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Ultrasound Tissue Harmonic Imaging

Sébastien Ménigota,∗, Jean-Marc Giraulta

aUniversité François-Rabelais de Tours, Inserm, Imagerie et Cerveau UMR U930, Tours, France

Abstract

The development of ultrasound imaging techniques such as pulse inversion has improved
tissue harmonic imaging. Nevertheless, no recommendation has been made to date for
the design of the waveform transmitted through the medium being explored. Our aim
was therefore to find automatically the optimal “imaging” wave which maximized the
contrast resolution without a priori information. To overcome assumption regarding
the waveform, a genetic algorithm investigated the medium thanks to the transmission
of stochastic “explorer” waves. Moreover, these stochastic signals could be constrained
by the type of generator available (bipolar or arbitrary). To implement it, we changed
the current pulse inversion imaging system by including feedback. Thus the method
optimized the contrast resolution by adaptively selecting the samples of the excitation.
In simulation, we benchmarked the contrast effectiveness of the best found transmitted
stochastic commands and the usual fixed-frequency command. The optimization method
converged quickly after around 300 iterations in the same optimal area. These results were
confirmed experimentally. In the experimental case, the contrast resolution measured on
a radiofrequency line could be improved by 6% with a bipolar generator and it could still
increase by 15% with an arbitrary waveform generator.

Keywords: Genetic Algorithm, optimal command, pulse inversion, tissue harmonic
imaging, stochastic signal, ultrasound.

Highlights

• The contrast resolution is automatically optimized for ultrasound harmonic image.

• Random excitations explore the medium and a genetic algorithm selects the best
one.

• Features of electrical generator can be taking into account (bipolar or arbitrary).

• The contrast resolution reached an optimal value higher than with the usual case.
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• From the benchmark in simulation, the method was applied experimentally.

1. Introduction

Sensitivity in medical ultrasound imaging systems has been improved over the past
twenty years in order to provide more accurate medical diagnoses. The waveform design
has made possible the improvement about the contrast and/or of the spatial resolution in
ultrasound image. The technology of multi-element ultrasound probe has made possible
the first kind of waveform design, i.e. the beamforming [1] based on Radar network [2].
The second kind based directly on the time series transmitted has made possible the
development of harmonic imaging techniques [3] based on the nonlinear propagation of the
ultrasound wave in tissues under exploration. When ultrasound sinus waves of frequency
f0 propagate nonlinearly, the echoes received are composed of harmonic components (2f0,
3f0, ...). By extracting each harmonic component, it is possible to obtain ultrasound
images with high contrast [4, 5]. Given this success, tissue harmonic imaging has become
the native imaging modality in conventional ultrasound scanners.

However, in order to improve detection of the harmonic components, a limited pulse
bandwidth is required [6], thereby limiting the axial resolution. To limit these drawbacks,
some methods of the second kind of waveform design add the encoding of the transmitted
excitation based on the error detection. They hypothesize that the error between several
copies of echoes is mainly composed of backscattered nonlinearities. Some discrete encod-
ing techniques with multiple transmissions [7] such as pulse inversion imaging [8], power
modulation [9], contrast pulse sequencing [10] and pulse subtraction intermodulation [11]
have been thus made possible to ensure good axial resolution while increasing the con-
trast. Moreover, this principle has been extended to continuous encoding in order to solve
the trade-off between resolution and penetration, as in chirp imaging [12]. Finally some
solutions have mixed the two encoding types as coded tissue harmonic imaging with pulse
inversion [13] or mixed with spatial waveform design [14].

In any event, whereas the beamforming can be obtained from an optimal and adaptive
process [15], all previous solutions of the encoding excitations are non-optimal. The
question of waveform design remains open. In most cases, the solution of the excitation
adopted by manufacturers consists of providing pre-set transmit frequencies linked with
the available probe. However, in our opinion, the settings of the excitation must take into
account the targeted medium and they must derive from an optimal command process.
In medical ultrasound imaging, the optimal command problem consists of seeking the
optimal excitation w⋆(n) which provides the best contrast resolution C:

w⋆ = argmax
w

(C (w)) , (1)

where w = [w(0), w(1), ..., w(Ns)]
T is the digital transmitted signal, T the symbol of the

vector transposition and Ns the total number of samples.
The first solution proposed to solve this problem was to use the invariance properties of

the wave propagation equation [16]. Time reversal imaging optimizes the signal-to-noise
ratio thanks a matched filter and can thus cancel the nonlinear components [17]. Note
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that its main practical use in medical imaging today is limited to automatic focusing in
HIFU [18].

To overcome this limitation, another interesting solution has recently been proposed
in medical ultrasound contrast imaging [19] and in tissue harmonic imaging [20]. This
novel method solves equation 1 by transforming shape optimization into parametric opti-
mization. In the latter study, the parameter to be optimized was the transmit frequency
in order to maximize the cost-function, i.e. contrast-to-tissue ratio (CTR). The compu-
tation of this optimal frequency was obtained automatically by using a simple algorithm
of the gradient descent [21]. The cost-function CTR is thus maximized iteratively thanks
to the gradient ∇fCTR = ∂CTR

∂f
. Although this method is simple and suboptimal, it

lays the groundwork for the optimal command paradigm. However, it also requires an
arbitrary waveform generator that increases both the complexity and the cost of ultra-
sound scanner. To limit both complexity and cost, unipolar (voltage impulse V) or bipolar
(voltage -V or V) generators are preferred in conventional ultrasound scanners. Within
this framework, an interesting study dedicated to improving the signal-to-noise ratio was
proposed to convert a nonbinary code in a binary code [22]. It might adjusted with the
previous optimization methods but only for the binary generator. However, to free itself
from the waveform assumption, the optimization of the CTR (between a tissue perfused
with a contrast agent and non-perfused surrounding tissue) in ultrasound contrast imag-
ing has been able to simulate from bipolar stochastic waves [23]. This stochastic method
has shown the existence of a better command than the usual fixed-frequency waves by
transmitted a nonlinear excitation. Nevertheless, no information about the robustness
and the experimental application has been shown while adjusting the method according
to the generator. Moreover, no equivalent satisfactory method has been proposed to date
in tissue harmonic imaging to find the optimal excitation.

