce that

The result is then a consequence of Propositions 4.4(c) and 4.5(c) combined with the following expansion available for any ρ ∈ (0, 1):

In particular, it is worth noting that when a = 1/(2R + 1),

which induces the rectangular term m f (q, R).

Proof of Theorem 2.3

Step 1(Optimization of the step parameter γ 1 ): This step is devoted to the optimization of the starting step γ 1 , in order to equalize the impact of the bias and of the variance in the first term of the expansion of the M SE in (2.31). It amounts to solving the elementary minimization problem

We rely on the following elementary lemma (whose proof is left to the reader).

Plugging this back into (5.57) yields

) be the solution of the above equation where δ = δ(M ) = log M 2 . We have

We derive from the above lemma the following useful estimates for R(ε):

Now, it follows from the very definitions of x(ε, M ) and R(ε) that

where h is defined in the proof of the previous lemma. Plugging these inequalities into (5.53) yields

.

(5.58)

The above inequality on the right implies that (6.59) will be true as soon as ρ = ρ(ε, M ) ∈ (0, 1) satisfies

.

In fact, one will try to saturate the above condition, i.e. to choose ρ(ε, M ) such that

.

As the function ρ → 1-ρ ρ ρ -1 2R(ε) is a decreasing homeomorphism from (0, 1) onto (0, +∞) this equation always has a solution ρ = ρ(ε, M ). Unfortunately it turns out to be of little interest in its present form for practical implementation since both θ i (f ) are unknown.

However, as R(ε) → +∞ as ε → 0, and µ(R(ε)) → c as ε → 0, we derive that

as ε → 0.

Step 4 (MSE, number of iterations and resulting complexity):

if γ n = γ 1 n -a with a > 1/5 (say a = 1 4 in practice to get rid of the bias effect even for small values of n) with μ(L)

-About c and θ 2 (f ). The coefficient c will probably always remain mysterious. On the other hand in practice what we really need is rather |c R(ε) | 1 R(ε) . However, under the assumption lim

c ∈ (0, +∞) made on c R in Theorem 2.3, one can make the guess from its very definition that its value is not too far from 1 or is at least of order a few units. In particular, if the coefficients c R have a polynomial growth or even c R = O(exp |R| ϑ0 ), ϑ 0 ∈ [0, 1), c = 1. If they have an exponential growth it remains finite (but possibly large). The point of interest is that, anyway, this value is much more stable than the first coefficient itself c 1 which would come out in a standard MLMC Langevin simulation framework (not investigated here).

The parameter θ 2 (f ) seems to be unaccessible as well, but for another reason: it is the variance induced by a second order martingale. However as noticed in Section 6.2 (first paragraph), θ 2 (f ) is the ratio of two variance terms so that it seems not so much dependent on the magnitude of the diffusion coefficient (in fact it can be noted that the same property holds for θ 1 (f )).

REMARK 6.10. The numerical investigations of the next section show that the algorithm is very robust to the choice of the parameters. For simple practice, we thus recommend to get a rough estimation of σ 2 1 (f ) and possibly of θ 1 (f ) and to set θ 2 (f ) = c = 1.

Numerical tests

We propose in this section to provide some numerical tests of our algorithm.

Orstein-Uhlenbeck process: oracle and blind simulation. We begin with the Ornstein-Uhlenbeck process in dimension 1 solution to

with f (x) = x 2 . We recall that this case is a toy example since whole the computations can be made explicit. In particular, ν ∼ N (0, σ 2 ) so that ν(f ) = σ 2 . Furthermore, g(x) = x 2 is the unique solution (up to a constant) to the Poisson equation f -ν(f ) = -Lg and it follows that

