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In model amorphous solids produced via differing quench protocols, a strong correlation is es-
tablished between local yield stress measured by direct local probing of shear stress thresholds and
the plastic rearrangements observed during remote loading in shear. This purely local measure
shows a higher predictive power for identifying sites of plastic activity when compared with more
conventional structural properties. Most importantly, the sites of low local yield stress thus defined
are shown to be persistent, remaining predictive of deformation events even after fifty or more such
plastic rearrangements. This direct and non-perturbative approach gives access to relevant transi-
tion pathways that control the stability of amorphous solids. Our results reinforce the relevance of
modeling plasticity in amorphous solids based on a gradually evolving population of discrete and
local zones pre-existing in the structure.

Unlike in crystalline materials, the modeling of plastic-
ity in amorphous materials is still limited to qualitative
or phenomenological approaches. Indeed, the absence
of clearly identified topological defects, such as disloca-
tions, excludes systematic characterization of the mech-
anisms occurring at the smallest scales [1]. It has long
been hypothesized that, at the atomic scale, the plastic-
ity of amorphous materials manifests as local rearrange-
ments, exhibiting characteristic quadrupolar stress signa-
tures [2–7] leading to a redistribution of elastic stresses
in the system [5, 8, 9]. By analogy with dislocations,
it therefore appears natural to try to describe the plas-
tic flow from the dynamics of some localized “defects”.
This vision of plasticity has led to the concept of Shear
Transformation Zones (STZ) [3], meaning zones (i) that
pre-exist within the material prior to the loading, (ii) re-
arranging under shear, (iii) resulting in plastic deforma-
tion, and (iv) persist during deformation until the activa-
tion of other nearby zones results in the local reshuffling
of atoms. Starting from these building blocks, mean-field
theories [3, 10–12] and lattice-based models [13–15] have
been developed to model amorphous plasticity. Many
of these studies have sought to connect local structural
properties with effective plastic activity in order to phys-
ically ground these models.
However, despite many attempts to link structure and

plasticity, most of the structural indicators studied, such
as free volume, elastic moduli, local stresses, and lo-
cal favorable structures, have shown a relatively low
correlation with the plastic activity and are critically
material-dependent [1, 16–18]. So far, the most promis-
ing physically-based method to predict the relaxation lo-
cations via atomistic computations involves identifying
“soft spots” based on the soft vibrational modes [17–23].
This perturbative method is substantially predictive only

close to instabilities, however, and relies on a system-
dependent determination of the number of modes con-
sidered. Furthermore, it only gives access to a “mobility
field” and not more physically relevant quantities such as
stress thresholds or energy barriers. Prior applications of
non-perturbative methods to harvest activation energies
between configurational states in glasses have revealed
interesting trends, but have not proven predictive of the
locations of future plastic events [24–26].
The lack of accurate and physically well-grounded lo-

cal characterization methods has led some to question the
relevance of modeling plastic deformation in the frame-
work of pre-existing zones such as STZs [27, 28]. The
aim of this letter is to propose a measure of the local
plastic susceptibility from atomistic simulations. We be-
lieve that the success of the local yield stress measure
described here clearly demonstrates the relevance of the
STZ picture, and lays the groundwork to place such ap-
proaches on a firm quantitative foundation. We perform
series of local shear tests over a range of different orienta-
tions on a two-dimensional model glass. We then system-
atically compute the minimum shear stresses that trigger
irreversible plastic rearrangements. This straightforward
simulation technique allows us to access the local stress
thresholds and predicts not only the most plastically sus-
ceptible zone along an orientation, but also characterizes
the population of zones for a given material state. We
demonstrate a strong correlation between a broad popu-
lation of low local thresholds and plastic activity observed
during remote loading. The correlation obtained shows
a higher degree of predictability when compared to pre-
viously studied structural indicators. Furthermore, we
show that these zones are long lived and survive many
plastic rearrangements. All of these results support the
relevance of a description of plastic deformation based on
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FIG. 1. a) Average stress-strain curves for instantaneous
(dashed lines) and gradual (continuous lines) quenches. The
vertical line is located at γxy = 0.07. b) Schematic drawing of
the local yield stress computation around an atom i: region I

is fully relaxed while region II is forced to deform following
an affine shear deformation in the α direction. Local yield
stress maps τy (see Eq.(1)) defined for each atom for an in-
stantaneously (c) and a gradually (d) quenched system. The
first 10 plastic event locations are shown as open black sym-
bols numbered by order of appearance during remote shear
loading.