The study we report here is an extension of the previous work presented in [23] for
application in tissue harmonic imaging. First, the cost-function have to be adjusted to
tissue harmonic imaging. Second, several stochastic signals have to be considered (not
only ternary signals) in order to take into account the generator feature. The aim of
this study is therefore to find automatically the optimal command which maximizes the
contrast resolution without a priori information and which is constrained by type of the
generator available (eq. 1).

We have thus changed a current nonlinear imaging system into a new system including
feedback based on the transmission of “smart” waves generated by either a binary generator
or an arbitrary waveform generator. The optimization process that we have proposed is
composed of two steps. The first consists in sending random “explorer waves” generated
by a genetic algorithm to probe the medium. The second transmits an optimal “imaging
wave” adjusted to the medium studied. The solution is in fact found automatically without
a priori information about the waveform from the single echo analysis of these “explorer
waves”. Only, the assumption on the generator used is required, which guarantees that
the method can adjust itself whatever the image construction (beamforming or nonlinear
extraction).

In this study, we validated this method with a pulse inversion imaging system. First
the waveform optimization for the contrast resolution was applied in simulations. We
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statistically benchmarked to determine the experimental conditions in order to apply the
method. Secondly we confirmed the optimization results experimentally.

2. Waveform Optimization

As explained above, the optimal pulse inversion imaging system includes a feedback
as described in Fig. 1 in order to transmit the optimal waveform x⋆. The optimization
process is split in two steps for each iteration k : “exploring” and “imaging” phase.

[Figure 1 about here.]

2.1. Stochastic “Explorer” Waves

At the iteration k, the first step of the optimization process consists in “exploring” the
medium. M stochastic commands wk,m are randomly drawn thanks to a genetic algorithm
(switch on position 1 in Fig. 1). Thus for the m-th individual solutions, the stochastic
signal wk,m and its copy with opposite phase, make the “explorer” waves xk,m:

{

x
(+)
k,m = Ak,m · wk,m

x
(−)
k,m = −Ak,m · wk,m

(2)

where the stochastic commands wk,m is only defined on NS samples such as wk,m =
[wk,m(0), wk,m(1), . . . , wk,m(NS − 1)]T . They are sequentially transmitted to the pulse
inversion imaging system with a delay ∆n (timeline on Fig. 1). This delay ∆n between
the excitation is chosen in relation with the depth exploration D as ∆n = 4 ·D/cw with cw
the wave celerity in water. Note that the coefficient 4 is set as a function of the tradeoff
between a high frequency of transmission/reception and a reception safety. Moreover
the duration Tpulse of the stochastic signal wk,m corresponds to 100% of the fractional
bandwidth of the transducer. Thus Ns samples are set by the genetic algorithm.

Finally, to obtain a constant power of the pulse xk,m equal to Pxref
for all stochastic

signals transmitted, the amplitude of the driving pressure is adjusted such as:

Ak,m =

√

A2
0 · Pxref

wT
k,m ·wk,m

(3)

where the power Pxref
is computed for a signal xref which is the impulse response of the

transducer with a driving pressure A0. The power of the transmitted signal xk,m remained
constant by adjusting the amplitude signal Ak,m. Note that the power is computed as the
temporal average of squared signal.

2.2. Contrast Resolution

For each one of the M individual solutions of the iteration k, the respective echoes
are measured to construct M radiofrequency lines zk,m, such as their samples zk,m(n) are
defined as :

zk,m(n) = y
(+)
k,m(n) + y

(−)
k,m(n), (4)
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where y
(+)
k,m and y

(−)
k,m are the radiofrequency obtained from x

(+)
k,m and x

(−)
k,m respectively.

The radiofrequency line zk,m is thus composed of harmonic components only and without
any filtering [8]. Note that this property makes possible a good axial resolution while
increasing the contrast.

The M radiofrequency lines are therefore analysed to evaluate a usual contrast metric
between two different tissues in tissue harmonic imaging. The cost function is thus defined
as the contrast resolution Ck between two areas containing two different tissues [24]. The
two areas are delineated manually before the optimization process, but a segmentation
step could be implemented to help the delineation process. However, if the medium has
more than two kinds of tissue, the delineation has to choose a target among several tissues.

In this study, note that without loss of generality and for greater simplicity of the
experimental setup, each contrast resolution Ck,m was measured from only radiofrequency
line, rather a whole image. However, in a full ultrasound imaging system, we supposed
that the contrast resolution Ck,m will estimate on the whole image and so limiting the
transmitted intensity in the same area. Moreover, although the contrast resolution Ck,m

would be able to be computed from envelope amplitude related to the grey level image, a
power computation can reveal the mean harmonic behaviour of each area for the radiofre-
quency line zk,m, while avoiding the envelope computation. Thus the contrast resolutions
Ck,m were defined as the normalized difference between the harmonic power P1,m backscat-
tered by the area of the first tissue and the harmonic power P2,m backscattered by the
area of the second tissue [24] as follows:

Ck,m =
P1,m − P2,m

P1,m + P2,m

. (5)

2.3. “Imaging” Wave

At the end of each iteration k, the second step consists in “imaging” the medium
(switch on position 2 in on Fig. 1). The best individual solution among the “explorer”
wave xk,m can become the “imaging” wave x⋆

k such as:

x⋆
k = argmax

xk,m

m=1,...,M

[Ck,m(xk,m)] . (6)

This “imaging waves” x⋆
k is sent to the pulse inversion imaging system in order to acquire

the radiofrequency lines z⋆k. Several radiofrequency lines z⋆k are usually juxtaposed for the
process of image construction [1]. Finally the envelope of these Nl respective echoes z⋆k
are computed to construct a grey level image from which the medical diagnosis can be
obtained.

