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This report provides a mathematical proof of a result which is a generalization of Wiener filtering to Positive α-stable (PαS) distributions, a particular subclass of the α-stable distributions family whose support is [0; +∞[. PαS distributions are useful to model nonnegative data and since they are heavy-tailed, they present a natural robustness to outliers. In applications such as nonnegative source separation, it is paramount to have a way of estimating the isolated components that constitute a mixture. To address this issue, we derive an estimator of the sources which is given by the conditional expectation of the sources knowing the mixture. It extends the validity of the generalized Wiener filtering to PαS distributions. This allows us to extract the underlying PαS sources from their mixture.

Introduction

This document features supplementary materials to the reference paper [START_REF] Magron | Separation of nonnegative alpha-stable sources[END_REF]. We consider a nonnegative data matrix X which is expressed as the sum of K components X k , which follow a Positive α-stable (PαS) distribution. PαS distributions are a subclass of the α-stable distributions family, with shape parameter α < 1, location parameter µ = 0, skewness parameter β = 1 and scale parameter σ > 0. Their probability density functions are supported by R + , which makes them useful to model nonnegative data. Since they are heavy-tailed, they also present a natural robustness to outliers [START_REF] Nolan | Stable Distributions -Models for Heavy Tailed Data[END_REF]. In particular, they have been shown appropriate for audio modeling [START_REF] Bassiou | Symmetric α-stable sparse linear regression for musical audio denoising[END_REF]. In this paper, our goal is to prove that an estimator of the PαS-distributed sources X k is given by Wiener-like filtering:

Xk = σ α k l σ α l X, (1) 
where (resp. the fraction bar) denotes the element-wise matrix multiplication (resp. division). A similar result has been demonstrated for Symetric α-stable (SαS) distributions [START_REF] Liutkus | Generalized Wiener filtering with fractional power spectrograms[END_REF], thus we propose to extend it to PαS distributions. This property is paramount to separate PαS processes from nonnegative mixtures.

Proof of the PαS Wiener filtering

Following the proof presented in [START_REF] Badeau | Proof of Wiener-like linear regression of isotropic complex symmetric alphastable random variables[END_REF], we first demonstrate (1) for K = 2 sources. Then we extend this result to any K and to matrices.

Case of two PαS variables

Let α ∈]0; 1[. Let s 1 and s 2 be two independent PαS random variables of scale parameters σ 1 > 0 and σ 2 > 0 respectively. A commonly used estimator of s 1 is given by ŝ1 = E s1|x (s 1 ) if this conditional expectation exists. Besides, this expectation do exist if and only if the characteristic function ϕ s1|x (t 1 ) = E s1|x (e it1s1 ) is differentiable at t 1 = 0. If so, then:

ŝ1 = E s1|x (s 1 ) = 1 i dϕ s1|x dt 1 (0). (2) 
Step 1: Characteristic function of s 1 |x. We first determine the characteristic function of s 1 |x. Using the stability property of the PαS distributions, x also follows a PαS distribution of scale parameter σ such that

σ α = σ α 1 + σ α 2 .
The characteristic function of a PαS distribution is:

∀t x ∈ R, ϕ x (t x ) = E x (e itxx ) = e -σ α |tx| α +iΦσ α |tx| α sg(tx) , (3) 
where sg(t x ) denotes the sign of t x , and Φ is a constant equal to tan( πα

2 ) if α = 1. Since α ∈]0; 1[, Φ > 0.
The characteristic function of the random vector (s 1 , x) is:

ϕ s1,x (t 1 , t x ) = E(e i(t1s1+txx) ) = E(e i(t1s1+tx(s1+s2)) ) = E(e i((t1+tx)s1+txs2) ) = ϕ s1,s2 (t 1 + t x , t x ).
Since s 1 and s 2 are independent, ϕ s1,s2 (t

1 + t x , t x ) = ϕ s1 (t 1 + t x )ϕ s2 (t x ). Then: ϕ s1,x (t 1 , t x ) = e -σ α 1 |t1+tx| α -σ α 2 |tx| α +iΦ(σ α 1 |t1+tx| α sg(t1+tx)+σ α 2 |tx| α sg(tx)) . (4) 
Using [START_REF] Samoradnitsky | Stable non-Gaussian random processes: stochastic models with infinite variance[END_REF] (and more precisely eq (5.1.7) p. 226), we obtain the characteristic function of s 1 |x:

ϕ s1|x (t 1 ) = R ϕ s1,x (t 1 , t x )e -itxx dt x R ϕ s1,x (0, t x )e -itxx dt x . (5) 
Step 2: Differentiating the characteristic function. The first-order derivative of the conditional characteristic function is:

dϕ s1|x dt 1 (t 1 ) = R ∂ϕ s1,x ∂t 1 (t 1 , t x )e -itxx dt x R ϕ s1,x (0, t x )e -itxx dt x , (6) 
which, applied at t 1 = 0, leads to:

dϕ s1|x dt 1 (0) = R ∂ϕ s1,x ∂t 1 (0, t x )e -itxx dt x R ϕ s1,x (0, t x )e -itxx dt x . (7) 
Note that ( 6) is well-defined only if it is possible to differentiate under the sign in the numerator of the right member of ( 5), which we demonstrate below.

In (4) we distinguish two cases:

• If t 1 > -t x , ϕ s1,x (t 1 , t x ) = e -σ α 1 (t1+tx) α -σ α 2 |tx| α +iΦ(σ α 1 (t1+tx) α +σ α 2 |tx| α sg(tx))
, then:

∂ϕ s1,x ∂t 1 (t 1 , t x ) = [-ασ α 1 (t 1 + t x ) α-1 + iαΦσ α 1 (t 1 + t x ) α-1 ]ϕ s1,x (t 1 , t x ) (8) 
• If t 1 < -t x , ϕ s1,x (t 1 , t x ) = e -σ α 1 (-t1-tx) α -σ α 2 |tx| α +iΦ(-σ α 1 (-t1-tx) α +σ α 2 |tx| α sg(tx))
, then:

∂ϕ s1,x ∂t 1 (t 1 , t x ) = [ασ α 1 (-t 1 -t x ) α-1 + iαΦσ α 1 (-t 1 -t x ) α-1 ]ϕ s1,x (t 1 , t x ). (9) 
In both cases, we obtain the same expression of the first-order derivative:

∂ϕ s1,x ∂t 1 (t 1 , t x ) = ασ α 1 [-(t 1 + t x )|t 1 + t x | α-2 + iΦ|t 1 + t x | α-1 ]ϕ s1,x (t 1 , t x ), (10) 
which, applied to t 1 = 0, leads to:

∂ϕ s1,x ∂t 1 (0, t x ) = ασ α 1 [-t x |t x | α-2 + iΦ|t x | α-1 ]ϕ s1,x (0, t x ), (11) 
with

ϕ s1,x (0, t x ) = e -σ α 1 |tx| α -σ α 2 |tx| α +iΦ(σ α 1 |tx| α sg(tx)+σ α 2 |tx| α sg(tx)) (12) = e -(σ α 1 +σ α 2 )|tx| α +iΦ(σ α 1 +σ α 2 )|tx| α sg(tx) . (13) 
Let us now demonstrate that (7) is well-defined. To do so, we show that:

∂ R+ ϕ s1,x (t 1 , t x )e -itxx dt x ∂t 1 (t 1 = 0) = R+ ∂ϕ s1,x ∂t 1 (0, t x )e -itxx dt x (14) ∂ R-ϕ s1,x (t 1 , t x )e -itxx dt x ∂t 1 (t 1 = 0) = R- ∂ϕ s1,x ∂t 1 (0, t x )e -itxx dt x . (15) 
So let us prove equation ( 14) (the same proof will hold for (15)). Firstly, we have to upper bound ∂ϕs 1 ,x ∂t1 (t 1 , t x )e -itxx . Since α ∈]0, 1[, equations ( 4) and (10) yield:

∀t 1 ∈ R + , ∀t x ∈ R + \{0}, ∂ϕ s1,x ∂t 1 (t 1 , t x )e -itxx ≤ g(t 1 + t x )h(t x ) ≤ g ∞ h(t x ), (16) 
with

g(t) = ασ α 1 √ 1 + Φ 2 e -σ α 1 |t| α ∈ L ∞ (R + ) and h(t) = 1 |t| 1-α e -σ α 2 |t| α ∈ L 1 (R + ).
Since the upper bound ( 16) is independent of t 1 and Lebesgue integrable on R + \{0}, and since {0} is a negligible set, we conclude that

∀t 1 ∈ R + , ∂ R+ ϕ s1,x (t 1 , t x )e -itxx dt x ∂t 1 = R+ ∂ϕ s1,x ∂t 1 (t 1 , t x )e -itxx dt x . (17) 
Therefore ( 14) is obtained by taking t 1 = 0. Similarly, we prove equation ( 15), which concludes the proof of (7)

Step 3: Integrating the numerator in (7). It is easy to calculate the first-order derivative of φ(t x ) = ϕ s1,x (0, t x ). We can apply the same technique as above (split R into its positive and negative parts in order to eliminate the absolute value) to (13) and we obtain:

d φ dt x (t x ) = α(σ α 1 + σ α 2 )[-t x |t x | α-2 + iΦ|t x | α-1 ]ϕ s1,x (0, t x ). ( 18 
)
By combining (11) and (18), we obtain:

∂ϕ s1,x ∂t 1 (0, t x ) = σ α 1 σ α 1 + σ α 2 d φ dt x (t x ). (19) 
Equation ( 19) is useful since it allows us to calculate the numerator in (7). Indeed,

R ∂ϕ s1,x ∂t 1 (0, t x )e -itxx dt x = σ α 1 σ α 1 + σ α 2 R d φ dt x (t x )e -itxx dt x , (20) 
and an integration by parts leads to:

R d φ dt x (t x )e -itxx dt x = - R φ(t x ) d(e -itxx ) dt x dt x = ix R φ(t x )e -itxx dt x . (21) 
Then, combining (7), ( 20) and (21) leads to:

dϕ s1|x dt 1 (0) = i σ α 1 σ α 1 + σ α 2 x. (22) 
Step 4: Obtaining the estimator. Finally, we combine ( 22) with (2) in order to obtain the following estimator of s 1 :

ŝ1 = σ α 1 σ α 1 + σ α 2 x. (23) 
With the exact same technique, we obtain an estimator for s 2 . Then, if K = 2, we have the following result:

∀k ∈ 1; K , ŝk = σ α k K l=1 σ α l x.
(24)

Remark: In fact, this property still holds for any value of β (which is assumed to be equal to 1 here), as long as α = 1. Indeed, under this condition, the characteristic function (3) becomes:

∀t x ∈ R, ϕ x (t x ) = E x (e itxx ) = e -σ α |tx| α +iβΦσ α |tx| α sg(tx) , (25) 
Thus we simply need to replace the constant Φ by βΦ in the proof to demonstrate this result. The new constant βΦ can be null for β = 1, but in this case, the distribution becomes Symmetric α-stable (SαS), and the property still holds, as demonstrated in [START_REF] Liutkus | Generalized Wiener filtering with fractional power spectrograms[END_REF].

Extension to K random variables and matrices

We now prove that (24) still holds for any number of sources K. Let us consider a sum of K ≥ 2 components that follow a PαS distribution of parameter σ k respectively. Then, ∀k ∈ 1; K , let sk = l =k s l . We have:

s k + sk = X, (26) 
and given the additive property of the PαS distributions, sk is also PαS-distributed with parameter σk such that σα k = l =k σ α l . We can then use (24) with the two sources s k and sk :

ŝk = σ α k σ α k + σα k x = σ α k σ α k + l =k σ α l x = σ α k l σ α l x. (27) 
Since this result is valid for each k ∈ 1; K , then (24) is true for any K. Finally, this result can be extended to matrices. Since all TF bins are assumed independent, we can apply (24) in each TF bin, which proves (1).

Conclusion

In this report, we have proved that the use of the Wiener filtering technique, which provides an estimator of the underlying sources composing a mixture, can be extended to Positive α-stable distributions, according to (1). This result may be highly useful in applications that address the problem of nonnegative source separation. 
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