the dynamic of discrete plastic zones.
Simulation methods - Atomistic simulations [29] are

performed to investigate the mechanical properties of
a two-dimensional binary glass forming system [30, 31]
previously employed in [3, 32, 33]. Fifty glass samples
containing 104 atoms are synthesized using the same
interatomic potential, composition, density and quench
protocols as in [33]. The two types of atoms interact
via standard Lennard-Jones interatomic potentials. All
units will be expressed in terms of the mass m of the
atoms, which are equal, as well as ǫ and σ, the parame-
ters describing the energy and length scale, respectively,
of the interspecies interaction. The characteristic time
is t0 = σ

√

m/ǫ. The glass transition temperature Tg
of this system is known to be located approximately at
Tg = 0.325ǫ/k, where k is the Boltzmann constant.

Glass samples are obtained by reducing the tempera-
ture from a liquid state, equilibrated at 1.08Tg. In order
to highlight the links between the processing of glasses,
their microstructures and their mechanical properties,
two different quench rates are considered: one infinitely
rapid and another as slow as possible using molecular dy-
namics simulation. The first one is derived directly from
the high temperature liquid while the temperature in the
more deeply quenched system is reduced continuously to
a low-temperature solid state equal to 0.092Tg over a pe-
riod of 106t0 using a Nose-Hoover thermostat [34, 35].

In both cases, a static relaxation via a conjugate gradi-
ent method is applied to bring the system to mechanical
equilibrium at zero temperature.

As reported in Fig. 1a, the glasses are deformed in
simple shear with an Athermal Quasi Static method
(AQS) [5–7, 16, 27, 36]. This incremental method con-
sists in applying a series of deformation steps, ∆γxy =
10−5, by moving the atom positions to follow an affine
displacement field. After each deformation increment,
the system is relaxed to its mechanical equilibrium. The
observed response is typical for amorphous materials
and is characterized by reversible elastic branches inter-
spersed by plastic events [37]. The displacement fields
induced by the successive plastic events are calculated
from the difference between the position of the atoms af-
ter and just before each instability. The strain tensor
ǫij is then evaluated from the displacement field follow-
ing the method developed in Ref. [38]. The position of a
plastic event is defined as the position of the atom imax
having undergone the maximum shear deformation. This
approach allows us to obtain the successive positions of
the localized plastic events during deformation from the
quenched state as reported in Fig. 1 [39].

Probing local yield stress - We now propose a charac-
terization of the plastic properties of the model glass at
the local scale. In the present study, a length scale equal
to 5σ is chosen to perform this investigation [39]. We
extend a method proposed by Sollich [40] to compute lo-
cal yield stresses. This consists of constraining the atoms
outside a circular region of radius Rfree = 5σ to deform
in a purely affine manner to locally probe the mechani-
cal response within the embedded region. The same AQS
method is used as in the shearing of the entire sample but
only the atoms within the region are relaxed and can de-
form non-affinely. Plastic rearrangements are thus forced
to occur within this region and the local yield stress can
be identified. An important feature of our study is an
assessment of the orientational nature of the plastic re-
arrangements [3]. Due to the randomness of the amor-
phous structure, the yield stress may not be the same for
all orientations of the imposed shear. Sollich’s approach
is thus extended to shear the system in several orienta-
tions α as depicted in Fig. 1b. The local shear stress
[41] at the onset of the instability τ inst(α) is recorded for
each direction of shear. The shear stress threshold along
the loading direction is then deduced as the difference
τc(α) = τ inst(α) − τ0(α) where τ0(α) is the initial local
shear stress state of the region within the as-quenched
glass. The stress τc(α) thus corresponds to the mean
shear stress along α that has to be added on the atoms
in the region (or, equivalently, the change in the mean
stress imposed on the boundary of it) to trigger a rear-
rangement. This operation is performed for orientations
from α = 0◦ to 170◦ every ∆α = 10◦. Although we could
center our regions at any points in space we choose to cen-
ter them on the coordinates of each atom i in the system.
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Assuming a homogeneous applied shear stress, the local
yield stress for the region surrounding atom i is defined
as the minimum (positive) local shear stress threshold
τci (α) projected in the direction of remote loading αl, i.e.
for simple shear at orientation αl = 0◦. We can express
this as:

τy,i(αl) = min
α

τci (α)

cos(2(α− αl))
with |α−αl| < 45◦. (1)