At this step, it should be noted that although our technique can offer an optimal
stochastic command for each image line by maximizing a contrast resolution per line, the
ideal excitation is transmitted for all lines making up the whole image to ensure the same
axial resolution everywhere. Moreover, for low iteration number, the “imaging” phase
could be stopped as long as the optimization process does not find a minimum contrast
resolution desired Cmin. In opposition, the “exploring” phase could be stopped as soon as
the contrast resolution reach the contrast value desired Cdesired.
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2.4. Genetic Algorithm

As previously explained, the search for the optimal command w⋆ is based on the se-
lection of the stochastic signals wk. However, finding the optimal imaging wave requires a
large number of stochastic “explorer” signals from Monte-Carlo methods, since for exam-
ple there are 21·Ns possibilities for a binary solution and 212·Ns possibilities for a discrete
solution coded on 12 bits. We therefore proposed using metaheuristics to limit the search
to best solutions and so reduce the computation time. Among metaheuristics, genetic
algorithms can find the optimum by setting a vector containing parameters based on the
principle of genetic reproduction [25, 26]. This therefore led us to use a genetic algorithm
where the vector was Ns samples of the stochastic signal wk.

In the genetic algorithm described in Appendix A [27], M initial individual stochastic
solutions w0 are constructed at each iteration k = 0. Two situations have been proposed
to describe the stochastic signal samples wk,m in order to take into account the constraints
of the electrical signal generators. Each one of the Ns samples is randomly chosen from
(i) a discrete uniform distribution (−1 or 1) for bipolar generators or (ii) a continuous
uniform distribution between −1 and 1 for arbitrary waveform generators.

For the next generation (k > 0), only the M/2 best individual solutions which max-
imize the contrast resolution are kept to become parents. To construct the offspring of
M/2 new individual solutions, the crossover operator mixes the best parent with one of
the remaining M/2−1 parents. Thus some of the first parent samples up to the crossover
point and some of the second parent samples from the crossover point constitute the off-
spring. It should be noted that the crossover point is randomly selected between the first
and the last sample. Moreover, samples are randomly changed according to the mutation
rate RM in order to obtain robust optimization.

Before implementing the algorithm, the population size M must be chosen. The trade-
off between robustness and the computation time due to acquisition of each individual
solution requires a small population and a high mutation rate [27]. Moreover, the popu-
lation size M is link to the frame rate using the imaging wave so that suboptimal images
can be shown regularly during the optimization process. Thus we propose that M is
a sub-multiple of the frame rate theoretically defined such as fFR = 1/(2 · D/cw · Nl).
For example, in this study, since the exploration depth was around 5 cm, the theoretical
maximal frame rate was around 120 Hz. Note that the maximal population size can be
around the highest frame rate conventionally used (i.e. around 100 Hz). Therefore, the
population size M was at 12 with a theoretical frame rate of 10 Hz (during the optimiza-
tion process), because the 12 cores of our processing unit allowed us to simulate the 12
individual solutions. Finally, the mutation rate RM is set to 40% as proposed in [27],
because the number M of individual solutions is small.

To summarize, several initial solutions are randomly selected. Then at each generation,
only the best solutions which maximize the contrast resolution are kept. By a mechanism
close to genetic reproduction, these best solutions are mixed to construct new solutions.
However, to avoid a local optimization, some samples are modified randomly. Finally the
suboptimal stochastic command w⋆ is the best individual solution wk of generation k,
which can reach the optimal stochastic command by increasing the iteration k.
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3. Simulation Evaluation

The optimization principle was initially applied in simulation. Several simulations
were performed to demonstrate the feasibility of our method without any experimental
constraints. In this section, after the presentation of the simulation model, we study the
robustness of the optimization convergence. Finally, we show the features of the best
found solutions.

3.1. Simulation Model

In order to validate the feasibility, we used realistic simulations which have already
been proven in medical ultrasound imaging [19, 28]. The simulation model is constructed
on the basis of the pulse inversion imaging system (Fig. 1). It is composed of different
phases: transmission, 2D nonlinear propagation and reception.

[Table 1 about here.]

At the transmitter, a stochastic signal xk,m is generated digitally with Matlab (The
Mathworks, Natick, MA, USA). It is transmitted to a single-element probe with a diam-
eter of 1 mm and filtered by its transfer function from a realistic transducer, centred at
fc = 4 MHz with a fractional bandwidth of 80% at −3 dB. The pulse wave generated
is propagated nonlinearly into an attenuating medium, i.e. a 5 mm-broad inclusion of a
second tissue sample is inserted into the first tissue at 9.5 mm below the surface (Fig.
2). Note that these small sizes were chosen to reduce the computation time of the prop-
agation simulation. The two different tissues are selected to mimic two real materials
(blood and fat) with very different properties described in Table 1. The 2D nonlinear
wave propagation is solved using the Anderson model based on a pseudo-spectral deriva-
tive and a time-domain integration algorithm [29]. This solver requires three grids: a grid
of mean density, a grid of mean speed of sound and a grid of a B/A nonlinearity param-
eter described in Table 1. The scatterers are generated randomly by weakly modifiying
the density grid and the velocity grid. Moreover this model included an attenuation of
0.5 dB/(MHz · cm). Note that this attenuation was constant in the medium in order to
simplify the simulation model.

[Figure 2 about here.]