The reader can remark that in this case, the ratios θ 1 (f ) and θ 2 (f ) do not depend on σ. Even though this property can not be really generalized, it however emphasizes a stability of these parameters with respect to the variance of the model. The bias terms can also be computed: using that ϕ 2 (f ) = 1 4 f and that ϕ = 0 for ≥ 3, we get c R+1 = σ 2 /4 R (so that c = 1/4). We want in this part to get a sharp estimate of the complexity for several choices of couples (R, M ). Following the optimization procedure, we go back to the definition of n(ε, R, M, ρ) given in (5.50):

and for each value of R and M , we solve by a Newton method the following equation for ρ ∈ [0, 1]:

where the values of Ψ(R, M ) for R, M = 2, 3, 4 are given in Table 2. We denote by ρ the solution of this equation. Then, the complexity K(ε, M ) (where we assume that κ 0 = 1) is given by 

This yields the following results for ε = 10 -2 : On this example, we retrieve the property which says that M = 2 is a good choice when cθ 1 is small whereas M = 3 can be greater when this quantity increases. However, as expected, the main parameter is the level R of the method which increases when ε → 0.

Taking only the first term of the expansion of the MSE for the crude procedure, the optimized complexity (with κ 0 = 1) for a MSE lower than ε = 10 -2 is equal to K(ε) = 6.93 * 10 6 and K(ε) = 1.77 * 10 9 if σ = 1 or σ = 4 respectively.

In Figure 1, we compare numerically the evolution of ML2Rgodic with the crude algorithm for σ = 1 and σ = 4. Note that to obtain a rigorous comparison, the graphs are drawn in terms of the complexity, that once again with a slight abuse of language, is the number of iterations of the Euler scheme involved by procedure. One remarks that the effect of the Multilevel-RR procedure Figure 1: Comparison of the evolution in terms of the complexity of the ML2Rgodic with the crude algorithm is increased in the case σ = 4 where the bias is larger. One also remarks in this case that, even though the algorithm is robust to the choice M and R, the best choice seems to be the one given in Table 3.

Of course, in practice, one can not make use of the exact parameters. As explained in Section 6.1, it is possible to get a rough estimation of σ 2 1 (f ) and θ 1 (f ) using the CLTS induced by the procedure. The coefficient c R+1 can also be estimated but for this coefficient, this requires to use a Multistep method or the procedure ML2Rgodic itself with one more stratum than in the algorithm that we will implement after. Finally, the coefficient θ 2 (f ) seems to be impossible to estimate. This implies that the natural question that the practitioner may ask is: is it possible to get rid of the estimation of the above parameters ?

To answer to this question, we propose in the case σ = 4 to look at the dynamics of the procedure when we choose to fix

With these two choices of parameters and with ε = 10 -2 , we follow the procedure described in the previous section to estimate γ 1 , R, ρ and M . Note that we again obtain R = 3 and M = 3 as an optimal choice. In Figure 2, we thus compare the evolution of the previous method (with semiestimated or not estimated) parameters and we can remark on this example that the algorithm seems to be very robust to the choice of the parameters.

A Proof of Lemma 2.1

Prior to the proof of Lemma 2.1, we need to prove this first technical lemma which will be used to estimate in a precise way the coefficients W R+1 and W R+2 involved in the asymptotic mean square error of the ML2Rgodic estimator in Theorems 2.1 and 2.2.

LEMMA A.8. Let R ≥ 2 be an integer.and let (xr)r=1,...,R be pairwise distinct real numbers. Then the unique solution (yr)r=1,...,R to the solution to the R × R-Vandermonde system R r=1

x -1 (the column vector [c -1 ] 1≤ ≤R replaces the r th column of the original Vandermonde matrix). Then, elementary computations show that it yields the announced solutions.

To compute the next two sums, we start from the following canonical decomposition of the rational fraction 1

.

Setting X = 0 yields after elementary computations

Now, using that (yr)r=1,...,R solves the above Vandermonde system, we get

The second identity follows likewise by differentiating the above rational fraction with respect to X and then setting X = 0 again. Then (Wr) 1≤r≤R-1 is solution to the system (2.17) if and only if (Wr) 1≤r≤R-1 is solution to

) yields by linearity of the above system that it suffices to solve the sequence of (R -1) × (R -1)-Vandermonde systems.