We thus obtain microscopic information on the local yield
stress for the amorphous structure to rearrange. Maps of
local yield stress τy,i(αl = 0◦) are exemplified in Fig. 1.
It is apparent in Fig. 1c and 1d, where the first 10 events
that occur during remote shear are denoted by open black
symbols, that plastic events clearly tend to occur in re-
gions characterized by low τy,i.
Other local probes - Before proceeding to a more quan-

titative characterization of the correlation between the
local yield stress and the development of the plastic ac-
tivity, we note that other local properties have been
proposed for the same purpose to which we can cross-
compare our results. Here we consider the density ρ
[42], the potential energy (PE) [10], the short-range or-
der (SRO) [33, 43], the lowest shear modulus 2µI [16]
and the Participation Fraction (PF ) as determined by an
analysis of the quasi-localized soft vibrational modes [18].
These local properties can be divided between structural
properties (ρ, PE, SRO) and linear responses (2µI , PF ).
The structural properties are expected to reflect the local
stability of the system and therefore, potentially, the sus-
ceptibility to mechanical loading. The main idea of linear
response approaches is that the reversible rearrangements
associated with low-energy deformation paths (computed
perturbatively) will coincide with the irreversible plastic
rearrangements.
For the sake of comparison, all of these local observ-

ables have also been computed [39]. The local structural
properties are calculated for each atom from a coarse-
graining process over a length scale RGC = 5σ [31, 44].
Local lowest shear moduli have been obtained follow-
ing the method developed in Ref. [16]. The participa-
tion fraction of the low-energy vibrational mode has been
computed following Ref. [18].
Correlation between plastic activity and local proper-

ties - To determine the reliability of local properties for
predicting plastic activity one needs to quantify the rela-
tionship between the successive plastic event locations
and the corresponding values of local properties com-
puted from the configuration prior to the initiation of
shear. In order to not introduce any arbitrary parameters
when calculating this correlation, we work directly with
the distribution of the different local properties. Plas-
tic events are expected to occur in zones characterized
by extremal values of the local estimators e.g. a mini-
mum of the stress threshold τy,i or a maximum of the
participation fraction PFi. When the glass rearranges in
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FIG. 2. Correlation between the local properties and the loca-
tions of the plastic rearrangement as a function of the number
of plastic event from the quenched state for instantaneous (a)
and gradual (b) quenches. The vertical line corresponds to
γxy = 0.07.

a region centred on atom i, we thus compute the rank
in the distribution of the local estimators at site i. The
closer to the extremum, the higher the predictive quality
of the local estimator. More precisely the correlation is
defined based on the Cumulative Distribution Functions
(CDF ) value for a given local property at the location
where the plastic event takes place (given by imax). We
define:

Cψ = 1− 2CDF (ψimax
), (2)

where ψ is one of the local properties and the average of
its cumulative distribution functions CDF is performed
over the different samples. Cψ varies between −1 and 1
denoting perfect anti-correlation and perfect correlation,
respectively. Cψ will therefore be close to 1 when the
plastic rearrangements are concentrated in zones where
CDF (ψ) is small. Note that Eq. (2) applies for a local
property assumed to be relatively low at sites that ex-
hibit plastic rearrangement, such as ρ, SRO, 2µI and τy.
Conversely, when the local indicator is supposed to in-
crease with plastic susceptibility, the correlation is com-
puted with the opposite of Eq. (2), as for PE and PF .
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This definition has the advantage of being consistent due
to the direct use of the CDF and correlations can be
directly compared with that which would be obtained
from a random field, i.e. the worst scenario in terms of
prediction.

Numerical results - The correlations calculated for
all local properties are reported in Fig. 2 as a function
of the number of events subsequent to the initiation of
shear. Structural indicators (ρ, PE and SRO) show low-
predictive power of the plastic activity. The only proper-
ties showing significantly high correlations are the min-
imum shear moduli, the participation fractions in low-
frequency soft modes and the local yield stresses. The
predictive power of the local yield stress calculations out-
performs all other indicators. Most importantly, we see
that its correlation Cτy persists even after many plastic
rearrangements.

As expected, the correlations of 2µI , PF and τy
decrease with the number of plastic events from the
quenched state, as the material loses memory of its ini-
tial state during deformation. Surprisingly, we note that
the correlations of PE and SRO are almost constant,
with Cψ ≈ 0.18. Although small, this is higher than a
white noise standard deviation (≈ 0.08). For most of the
indicators, Cψ converges toward the latter value. This
suggests that while PE and SRO are not able to resolve
individual zones, they may still be correlated with re-
gions of high or low plastic activity on larger scales. Of
course, at larger strain, we expect Cψ → 0 for all local
properties.