Finally, the signals backscattered by tissue are recorded. These tissue echoes are
filtered by the transfer function of the transducer to construct the echoes. Then the
radiofrequency line zk,m is constructed from equation 4. An example of a radiofrequency
line is depicted in Fig. 2. The contrast resolution Ck,m is thus computed from the
radiofrequency line zk,m and the optimization process computes a new stochastic signal
xk,m to explore the medium again. Finally, it is possible to build an image at the end of
each generation by moving the transducer.
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3.2. Statistics of Contrast Optimization

Contrast optimization was applied to the previous simulation model for two different
transmitters (bipolar and arbitrary waveform). In order to demonstrate the robustness
and the reproducibility of the method, we propose to compute the contrast resolution
statistically from several optimization. The optimization was thus repeated 20 times with
different random initialization. As the method required a high frame rate, a problem of
tissue safety can appear and can be solved by reducing the mechanical index (MI). It
has been shown that tissue harmonic imaging could be performed with low MI [30]. For
each simulation, the driving pressure A0 was set at 200 kPa, and thus the MI was always
low around 0.1. Moreover, the stochastic signal had a duration T which represented
100% of the fractional bandwidth of the transducer. According to the sampling rate
(fs = 46 MHz) of the simulation model, 40 samples were required in duration Tpulse =
0.9 µs, and therefore Ns = 40. Moreover, to demonstrate the effectiveness of the new
method, the results were compared to those of two usual transmitted Gaussian-modulated
sinusoidal pulses [31, 8]. They have the same bandwidth and the same driving pressure
than the stochastic signals. Their transmit frequencies were set at (i) two-thirds of the
central frequency fc of the transducer [31] (2/3fc = 2.67 MHz), and (ii) the optimal
fixed-frequency f ⋆ = 1.9 MHz. Note that this best fixed-frequency f ⋆ made it possible
to obtain a limited contrast resolution Cf⋆ which was the best solution by selecting the
transmit frequency only [19].

[Figure 3 about here.]

Fig. 3 shows the statistics of the contrast resolution C as a function of generation
k in binary and non-binary situations. These distributions are represented with their
median and their four quartiles. As an illustration, these results are compared with the
two fixed-frequency signals.

By using frequency optimization (red dotted line in Fig. 3), it was possible to achieve a
suboptimal solution which could offer a gain of 15% in comparison with contrast obtained
by the signal transmitted at the usual transmit frequency (cyan dotted line in Fig. 3).
However, the contrast resolution C was higher with the two best found stochastic com-
mands than with the usual transmit frequency. These contrast resolution values could
not be achieved with the fixed-frequency signals, although the transmit frequency was
optimized. After 3217 generations in the binary optimization, the contrast resolution C
reached a median best found value of 80% that was statistically higher than the frequency
setting situations. Moreover, by using a continuous genetic algorithm and an analogue
generator, the best found non-binary stochastic command considerably still improved the
contrast resolution C, i.e. 87%, after 3576 iterations. For instance, when the binary
optimization was over (after 5000 generations), all the contrast resolution measured were
between 79% and 81%, whereas they were between 87% and 89% at the end of the non-
binary optimization. However, although it was not required to wait for a large number of
generation to reach a contrast value close to the optimal contrast resolution, the number
of generations was reduced to 300. This leads to a good trade off between a good contrast
resolution and a reasonable duration. Moreover, a single generation using non-binary
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stochastic commands was sufficient to obtain a contrast resolution higher (contrast res-
olution between 72% and 80%) than this one by using the optimal fixed-frequency. By
using binary stochastic command, seven generations was necessary to obtain the same
property (contrast resolution between 68% and 75%), because of the limitation of degrees
of freedom.

To summarize, with the best found binary stochastic command, the contrast resolution
could be increased to 27% on average compared to the situation with the usual fixed-
frequency transmitted signal. When the number of degrees of freedom was high, it could
be still increased up to 8% on average compared to the situation of the transmitted signal
at the optimal fixed-frequency f ⋆.

[Figure 4 about here.]

[Figure 5 about here.]

Fig. 4 and Fig. 5 show the input and output signals for the best “imaging” signals
when the command was (i) the best found binary stochastic signal and (ii) the best found
non-binary stochastic signal w⋆, respectively.

The best found binary and non-binary commands are depicted in Fig. 4a and Fig.
5a respectively. The lines show the median of the sample value and the areas show the
quartiles from the twenty binary and non-binary optimizations. In others words, a median
excitation appeared in between the quartile curves either for the binary command or for
the non-binary command. The optimization may reach the same optimal region including
the same optimal value without reaching it accurately. Note that this drawback is a
metaheuristics property which can be avoid by adding a local optimization algorithm [32],
but with the risk to increase the iteration number.

Fig. 4c and Fig. 5c show the waves at the transducer output transmitted to the
tissue when the stochatic command w was the best found binary and non-binary signals
respectively. As expected, the transmitted wave were no more discrete nature due to the
filtering effects of the transducers. Moreover, because of the genetic algorithm, all best
found stochastic commands w and best found waves were similar, since they were confined
to a small range around the mean best found “imaging” wave (blue and green areas in
Fig. 4c and Fig. 5c).