As the xr are pairwise distinct, (V k ) has a unique solutions given by

with the usual convention ∅ = 1 Consequently, for every r = 2, . . . , R,

Coming back to the weights of interest finally yields the expected formula.

One derives from the definition (2.18) of W R+1 , using the auxiliary variables, that

and the xr are given by (A.64). Following the lines of (a), we derive that

where the identity (A.62) established in the above lemma A.8 yields

Finally

Noting that (b) In the the starting system (2.17) for the weights q a( -1) r no longer depends on r and can be cancelled in each equation. This leads to the system

M -(r-2)( -1) Wr = 0, = 2, . . . , R.

After a standard Abel transform, we get that Wr = wr + • • • + w R where the wr are solution to the Vandermonde system R r=1 M -(r-1)( -1) wr = 0 -1 , = 1, . . . , R.

Note that these weights corresponds to those coming out when dealing with M L2R for regular Monte Carlo (see [START_REF] Lemaire | Multilevel Richardson-Romberg extrapolation[END_REF]) under a weak error expansion condition at rate α = 1.

As for the boundedness, first note that the "small" weights wr read wr = bR -r /ar, r = 1, . . . , R, with ar = r k=1

(1 -M -k ) and br = (-1) r M -r(r-1) 2 a -1 r .

One straightforwardly checks that ar

Finally, the same Abel transform shows that

M -(r-1)(R+i-1) wr, i = 1, 2, and one concludes by formula (A.62) and (A.63) from Lemma A.8. 2

B An additional bias term

In this part of the appendix, we focus the bias induced by the approximation

Γn (with γn = γ1n -a , a ∈ (0, 1)), that we use to build some universal weights (W (R) r )r=1,...,R (by universal, we mean that they do not depend on n). We have the following lemma: LEMMA B.9. Assume that γn = γ1n -a with a ∈ (0, 1).

(a) Let χ ∈ (0, 1) and L ∈ N such that La < 1. Then, for every n

where m r, = (M -( -1) -1)M -(r-2)( -1) . We have:

|Bias (1) (a, R, q, n)| ≤ Ca,q,r n 1-a , where Ca,q,r = 6 2 -a(R + 1) 1 -a(R + 1)

with q * = min 1≤r≤R qr and W ∞ = sup r∈{1...,R},R≥2 W (R) r . Furthermore, if q1 = . . . = qR = 1 R , then Bias (1) (a, R, q, n) = 0.

REMARK B.11. Note that since a < 1/2, n 1-a = o(n -1 2 ) so that this term is negligible at the first and second orders of the expansions obtained in this paper. Finally, it is worth noting that this term is equal to 0 when the qi are equal to 1 R , case where, in addition, the Wr, r = 1 . . . , R have a simple closed form given by (2.22) and (2.23) in Lemma 2.1.

Proof. First, we derive by a comparison argument with integrals n 0 x -a dx and n+1 1

x -a dx that n 1-a -2 1 -a ≤ n k=1 k -a ≤ n 1-a 1 -a , n ≥ 1, a ∈ (0, 1). (B.66)

Elementary computations then show that, for every a ∈ 0, 1 R , χ ∈ (0, 1), and every n ≥ 1, every integer ∈ {1, . . . , R + 1} Γ ( ) χn

Using that u → u 1-a is (1-a)-Hölder, we derive from the left inequality in (B.66) that Γ χn ≥ γ1 (χn) 1-a -3

1-a so that, for every n ≥ 6

2 -a(R + 1) 1 -a(R + 1)

1 n 1-a χ -1-a( -1) . (B.67) Now, since W ∞ < +∞ (see Lemma 2.1(b)), we deduce by plugging the above inequality in Bias (1) (a, R, q, n)

that, for every n ≥ 6 1 1-a q * , |Bias (1) (a, R, q, n)| ≤ 6 2 -a(R + 1) 1 -a(R + 1)

When qr = 1 R , r = 1, . . . , R,

Γn 1 -q-a( -1)

Wrm r, c = 0 since W is solution to (2.17).