The most striking results of this analysis is the slow
decay of Cτy . For instance, considering the 25% of atoms
having the smallest τy values (i.e. Cτy = 0.5), it is pos-
sible to predict on average the locations of the first 43
(35) plastic events for the instantaneously (gradually)
quenched system. The same reasoning applied to the lin-
ear response indicators shows that only the first 13 (14)
and 18 (17) plastic event locations can be predicted for
the instantaneously (gradually) quenched system consid-
ering the 2µI and PF fields, respectively. For structural
indicators, Cψ simply never reaches a value equal to 0.5.
Cτy starts to be comparable with the other local prop-
erties only from the 77th (43rd) plastic events for the
instantaneously (gradually) quenched system, which cor-
responds to γxy ≈ 0.07 as reported in Fig. 1a and 2.

Mechanical stability of glasses - The present method
offers the opportunity to characterize the stability of the
glass from a locally coarse-grained scale as a function of
the quench protocol. Fig. 1a and 1b show a remarkable
increase of the local yield stress with quench duration as
the system achieves a greater degree of structural equi-
libration. The instantaneously quenched system is char-
acterized by the presence of a multitude of small yield
stresses. In contrast, these small thresholds are rarer
in the more deeply quenched glass. We have calculated
the yield stress distribution for both quench protocols as
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in the inset. The straight lines (shifted for clarity) corre-
spond to power law fits limτy→0 P (τy) ∼ τ θ

y from which the
tail exponents are estimated.

reported in Fig. 3. The general appearance of the distri-
bution is qualitatively consistent with the energy barrier
distributions found in [24, 45]. Local stress thresholds
appear to be a very sensitive probe of the preparation
of the glass and the plastic response. They are thus ex-
pected to be extremely useful for predicting the thermal
history dependence of the plastic behavior in general and
the shear-banding behavior in particular [10, 46].
We finally turn to the study of the tail of the stress

threshold distributions in the limit of small thresholds.
The latter is essential to determine how an STZs den-
sity might emerge in such a picture and how this could
be used to model plasticity. Following [36, 47–50], we
calculate the exponent θ characterizing the distribution
limτy→0 P (τy) ∼ τθy . We compute θ ≈ 0.49 for our in-
stantaneously quenched glasses and θ ≈ 1.1 for our more
gradually quenched glasses as reported in the insert of
Fig. 3. These results are in qualitative agreement in
the case of a system quenched instantly. For the slowly
quenched system, our exponent deviates from the one
found using an extreme value approach [48].
Conclusions - Our work sheds new light on the plas-

ticity of amorphous materials by allowing a system-
atic characterization of the local yield stress thresholds
from atomistic calculations. This nonperturbative local
method provides an effective way to predict the loca-
tion of plastic events even after large deformations. The
correlation observed with low local yield stress outper-
forms other conventional structural indicators. Another
advantage of our approach is that it gives access to the
underlying distribution of stress thresholds and orienta-
tions. Quantifying the system in this way allows us to
quantitatively distinguish material states of the system
with different plastic susceptibility. A clear next step is
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to find the minima in such a field to define and character-
ize the population of STZs in the amorphous solid. This
is an essential and necessary step to transfer atomisti-
cally derived information to a larger scale and test the
predictions of existing theoretical models as well as other
emerging characterization methods[24–26, 51]. As such,
this approach will allow a significant refinement of the
multiscale modeling of mechanical properties of glassy
systems.

M.L.F. acknowledges support from the U.S. National
Science Foundation under Grant No. DMR 1408685 and
both M.L.F. and S.P. under Grant No. DMR 1107838.
Simulations were performed in part using The Maryland
Advanced Research Computing Center (MARCC).
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Additional material for: “Connecting local yield stresses with plastic activity in
amorphous solids”

Plastic event locations

The aim of our paper is to measure the degree of
correlation between the location of plastic activity and
the local structural properties. This is achieved by
computing structural properties for each atom and by
defining the plastic rearrangement location as the posi-
tion of the atom having undergone the maximum shear

strain for a given plastic event
√

((ǫxx − ǫyy)/2)2 + ǫ2xy.

This method allows us to avoid arbitrary parameters
without explicitly addressing the more complex issue of
event size and multiplicity which arises due to a single
event triggering multiple subsequent events.