The respective spectra of these best found “imaging” waves and the transducer band-
width are depicted in Fig. 4b and Fig. 5b respectively. As an illustration, the results
are compared with a Gaussian-modulated sinusoidal pulses at the optimal fixed transmit
frequency f ⋆. Note that this optimal fixed-frequency wave transmit has been filtered by
the transducer, which explains the shape of its spectrum and its central frequency. As
observed in [23], the best found “imaging” waves had several frequency components in
the transducer bandwidth, unlike a usual fixed-frequency transmitted wave. Although
the best found “imaging” wave was composed of the optimal fixed-frequency transmitted
wave, the amplitude of this fundamental frequency component were reduced to distribute
the power on other frequency components, in particularly around three times the lower
transmit frequency (2 to 6 MHz). These added frequency components were more easily
recognizable in the non-binary case than in the binary case.
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Finally Fig. 4e and Fig. 5e show the respective radiofrequency lines, and their re-
spective spectra are presented in Fig. 4d and Fig. 5d. Note that for more clearness,
only the median radiofrequency lines were depicted on Fig. 4e and Fig. 5e. The ra-
diofrequency line was composed only of the nonlinear components backscattered by the
tissue remained, because the linear component was suppressed in pulse inversion imag-
ing (detailed explanation in Appendix Appendix B). Even if the backscattered second
harmonic components of these higher transmit frequencies were not present in the ra-
diofrequency lines, the contrast resolution could not reach the optimal value without that
transmit frequencies. Therefore the nonlinear backscattered components were the sum of
(i) the second harmonic components which were the double lower frequency of the compo-
nents transmitted and (ii) the intermodulation components between the lower and higher
transmitted frequency.

[Figure 6 about here.]

In order to clearly see the contrast resolution on the radiofrequency line, Fig. 6 shows
the short-term harmonic powers of the radiofrequency lines when the signals transmitted
were the best found non-binary stochastic signal, the best found binary stochastic com-
mand and the two fixed-frequency signals. Moreover, the blue and green areas show the
statistical distribution of the harmonic short-term mean powers for the twenty binary and
non-binary optimizations. As the radiofrequency lines shown in Fig. 6, the backscattered
harmonic power increased with the inclusion of the second tissue, whatever the transmit-
ted signal. However, as can be seen from the results presented in Fig. 3, the ratio of the
harmonic short-term mean powers between the two tissues was greater with the best found
stochastic commands. Moreover, although the first quartile of the short-term harmonic
power from non-binary command was overlapped with the short-term harmonic power
from binary command, three quarters of the short-term harmonic power from non-binary
command were close to its median value which was higher than the distribution from the
binary command. The most complex waveform of the non-binary command may explain
the difference between the distribution.

[Figure 7 about here.]

Finally, as an illustration of the second step with “imaging waves”, Fig. 7 shows the
synthetic image using the best best found non-binary stochastic signal, the best best found
binary stochastic command, the two fixed-frequency signals and their respective contrast
resolution C. Optimization was performed for the central radiofrequency line of the region
of interest and the same transmitted signal was applied for all the radiofrequency lines
of the image. However the images show the same increase in the contrast C between the
two tissues as the values measured only on the center radiofrequency lines shown in Fig.
3. Note that the differences between the contrast measured on one line and the whole
image must be due to the random position of scatterers. As can be seen from the results
presented in Fig. 4 and Fig. 5, the signal backscattered by the second tissue was lower in
the two images using the usual transmitted signal than in the images using an best found
stochastic command. Moreover, the speckle seemed to be thin by using the non-binary
command, since the distribution of the short-term harmonic power showed a larger range
for the low value.
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4. Experimental Validation

The aim of this section was to experimentally confirm the optimization results obtained
in the simulations.

4.1. Experimental Setup

The experimental setup follows the steps presented in Fig. 8. It makes possible to
have a pulse-echo system.

[Figure 8 about here.]

The stochastic signals xk,m are generated digitally by Matlab with a personal com-
puter (PC). They are successively transmitted to an 12-bits arbitrary waveform generator
(PicoScope PS5203, PicoTech, St Neots, UK) by USB. They are then amplified by 50 dB
using a power amplifier (AAP-200-1-10, Adece, Veigné, France) protected by a 3 dB high
power attenuator (HFP-5100-3/3-NM/NF, Trilithic, Indianapolis, IN, USA). Finally they
are transmitted to the medium from a 3.3 MHz PZT single element transducer (V380-SU,
Olympus NDT Inc., Waltham, MA, USA) with a bandwidth of 64% at −6 dB. Note that
the pulse repetition frequency of 2 kHz is controlled by an outside clock device (Ultrasound
receiver, GIP Ultrasons, Tours, France).

The wave propagates through a tissue-mimicking phantom (model 054GS, General
Purpose Ultrasound Phantom, CIRS, Norfolk, VA, USA). This phantom is made of Zer-
bine polymer [33], where the attenuating coefficient is 0.5 dB/cm-MHz and the speed of
sound is 1540 m/s ± 10 m/s. It includes a 8 mm-broad hyperechoic inclusion at a 40
mm-depth. Note that the studied area is close to the grid shown in Fig. 2. The backscat-
tered waves are collected by the same transducer. The echoes yk,m are transmitted to an
ultrasound receiver via a diode bridge and amplified by 40 dB. Finally their measurements
are repeated by an oscilloscope (PicoScope PS5203) four times to increase the signal-to-
noise ratio. From these four measurements, the PC constructs a mean pulse inversion
radiofrequency line zk,m before selecting the next stochastic signal xk+1,m at the iteration
k + 1.

After the optimization was performed for the central radiofrequency line of the region
of interest, the acoustic pressure of the best found transmitted “imaging” waves were
measured with a 85-µm hydrophone (HGL0085, ONDA Corp., Sunnyvale, CA) close to
the transducer. Finally, the same “imaging” signal was applied for all the image lines of the
image. These other lines was obtained by shifting the transducer thanks to a motorized
positioning systems (Owis DC-500, OWIS GmbH, Staufen, Germany) by step of 0.25 mm.
Note that the phantom position is in the longitudinal management in order to facilitate
the probe displacement.

4.2. Experimental Results

[Figure 9 about here.]