Another difficulty in the precise definition of plastic
rearrangements lies in the existence of avalanches where
system-spanning events can be observed in the qua-
sistatic limit [52]. The plastic events nevertheless become
increasingly ramified as one approaches the steady state,
only after large deformations. In our system, the steady
state is reached for strain well above 15%. Since in the
present work we focus on the transient state, correspond-
ing to the first percentages of deformation, the plastic
rearrangements are overwhelmingly localized and their
locations can be defined unambiguously. This transient
loading regime is critically important for understanding
the approach to the steady state, strain localization and
failure in materials.

Length scale

In the present study, a length scale equal to 5σ is
chosen to investigate the local glass properties. At
this scale, a continuous description makes sense and
Hooke’s law holds, although at this scale the solid is still
anisotropic and heterogeneous [16, 44].

In order to check the sensitivity of our method with
respect to the choice of this length, the correlation be-
tween local yield stresses with plastic activity has been
investigated for different sizes of the local regions. The
correlation defined in Eq. 2 is computed systematically
for ten samples as a function of Rfree as reported on
Fig. 4.

A size of local regions lower than 5σ is empirically
observed in these simulations not to be able to capture
the plastic rearrangements, the boundary conditions
over-constraining the measurement of local shear stress
thresholds. On the other hand, a length Rfree > 5σ
degrades the spatial resolution of the measurement and
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FIG. 4. Correlation between the local yield stresses, com-
puted for different Rfree, and the locations of the plastic
rearrangement as a function of the number of plastic event
from the quenched state for instantaneous (a) and gradual
(b) quenches. The vertical line corresponds to γxy = 0.07.

leads to a decrease in correlation as reported on the
above figure.

This result shows that the choice of a patch size
Rfree = 5σ corresponds to an optimal length scale
for correlating the local yield stresses with the loca-
tions of the plastic rearrangement in this system. This
length scale is consistently used for computing strains
and stresses as well as for the coarse-graining operations
(RCG).

In Fig. 1c and 1d one distinguishes a correlation
length corresponding to the size of the probe region. In-
deed, a plastic rearrangement triggered when probing at
atom can be activated several times when probing nearby
atoms if its threshold is smaller than other possible re-
arrangements in its vicinity. This leads the algorithm to
assign highly correlated τy values on a scale ∼ Rfree.



7

Computation of local estimators

We provide details on the definition and the numerical
methods used to compute the local estimators character-
izing the structure and the linear response of the model
glass under study.

The local structural properties are calculated for each
atom from a coarse-graining process over a length scale
RGC = 5σ. For the atom i, the local coarse-grained
density can be expressed as ρGCi =

∑

j φ(Rij) where
Rij = ri − rj is the inter-atomic distance [44]. The
sum is performed on neighboring atoms j and φ is a
Gaussian function. The coarse-grained potential energy
is computed as PEGCi =

∑

j PEjφ(Rij)/ρ
GC
i where

PEj is the potential energy of the atom j. The local
SRO is quantified by SROGCi =

∑

j SROjφ(Rij)/ρ
GC
i

where SROj is equal to 1 if the atom j belongs to one
of the nine stable motifs described in [31], 0 otherwise.

To compute the local lowest shear moduli, we repro-
duced the method developed in [16]. The local elastic

moduli Cijkl are measured by solving the linear system
of equations σij −σ

0
ij = Cijklǫkl linking the local stresses

(computed as in [41]) and strains (computed as in [38])
after mechanical perturbations of the whole system
(where σ0

ij is the initial local stress tensor within the as-
quenched glass). Three independent elastic deformations
(in our case ǫxx, ǫyy and ǫxy) are employed to determine
the modulus tensor. Cijkl is then diagonalized to obtain
the smallest eigenvalue denoted 2µIi that would match
the shear modulus for an isotropic continuous solid.

The PF is obtained from analysis of the soft vibra-
tional modes [18]. M normal modes, selected from the
lowest frequencies, are obtained by diagonalizing the dy-
namical matrix. Following [18], these low-energy vibra-
tional modes are then clustered by computing the par-
ticipation fraction. For the atom i, we express this as
PFi =

∑M

j=d+1 |~e
j
i |
2 where |~eji | is the magnitude of the

polarization vectors of the normalized eigenmode j and
d is the dimensionality of the system. In our work, we
choose M = 250 which has been optimized to describe
the plastic rearrangement locations in a very similar sys-
tem [21].