The experimental results are presented in Fig. 9 for a single optimization.
Fig. 9a shows the best contrast resolution C as a function of generation k in binary

and non-binary situations. As an illustration, these results are compared with the two
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fixed-frequency signals. Because of the memory of the experimental device, the optimiza-
tions were stopped after 330 generations which had to come closer to the convergence
according to the simulation (Fig. 3). These results were in accordance with our sim-
ulation results: we observed that the best found stochastic command made possible to
increase the contrast resolution C in comparison with the frequency setting situations.
Note that the difference between the contrast resolution C for the frequency setting situ-
ations in our simulation and that obtained in our experiment might be due to the noise
on measurements higher in experiment than in simulation. It explained the difference
of contrast gain, because the reference was not the same. Therefore, by using frequency
optimization, it was possible to achieve a suboptimal solution which could offer a gain of
6% in comparison with contrast obtained by the signal transmitted at the usual transmit
frequency. However, the contrast resolution could be increased to 11% by using best found
binary command compared to the situation with the usual fixed-frequency transmitted
signal. It could be increased to 17.5% by using best found non-binary command. Finally,
as in simulation, only one generation for the non-binary stochastic command and seven
generations for the binary stochastic command was required. They enabled to reach a
contrast resolution higher than this one obtained by using the optimal fixed frequency.

As an illustration of the step of the “imaging wave”, Fig. 9b and Fig. 9c shows the
best found non-binary stochastic command and the best found binary stochastic command
w⋆(n). Fig. 9d and Fig. 9e show the respective driving pressure at the transducer output
transmitted to the tissue. Fig. 9e and Fig. 9h show the radiofrequency lines for the
two different kinds of best found stochastic command and the two fixed-frequency signals.
The amplitudes were higher with the two best found stochastic commands. This result
was in accordance with the harmonic short-term mean power shown in Fig. 9j. As in
the simulation, even if the harmonic short-term mean power could slightly increased with
the best found stochastic commands, the ratio of the harmonic short-term mean powers
between the two tissues was greater with the best found stochastic commands. Finally,
Fig. 9f and Fig. 9g show the spectra of the transmitted and the backscattered waves for
the best found binary and non-binary commands respectively. The transducer bandwidth
is added on these spectra. The transmitted waves have a high frequency components,
even if their amplitude was lower than in simulation. It can be due to difference of the
bandwidth of the wave generation system, especially the transducer. Moreover, all these
components were in the bandwidth transducer including the high components. These high
components were not generated by nonlinearities from electronics, since the difference
between the two transmitted signals in opposite phases was low.

[Figure 10 about here.]

Furthermore, as an illustration, Fig. 10 shows the experimental images using the
best found non-binary stochastic signal, the best found binary stochastic command, the
two fixed-frequency signals and their respective contrast resolution C. The experimental
images show an increase of the contrast resolution C between the two tissues, which is
close to the previous results. The contrasts measured on the whole image were sightly
lower than the ones measured on the center radiofrequency lines, because the scatterer
distribution must be due different according the lines. Moreover, note that the difference
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between the images in simulations and in experiment can have several origins. First,
the radiofrequency line could be blurred by the noise measurements higher in experiment
than in simulation. Second, some tissue-mimicking properties might be different between
in simulation and in experiment. Indeed, some data like B/A parameter were not spec-
ified by the manufacturer. The image textures could therefore be different. Third, the
experimental setup did not allow us to centre the inclusion in the image. The second part
of the tissue 1 was bigger than the first part. Therefore the optimization process gave
priority to reduce the contribution of the second part rather the first part, which explains
that the first part of the tissue 1 was not as dark as in simulation and as the second part.

Finally, to summarize, these experimental results confirmed the feasibility of our
method.

5. Discussion

Automatic optimization of contrast resolution C for a pulse inversion imaging system
was performed by stochastic sequences. Although the previous method [23] only gave the
existence of a such optimal solution, robustness and speed was not demonstrated with the
aim of applying it experimentally.

The closed loop system automatically provided an best stochastic command to achieve
the optimal area of the contrast resolution C. According to the constraint on the com-
mand and because of the genetic algorithm, these optimal contrast resolutions were always
closed each other and the best signals transmitted also had strong similarities. Even if
it is well known that the the genetic algorithm can only found the area of the opti-
mum, the algorithm thus converged to the same optimal contrast resolution whatever the
initialization. Moreover this contrast resolution C was higher than with usual Gaussian-
modulated sinusoidal pulses at a fixed transmit frequency. All best found “imaging” waves
were filtered stochastic commands composed of frequency components transmitted to the
medium being explored. Without these different transmit frequency components, the ex-
citation was a non-optimal fixed-frequency signal, even if the lower transmit frequency
components were closed to the optimal fixed-frequency. The optimization must change
the frequency distribution of the transmitted power, in order to facilitate the reception of
the backscattered harmonic components. The power lost was therefore limited in compar-
ison with the conventional methods. Moreover, the resulting image was a harmonic image
which was not due to the direct transmission of harmonic components but to the harmonic
components from the nonlinear interaction between the excitation and the medium. Note
that only the discrete encoding techniques, e.g. the pulse inversion, can guarantee it
(Appendix B). By taking into account the transducer bandwidth, the second harmonic
components of the higher transmit frequencies generated by the nonlinear propagation
were not directly used to construct the second harmonic image. The lower frequency
components enabled to generate the backscattered second harmonic components, whereas
the higher transmit frequency associated to the lower frequency amplified the generation
of backscattered harmonic power by intermodulation.

Even if the frequency content of best found excitation was always complex, the number
of degrees of freedom was not the same according to the specific features of electrical signal
generators (bipolar generator or arbitrary waveform generator). The genetic algorithm
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took into account this choice by changing the random drawing of the sample excitation.
The continuous genetic algorithm with a arbitrary waveform transmitter increased the
number of degrees of freedom compared to using a binary genetic algorithm and a bipolar
generator. Therefore, the higher its number of degrees of freedom was, the higher the
contrast resolution could reach.

This transmitted stochastic signals adjusted itself for any medium explored according
to this constraint applied to the best found waveform (binary or non-binary). The only
information required about the medium was the position of the target being observed. No
another a priori information about the medium nor about the transducer was required
for this optimization, because the explorer waves gave informations to the cost function
thanks to the mean power of the output system. Therefore it took into account the effects
of attenuation and nonlinear propagation indirectly. Moreover, the cost-function defined
as the contrast resolution was a tradeoff between increasing the harmonic power of the
targeted tissue and decreasing the harmonic power of the surrounding tissue. Even if
these two harmonic powers increased, the transmitted power was more suitable to the
hyperechoic area, since the optimization reached a solution for which the ratio of the
harmonic powers between the two tissues was bigger. Thus the optimization had to
highlight hyperechoic area compared to the surrounding medium, whatever its depth.
Note that according to the depth of the target, the optimization process will adjust the
command. However, the surrounding medium included in the cost function should be
equally distributed around the region of interest, so that no part of the surrounding is
more important in the cost function.

Finally, the optimization duration can be crucial for future integration in an ultrasound
imaging system. The minimum contrast resolution desired and the maximal frame rate
of the imaging system are the main factors impacting the optimization duration. Indeed,
the optimization duration is proportional to the “generation number required to reach the
contrast resolution desired” × “the number of individual solution per generation M” /
“the frame rate of the system”. Therefore these three factors can change the optimization
duration. First, the high number of generations to reach the optimal contrast resolution
may be a limiting factor. Nevertheless, the convergence could be reach quickly. More-
over a short optimization can be sufficient to obtain an interesting suboptimal solution.
For instance, only one generation using non-binary stochastic pulses, i.e. twelve pulses,
was required to obtain contrast resolutions higher than using usual Gaussian-modulated
sinusoidal pulses. The contrast gain could be doubled by waiting for just more six pulses
compared to the optimization of the single frequency. Moreover, in the case where we
want to achieve the specific optimal contrast resolution, we linked the size population M
to the frame rate so that it is possible to show suboptimal image during the optimization
process. Second, if the optimization settings are fixed, the only factor is the frame rate
of the system. By assuming a sufficient frame rate, we could assume that the medium is
quasi-static. The easiest solution would be to use a ultrafast imaging system. Therefore
the definition of the cost function could remains constant whatever the low displacement
caused by breathing for instance. Consequently, the comparison between the conven-
tional methods and our method should be limited to the static tissue due to the frame
rate. However, we though that our method would be more appropriate with a ultrafast
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imaging system. As a such system required a spatial compound with several angles, the
optimization process may be used instead this average completely or partially. To summa-
rize, we think that our system should be more suitable to an ultrafast imaging system in
order to overcome the tissue displacement and to avoid the high local transmitted power
(without focusing). However, more studies will necessary for the clinical applicability. For
instance, because of the spatial-peak temporal-average intensity (ISPTA), the imaging of
foetus or eyes should be excluded for now.

6. Conclusions

To conclude, we demonstrated that the usual imaging system was far from the opti-
mal contrast resolution. With simple frequency optimization, it was possible to improve
performance. However, to be close to the optimal performance, a bipolar generator of
stochastic sequences was at least required, but only the generator of stochastic sequences
gives the best performance.

Moreover, the optimization of the ultrasound wave transmitted through the medium
had to take into account the full imaging system, from the transducer to electronic recep-
tion through the medium explored. It was therefore not possible to optimize a waveform
once and for all, but required the optimization process to be performed for each tissue
explored. In comparison with the conventional methods, even if the system can become
more complex and can reduce the frame rate, the optimization was robust and can reach
higher contrast resolution quickly. For example, such optimization might be performed
after the clinician has chosen the cross section view.
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Appendix A. Algorithm

Result: Find the optimal stochastic signal w⋆ to optimize the contrast resolution
C

begin

Initialization

Choose M initial stochastic signals w0,m randomly;
for i = 1 to M do

ContrastEvalutation(w0,i);
end

end

while k < Maximal Iteration do
Sort the individual stochastic signals wk,m in descending order of the
contrast resolution C;
Keep the M/2 best stochastic signals;
Generate M/2 new individual stochastic signals by crossover ; // Mating

Change 40% samples of the new individual randomly; // Mutation

Replace the M/2 worst individual stochastic signals by the new previous
signal;
for i = 1 to M do

ContrastEvalutation(wk,i);
end

w⋆ ← wk,1;
k ← k + 1;

end

end

Function ContrastEvalutation(w) is
Result: Contrast resolution C
Construct the signal x from w;
Transmit the signal x in the ultrasound system;
; // described by eq. 2

Receive the echoes y;
Receive the harmonic signal z;
; // described by eq. 4

Compute the harmonic power of the tissues 1 and 2;
Compute the contrast resolution C; // described by eq. 5

end

Algorithm 1: Pseudo-code of the contrast resolution maximization by genetic algorithm
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Appendix B. Nonlinearity Extraction in Pulse Inversion Imaging

The pulse inversion method can only extract the harmonic components from the non-
linear interaction between the excitation and the medium, whatever the signal transmit-
ted. Using a simple example, we can demonstrate this principle.

First, the transmitted signal x can be cut in two parts composed each one of two
components such as:

{

x1(n) = x11(n) + x12(n);
x2(n) = x21(n) + x22(n),

(B.1)

where the components x11(n) and x21(n) correspond to the fundamental components at
f0, and the components x12(n) and x22(n) correspond to the third harmonic components
at 3f0. However, in pulse inversion imaging, the two transmitted signals are in opposite
phase, i.e. −x1(n) = x2(n); therefore −x11(n) = x21(n) and −x12(n) = x22(n).

We then hypothesized that echoes y1(n) and y2(n) can be decomposed into power
series of the transmitted signals x1(n) and x2(n), respectively:











y1(n) =
∑

i

xi
1(n) = [x11(n) + x12(n)] + [x11(n) + x12(n)]

2;

y2(n) =
∑

i

xi
2(n) = [x21(n) + x22(n)] + [x21(n) + x22(n)]

2.
(B.2)

Note that the second order is sufficient because the transducer is not broad enough to
receive the higher order.

Finally, to construct the image line l, the two echoes are added together:

z(n) = y1(n) + y2(n);

= [x11(n) + x12(n)] + [x11(n) + x12(n)]
2 + [x21(n) + x22(n)] + [x21(n) + x22(n)]

2;

= [x11(n) + x12(n)] + [x11(n) + x12(n)]
2 + [−x11(n)− x12(n)] + [−x11(n)− x12(n)]

2;

= 2[x11(n) + x12(n)]
2;

= 2x2
11(n) + 4x11(n) · x12(n) + 2x2

12(n),

(B.3)

where the component x2
11(n) corresponds to the harmonic component generated at fre-

quency 2f0 and component x2
12(n) to the harmonic component generated at frequency

4f0. Moreover, the intermodulation between the components x11(n) · x12(n) generates
harmonic components at frequencies 2f0 (3f0 − f0) and 4f0 (3f0 + f0). The direct trans-
mission of the components x11(n) and x12(n) at f0 and 2f0 are therefore removed from the
radiofrequency line z(n). Only the harmonic components from the nonlinear interaction
between the excitation and the medium remain. However, since the transducer is not
broad enough, the radiofrequency line zk is mainly composed of components x2

11(n) and
x11(n) · x12(n) at 2f0:

z(n) ≈ 2x2
11(n) + 4x11(n) · x12(n). (B.4)
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Table Captions

Table 1: Mechanical Properties of the medium explored [24]. N is the symbol of the
Gaussian distribution.
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Table B.1:

Tissue 1
(blood)

ρ1 N (1060 kg/m3, 0.008 kg2/m6)

c1 N (1584 m/s, 0.2 m2/s2)

B/A1 6

Tissue 2
(fat)

ρ2 N (928 kg/m3, 0.008 kg2/m6)

c2 N (1430 m/s, 0.2 m2/s2)

B/A2 10.3
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Figure Captions

Figure 1: Block diagram of contrast optimization in tissue pulse inversion imaging.

Figure 2: Grid of medium properties: ci is the wave velocity, ρi the density and B/Ai

the nonlinearity parameter of the medium i. The ultrasound transducer was
at a depth of 0 mm, here at the top.

Figure 3: Statistics distributions of the contrast resolution optimized by a transmit-
ted binary stochastic signal and a transmitted non-binary stochastic sig-
nal on twenty simulations. Optimizations were compared to two Gaussian-
modulated sinusoidal pulses where the transmit fixed-frequency was at the
optimal frequency and at two-thirds of the central frequency of the trans-
ducer.

Figure 4: (a) Distribution of the samples of the best found binary from the twenty
simulations. (c) Respective transmitted waves at the transducer output (Fig.
1) when the transmitted signals were the best found binary stochastic signal
w⋆. (b) The respective spectra and the transducer bandwidth (black line).
(e) Corresponding respective median radiofrequency line. (d) The respective
spectra. As a comparison, the optimal fixed-frequency signals were depicted
on red.

Figure 5: (a)Distribution of the samples of the best found non-binary stochastic sig-
nals from the twenty simulations. (c) Respective transmitted waves at the
transducer output (Fig. 1) when the transmitted signals were the best found
non-binary stochastic signal w⋆. (b) The respective spectra and the trans-
ducer bandwidth (black line). (e) Corresponding respective median radiofre-
quency line. (d) The respective spectra. As a comparison, the optimal fixed-
frequency signals were depicted on red.

Figure 6: Simulation of short-term harmonic powers computed on the radiofrequency
line when the transmitted signal was the best found non-binary stochastic
command, the best found binary stochastic command, a Gaussian-modulated
sinusoidal pulse at the optimal transmit fixed-frequency and a Gaussian-
modulated sinusoidal pulse at the usual transmit fixed-frequency (2/3fc).
The statistical distribution of the harmonic short-term mean powers for the
twenty simulations are depicted by areas (first quartile, second quartile, me-
dian, third quartile and fourth quartile).

Figure 7: Synthetic images using (a) the usual transmitted signal at two-thirds of the
central fixed-frequency of the transducer 2/3fc, (b) the usual transmitted
signal at the optimal transmit fixed-frequency, (c) the best found binary
stochastic signal and (d) the best found non-binary stochastic signal. The
images showed the medium depicted in Fig. 2.

Figure 8: Block diagram of the experimental setup.

Figure 9: (a) Experiment of the contrast resolution optimization by a transmitted bi-
nary stochastic signal and a transmitted non-binary stochastic signal. Opti-
mizations were compared to two Gaussian-modulated sinusoidal pulses where
the transmit fixed-frequency was at the optimal frequency and at two-thirds
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of the central frequency of the transducer. (b) and (c) best found binary
and non-binary stochastic signal w⋆ respectively, the signal in opposite and
the difference. (d) and (g) Respective transmitted waves at the transducer
output. (e) and (h) Corresponding radiofrequency lines. (e) Their respective
short-term harmonic powers. (f) and (i) The spectra of the transmitted and
backscattered waves transmitted by using best found binary and non-binary
stochastic signal respectively and the transducer bandwidth (black line).

Figure 10: Experimental images using (a) the usual transmitted signal at two-thirds of
the central fixed-frequency of the transducer 2/3fc, (b) the usual transmitted
signal at the optimal transmit fixed-frequency, (c) the best found binary
stochastic signal and (d) the best found non-binary stochastic signal.
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